Пример #1
0
    def test_capture_output_files_multiple(self, get_files):
        output_files = [SeedOutputFiles(self.test_output_snippet)]
        name = 'OUTPUT_TIFFS'
        get_files.return_value = ['outfile0.tif', 'outfile1.tif']

        outputs = JobResults()._capture_output_files(output_files)

        self.assertIn(name, outputs)
        files = outputs[name]
        self.assertEqual(len(files), 2)
        self.assertEqual(files[0].__dict__, ProductFileMetadata(name, 'outfile0.tif', media_type='image/tiff').__dict__)
        self.assertEqual(files[1].__dict__, ProductFileMetadata(name, 'outfile1.tif', media_type='image/tiff').__dict__)
Пример #2
0
    def setUp(self):
        django.setup()

        def upload_files(file_uploads):
            for file_upload in file_uploads:
                file_upload.file.save()

        def delete_files(files):
            for scale_file in files:
                scale_file.save()

        self.workspace = storage_test_utils.create_workspace()
        self.workspace.upload_files = MagicMock(side_effect=upload_files)
        self.workspace.delete_files = MagicMock(side_effect=delete_files)

        self.source_file = source_test_utils.create_source(file_name='input1.txt', workspace=self.workspace)

        inputs_json=[
            {'name': 'property1', 'type': 'string'},
            {'name': 'property2', 'type': 'string'}
        ]
        manifest = job_test_utils.create_seed_manifest(inputs_json=inputs_json, command='my_command')
        manifest['job']['interface']['inputs']['files'] = []
        job_type = job_test_utils.create_seed_job_type(manifest=manifest)
        self.job_exe = job_test_utils.create_job_exe(job_type=job_type)
        data = self.job_exe.job.get_input_data()
        data.add_value(JsonValue('property1', 'value1'))
        data.add_value(JsonValue('property2', 'value2'))
        self.job_exe.job.input = convert_data_to_v6_json(data).get_dict()
        self.job_exe.job.source_sensor_class = 'classA'
        self.job_exe.job.source_sensor = '1'
        self.job_exe.job.source_collection = '12345'
        self.job_exe.job.source_task = 'my-task'
        self.job_exe.job.save()
        self.job_exe_no = job_test_utils.create_job_exe()

        self.local_path_1 = os.path.join(SCALE_JOB_EXE_OUTPUT_PATH, 'local/1/file.txt')
        self.local_path_2 = os.path.join(SCALE_JOB_EXE_OUTPUT_PATH, 'local/2/file.json')
        self.local_path_3 = os.path.join(SCALE_JOB_EXE_OUTPUT_PATH, 'local/3/file.h5')

        self.files = [
            ProductFileMetadata(output_name='output_name_1', local_path=self.local_path_1,
            remote_path='remote/1/file.txt'),
            ProductFileMetadata(output_name='output_name_2', local_path=self.local_path_2,
            media_type='application/x-custom-json', remote_path='remote/2/file.json',
            source_sensor_class='classB', source_sensor='2', source_collection='12346',
            source_task='my-task-2'),
        ]
        self.files_no = [
            ProductFileMetadata(output_name='output_name_3', local_path=self.local_path_3, media_type='image/x-hdf5-image', remote_path='remote/3/file.h5')
        ]
Пример #3
0
    def _capture_output_files(self, seed_output_files):
        """Evaluate files patterns and capture any available side-car metadata associated with matched files

        :param seed_output_files: interface definition of Seed output files that should be captured
        :type seed_output_files: [`job.seed.types.SeedOutputFiles`]
        :return: collection of files name keys mapped to a ProductFileMetadata list. { name : [`ProductFileMetadata`]
        :rtype: dict
        """

        # Dict of detected files and associated metadata
        captured_files = {}

        # Iterate over each files object
        for output_file in seed_output_files:
            # For files obj that are detected, handle results (may be multiple)
            product_files = []
            for matched_file in output_file.get_files():

                product_file_meta = ProductFileMetadata(
                    output_file.name, matched_file, output_file.media_type)

                # check to see if there is side-car metadata files
                metadata_file = os.path.join(matched_file, METADATA_SUFFIX)

                # If metadata is found, attempt to grab any Scale relevant data and place in ProductFileMetadata tuple
                if os.path.isfile(metadata_file):
                    with open(metadata_file) as metadata_file_handle:
                        metadata = SeedMetadata(
                            json.load(metadata_file_handle))

                        # Create a GeoJSON object, as the present Seed Metadata schema only uses the Geometry fragment
                        # TODO: Update if Seed schema updates.  Ref: https://github.com/ngageoint/seed/issues/95
                        product_file_meta.geojson = \
                            {
                                'type': 'Feature',
                                'geometry': metadata.get_geometry()
                            }

                        timestamp = metadata.get_time()

                        # Seed Metadata Schema defines start / end as required
                        # so we do not need to check here.
                        if timestamp:
                            product_file_meta.data_start = timestamp['start']
                            product_file_meta.data_end = timestamp['end']

                product_files.append(product_file_meta)

            captured_files[output_file.name] = product_files

        return captured_files
Пример #4
0
    def setUp(self):
        django.setup()

        def upload_files(file_uploads):
            for file_upload in file_uploads:
                file_upload.file.save()

        def delete_files(files):
            for scale_file in files:
                scale_file.save()

        self.workspace = storage_test_utils.create_workspace()
        self.workspace.upload_files = MagicMock(side_effect=upload_files)
        self.workspace.delete_files = MagicMock(side_effect=delete_files)

        self.source_file = source_test_utils.create_source(
            file_name='input1.txt', workspace=self.workspace)

        self.job_exe = job_test_utils.create_job_exe()
        data = self.job_exe.job.get_job_data()
        data.add_property_input('property1', 'value1')
        data.add_property_input('property2', 'value2')
        self.job_exe.job.data = data.get_dict()
        self.job_exe.job.save()
        self.job_exe_no = job_test_utils.create_job_exe()
        with transaction.atomic():
            self.job_exe_no.job.is_operational = False
            self.job_exe_no.job.job_type.is_operational = False
            self.job_exe_no.job.save()
            self.job_exe_no.job.job_type.save()

        self.local_path_1 = os.path.join(SCALE_JOB_EXE_OUTPUT_PATH,
                                         'local/1/file.txt')
        self.local_path_2 = os.path.join(SCALE_JOB_EXE_OUTPUT_PATH,
                                         'local/2/file.json')
        self.local_path_3 = os.path.join(SCALE_JOB_EXE_OUTPUT_PATH,
                                         'local/3/file.h5')

        self.files = [
            ProductFileMetadata('output_name_1',
                                self.local_path_1,
                                remote_path='remote/1/file.txt'),
            ProductFileMetadata('output_name_2', self.local_path_2,
                                'application/x-custom-json',
                                'remote/2/file.json'),
        ]
        self.files_no = [
            ProductFileMetadata('output_name_3', self.local_path_3,
                                'image/x-hdf5-image', 'remote/3/file.h5')
        ]
Пример #5
0
    def test_geo_metadata(self, mock_upload_files,
                          mock_create_file_ancestry_links):
        """Tests calling ProductDataFileType.store_files() successfully"""

        geo_metadata = {
            "data_started": "2015-05-15T10:34:12Z",
            "data_ended": "2015-05-15T10:36:12Z",
            "geo_json": {
                "type":
                "Polygon",
                "coordinates": [[[1.0, 10.0], [2.0, 10.0], [2.0, 20.0],
                                 [1.0, 20.0], [1.0, 10.0]]]
            }
        }

        parent_ids = set([98, 99])
        local_path_1 = os.path.join('my', 'path', 'one', 'my_test.txt')
        full_local_path_1 = os.path.join(SCALE_JOB_EXE_OUTPUT_PATH,
                                         local_path_1)
        remote_path_1 = os.path.join(
            ProductDataFileStore()._calculate_remote_path(
                self.job_exe, parent_ids), local_path_1)
        media_type_1 = 'text/plain'
        job_output_1 = 'mock_output_1'
        local_path_2 = os.path.join('my', 'path', 'one', 'my_test.json')
        full_local_path_2 = os.path.join(SCALE_JOB_EXE_OUTPUT_PATH,
                                         local_path_2)
        remote_path_2 = os.path.join(
            ProductDataFileStore()._calculate_remote_path(
                self.job_exe, parent_ids), local_path_2)
        media_type_2 = 'application/json'
        job_output_2 = 'mock_output_2'
        metadata_1 = ProductFileMetadata(output_name=job_output_1,
                                         local_path=full_local_path_1,
                                         remote_path=remote_path_1,
                                         media_type=media_type_1,
                                         geojson=geo_metadata)
        metadata_2 = ProductFileMetadata(output_name=job_output_2,
                                         local_path=full_local_path_2,
                                         remote_path=remote_path_2,
                                         media_type=media_type_2)

        data_files = {self.workspace_1.id: [metadata_1, metadata_2]}
        ProductDataFileStore().store_files(data_files, parent_ids,
                                           self.job_exe)
        files_to_store = [metadata_1, metadata_2]
        mock_upload_files.assert_called_with(files_to_store, parent_ids,
                                             self.job_exe, self.workspace_1)
Пример #6
0
    def test_geo_metadata(self):
        """Tests calling ProductFileManager.upload_files() successfully with extra geometry meta data"""
        data_start = '2015-05-15T10:34:12Z'
        data_end = '2015-05-15T10:36:12Z'

        geojson = {
            'type': 'Polygon',
            'coordinates': [
                [[1.0, 10.0], [2.0, 10.0], [2.0, 20.0], [1.0, 20.0], [1.0, 10.0]],
            ]
        }

        files = [ProductFileMetadata('output_1', os.path.join(SCALE_JOB_EXE_OUTPUT_PATH, 'local/1/file.txt'),
                                     'text/plain', 'remote/1/file.txt', data_start, data_end, geojson)]

        products = ProductFile.objects.upload_files(files, [self.source_file.id], self.job_exe, self.workspace)

        self.assertEqual('file.txt', products[0].file_name)
        self.assertEqual('remote/1/file.txt', products[0].file_path)
        self.assertEqual('text/plain', products[0].media_type)
        self.assertEqual(self.workspace.id, products[0].workspace_id)
        self.assertEqual('Polygon', products[0].geometry.geom_type)
        self.assertEqual('Point', products[0].center_point.geom_type)
        self.assertEqual(datetime.datetime(2015, 5, 15, 10, 34, 12, tzinfo=utc), products[0].data_started)
        self.assertEqual(datetime.datetime(2015, 5, 15, 10, 36, 12, tzinfo=utc), products[0].data_ended)
        self.assertIsNotNone(products[0].uuid)
Пример #7
0
    def test_successful(self, mock_file_call, mock_file_list_call, mock_store,
                        mock_isfile):
        """Tests calling JobData.store_output_data_files() successfully"""
        def new_isfile(path):
            return True

        mock_isfile.side_effect = new_isfile

        job_exe = MagicMock()
        job_exe.id = 1
        job_exe.job.get_job_configuration().default_output_workspace = None
        job_exe.job.get_job_configuration().output_workspaces = None
        data = {
            'output_data': [{
                'name': 'Param1',
                'workspace_id': 1
            }, {
                'name': 'Param2',
                'workspace_id': 2
            }]
        }
        file_path_1 = os.path.join('/path', '1', 'my_file.txt')
        file_path_2 = os.path.join('/path', '2', 'my_file_2.txt')
        file_path_3 = os.path.join('/path', '3', 'my_file_3.txt')
        data_files = {
            'Param1':
            ProductFileMetadata(output_name='Param1', local_path=file_path_1),
            'Param2': [
                ProductFileMetadata(output_name='Param2',
                                    local_path=file_path_2,
                                    media_type='text/plain'),
                ProductFileMetadata(output_name='Param2',
                                    local_path=file_path_3)
            ]
        }

        JobData(data).store_output_data_files(data_files, job_exe)
        mock_file_call.assert_called_once_with('Param1', long(1))
        self.assertEqual('Param2', mock_file_list_call.call_args[0][0])
        self.assertSetEqual(set([long(3), long(2)]),
                            set(mock_file_list_call.call_args[0][1]))
Пример #8
0
    def test_store_output_files(self, dummy_store, isfile):

        workspace = storage_test_utils.create_workspace()

        files = {'OUTPUT_TIFFS': [ProductFileMetadata('OUTPUT_TIFFS', 'outfile0.tif', media_type='image/tiff')]}
        job_data = JobData({})

        job_config = JobConfiguration()
        job_config.add_output_workspace('OUTPUT_TIFFS', workspace.name)
        job_exe = Mock()
        job_exe.job_type.get_job_configuration.return_value = job_config

        results = JobResults()._store_output_data_files(files, job_data, job_exe)
        self.assertEqual({'OUTPUT_TIFFS': [1]}, results.files)
Пример #9
0
    def test_capture_output_files_metadata(self, get_files):
        output_files = [SeedOutputFiles(self.test_output_snippet)]
        name = 'OUTPUT_TIFFS'
        get_files.return_value = ['outfile0.tif']

        metadata = {
            'type': 'Feature',
            'geometry': {
                'type': 'Point',
                'coordinates': [0, 1]
            },
            'properties': {
                'dataStarted': '2018-06-01T00:00:00Z',
                'dataEnded': '2018-06-01T01:00:00Z',
                'sourceStarted': '2018-06-01T00:00:00Z',
                'sourceEnded': '2018-06-01T06:00:00Z',
                'sourceSensorClass': 'Platform',
                'sourceSensor': 'X1',
                'sourceCollection': '12345A',
                'sourceTask': 'Calibration'
            }
        }

        metadata_name = 'outfile0.tif.metadata.json'
        with open(metadata_name, 'w') as metadata_file:
            json.dump(metadata, metadata_file)

        outputs = JobResults()._capture_output_files(output_files)

        os.remove(metadata_name)

        self.assertIn(name, outputs)
        files = outputs[name]

        self.assertEqual(len(files), 1)
        self.assertDictEqual(
            files[0].__dict__,
            ProductFileMetadata(output_name=name,
                                local_path='outfile0.tif',
                                media_type='image/tiff',
                                data_start='2018-06-01T00:00:00Z',
                                data_end='2018-06-01T01:00:00Z',
                                geojson=metadata,
                                source_started='2018-06-01T00:00:00Z',
                                source_ended='2018-06-01T06:00:00Z',
                                source_sensor_class='Platform',
                                source_sensor='X1',
                                source_collection='12345A',
                                source_task='Calibration').__dict__)
Пример #10
0
    def _capture_output_files(self, seed_output_files):
        """Evaluate files patterns and capture any available side-car metadata associated with matched files

        :param seed_output_files: interface definition of Seed output files that should be captured
        :type seed_output_files: [`job.seed.types.SeedOutputFiles`]
        :return: collection of files name keys mapped to a ProductFileMetadata list. { name : [`ProductFileMetadata`]
        :rtype: dict
        """

        # Dict of detected files and associated metadata
        captured_files = {}

        # Iterate over each files object
        for output_file in seed_output_files:
            # For files obj that are detected, handle results (may be multiple)
            product_files = []
            for matched_file in output_file.get_files():
                logger.info('File detected for output capture: %s' % matched_file)

                product_file_meta = ProductFileMetadata(output_file.name, matched_file, output_file.media_type)

                # check to see if there is a side-car metadata file
                metadata_file = matched_file + METADATA_SUFFIX

                # If metadata is found, attempt to grab any Scale relevant data and place in ProductFileMetadata tuple
                if os.path.isfile(metadata_file):
                    logger.info('Capturing metadata from detected side-car file: %s' % metadata_file)
                    with open(metadata_file) as metadata_file_handle:
                        try:
                            metadata = SeedMetadata.metadata_from_json(json.load(metadata_file_handle))

                            # Property keys per #1160
                            product_file_meta.geojson = metadata.data
                            product_file_meta.data_start = metadata.get_property('dataStarted')
                            product_file_meta.data_end = metadata.get_property('dataEnded')

                            product_file_meta.source_started = metadata.get_property('sourceStarted')
                            product_file_meta.source_ended = metadata.get_property('sourceEnded')
                            product_file_meta.source_sensor_class = metadata.get_property('sourceSensorClass')
                            product_file_meta.source_sensor = metadata.get_property('sourceSensor')
                            product_file_meta.source_collection = metadata.get_property('sourceCollection')
                            product_file_meta.source_task = metadata.get_property('sourceTask')
                        except InvalidSeedMetadataDefinition:
                            logger.exception()

                product_files.append(product_file_meta)

            captured_files[output_file.name] = product_files

        return captured_files
Пример #11
0
    def test_successful(self, mock_upload_files,
                        mock_create_file_ancestry_links):
        """Tests calling ProductDataFileType.store_files() successfully"""

        local_path_1 = os.path.join('my', 'path', 'one', 'my_test.txt')
        media_type_1 = 'text/plain'
        job_output_1 = 'mock_output_1'
        local_path_2 = os.path.join('my', 'path', 'one', 'my_test.json')
        media_type_2 = 'application/json'
        job_output_2 = 'mock_output_2'
        local_path_3 = os.path.join('my', 'path', 'three', 'my_test.png')
        media_type_3 = 'image/png'
        job_output_3 = 'mock_output_3'
        local_path_4 = os.path.join('my', 'path', 'four', 'my_test.xml')
        media_type_4 = None
        job_output_4 = 'mock_output_4'

        # Set up mocks
        def new_upload_files(file_entries, input_file_ids, job_exe, workspace):
            results = []
            for file_entry in file_entries:
                # Check base remote path for job type name and version
                self.assertTrue(
                    file_entry.remote_path.startswith(self.remote_base_path))
                if file_entry.local_path == local_path_1:
                    mock_1 = MagicMock()
                    mock_1.id = 1
                    results.append(mock_1)
                elif file_entry.local_path == local_path_2:
                    mock_2 = MagicMock()
                    mock_2.id = 2
                    results.append(mock_2)
                elif file_entry.local_path == local_path_3:
                    mock_3 = MagicMock()
                    mock_3.id = 3
                    results.append(mock_3)
                elif file_entry.local_path == local_path_4:
                    mock_4 = MagicMock()
                    mock_4.id = 4
                    results.append(mock_4)
            return results

        mock_upload_files.side_effect = new_upload_files

        data_files = {
            self.workspace_1.id: [
                ProductFileMetadata(output_name=job_output_1,
                                    local_path=local_path_1,
                                    media_type=media_type_1),
                ProductFileMetadata(output_name=job_output_2,
                                    local_path=local_path_2,
                                    media_type=media_type_2)
            ],
            self.workspace_2.id: [
                ProductFileMetadata(output_name=job_output_3,
                                    local_path=local_path_3,
                                    media_type=media_type_3),
                ProductFileMetadata(output_name=job_output_4,
                                    local_path=local_path_4,
                                    media_type=media_type_4)
            ]
        }

        parent_ids = {98, 99}

        results = ProductDataFileStore().store_files(data_files, parent_ids,
                                                     self.job_exe)

        self.assertDictEqual(
            results, {
                local_path_1: long(1),
                local_path_2: long(2),
                local_path_3: long(3),
                local_path_4: long(4)
            })
        mock_create_file_ancestry_links.assert_called_once_with(
            parent_ids, {1, 2, 3, 4}, self.job_exe.job, self.job_exe.id)
Пример #12
0
    def test_successful_recipe_path(self, mock_upload_files,
                                    mock_create_file_ancestry_links):
        """Tests calling ProductDataFileType.store_files() successfully with a job that is in a recipe"""

        job_exe_in_recipe = job_utils.create_job_exe(status='RUNNING')
        recipe = recipe_utils.create_recipe()
        _recipe_job = recipe_utils.create_recipe_job(recipe=recipe,
                                                     job_name='My Job',
                                                     job=job_exe_in_recipe.job)
        remote_base_path_with_recipe = os.path.join(
            'recipes', get_valid_filename(recipe.recipe_type.name),
            get_valid_filename('revision_%i' %
                               recipe.recipe_type.revision_num), 'jobs',
            get_valid_filename(job_exe_in_recipe.job.job_type.name),
            get_valid_filename(job_exe_in_recipe.job.job_type.version))

        local_path_1 = os.path.join('my', 'path', 'one', 'my_test.txt')
        media_type_1 = 'text/plain'
        job_output_1 = 'mock_output_1'
        local_path_2 = os.path.join('my', 'path', 'one', 'my_test.json')
        media_type_2 = 'application/json'
        job_output_2 = 'mock_output_2'
        local_path_3 = os.path.join('my', 'path', 'three', 'my_test.png')
        media_type_3 = 'image/png'
        job_output_3 = 'mock_output_3'
        local_path_4 = os.path.join('my', 'path', 'four', 'my_test.xml')
        media_type_4 = None
        job_output_4 = 'mock_output_4'

        # Set up mocks
        def new_upload_files(file_entries, input_file_ids, job_exe, workspace):
            results = []
            for file_entry in file_entries:
                # Check base remote path for recipe type and job type information
                self.assertTrue(
                    file_entry.remote_path.startswith(
                        remote_base_path_with_recipe))
                if file_entry.local_path == local_path_1:
                    mock_1 = MagicMock()
                    mock_1.id = 1
                    results.append(mock_1)
                elif file_entry.local_path == local_path_2:
                    mock_2 = MagicMock()
                    mock_2.id = 2
                    results.append(mock_2)
                elif file_entry.local_path == local_path_3:
                    mock_3 = MagicMock()
                    mock_3.id = 3
                    results.append(mock_3)
                elif file_entry.local_path == local_path_4:
                    mock_4 = MagicMock()
                    mock_4.id = 4
                    results.append(mock_4)
            return results

        mock_upload_files.side_effect = new_upload_files

        data_files = {
            self.workspace_1.id: [
                ProductFileMetadata(output_name=job_output_1,
                                    local_path=local_path_1,
                                    media_type=media_type_1),
                ProductFileMetadata(output_name=job_output_2,
                                    local_path=local_path_2,
                                    media_type=media_type_2)
            ],
            self.workspace_2.id: [
                ProductFileMetadata(output_name=job_output_3,
                                    local_path=local_path_3,
                                    media_type=media_type_3),
                ProductFileMetadata(output_name=job_output_4,
                                    local_path=local_path_4,
                                    media_type=media_type_4)
            ]
        }

        parent_ids = {98, 99}  # Dummy values

        ProductDataFileStore().store_files(data_files, parent_ids,
                                           job_exe_in_recipe)
Пример #13
0
    def perform_post_steps(self, job_exe, job_data, stdoutAndStderr):
        """Stores the files and deletes any working directories

        :param job_exe: The job execution model with related job and job_type fields
        :type job_exe: :class:`job.models.JobExecution`
        :param job_data: The job data
        :type job_data: :class:`job.configuration.data.job_data.JobData`
        :param stdoutAndStderr: the standard out from the job execution
        :type stdoutAndStderr: str
        :return: A tuple of the job results and the results manifest generated by the job execution
        :rtype: (:class:`job.configuration.results.job_results.JobResults`,
            :class:`job.configuration.results.results_manifest.results_manifest.ResultsManifest`)
        """

        manifest_data = {}
        path_to_manifest_file = os.path.join(SCALE_JOB_EXE_OUTPUT_PATH, 'results_manifest.json')
        if os.path.exists(path_to_manifest_file):
            logger.info('Opening results manifest...')
            with open(path_to_manifest_file, 'r') as manifest_file:
                manifest_data = json.loads(manifest_file.read())
                logger.info('Results manifest:')
                logger.info(manifest_data)
        else:
            logger.info('No results manifest found')

        results_manifest = ResultsManifest(manifest_data)
        stdout_files = self._get_artifacts_from_stdout(stdoutAndStderr)
        results_manifest.add_files(stdout_files)

        results_manifest.validate(self._output_file_manifest_dict)

        files_to_store = {}
        for manifest_file_entry in results_manifest.get_files():
            param_name = manifest_file_entry['name']

            media_type = None
            output_data_item = self._get_output_data_item_by_name(param_name)
            if output_data_item:
                media_type = output_data_item.get('media_type')

            msg = 'Output %s has invalid/missing file path "%s"'
            if 'file' in manifest_file_entry:
                file_entry = manifest_file_entry['file']
                if not os.path.isfile(file_entry['path']):
                    raise InvalidResultsManifest(msg % (param_name, file_entry['path']))
                if 'geo_metadata' in file_entry:
                    geometadata = file_entry['geo_metadata']
                    geojson = geometadata['geojson'] if 'geojson' in geometadata else None
                    started = geometadata['data_started'] if 'data_started' in geometadata else None
                    ended = geometadata['data_ended'] if 'data_ended' in geometadata else None
                    files_to_store[param_name] = ProductFileMetadata(output_name=param_name,
                                                                     local_path=file_entry['path'],
                                                                     media_type=media_type,
                                                                     geojson=geojson, data_start=started,
                                                                     data_end=ended)
                else:
                    files_to_store[param_name] = ProductFileMetadata(output_name=param_name,
                                                                     local_path=file_entry['path'],
                                                                     media_type=media_type)
            elif 'files' in manifest_file_entry:
                file_tuples = []
                for file_entry in manifest_file_entry['files']:
                    if not os.path.isfile(file_entry['path']):
                        raise InvalidResultsManifest(msg % (param_name, file_entry['path']))
                    if 'geo_metadata' in file_entry:
                        geometadata = file_entry['geo_metadata']
                        geojson = geometadata['geojson'] if 'geojson' in geometadata else None
                        started = geometadata['data_started'] if 'data_started' in geometadata else None
                        ended = geometadata['data_ended'] if 'data_ended' in geometadata else None
                        file_tuples.append(ProductFileMetadata(output_name=param_name,
                                                               local_path=file_entry['path'],
                                                               media_type=media_type,
                                                               geojson=geojson, data_start=started, data_end=ended))
                    else:
                        file_tuples.append(ProductFileMetadata(output_name=param_name,
                                                               local_path=file_entry['path'],
                                                               media_type=media_type))
                files_to_store[param_name] = file_tuples

        job_data_parse_results = {}  # parse results formatted for job_data
        for parse_result in results_manifest.get_parse_results():
            filename = parse_result['filename']
            assert filename not in job_data_parse_results
            geo_metadata = parse_result.get('geo_metadata', {})
            geo_json = geo_metadata.get('geo_json', None)
            data_started = geo_metadata.get('data_started', None)
            data_ended = geo_metadata.get('data_ended', None)
            data_types = parse_result.get('data_types', [])
            new_workspace_path = parse_result.get('new_workspace_path', None)
            if new_workspace_path:
                new_workspace_path = os.path.join(new_workspace_path, filename)
            job_data_parse_results[filename] = (geo_json, data_started, data_ended, data_types, new_workspace_path)

        job_data.save_parse_results(job_data_parse_results)
        return (job_data.store_output_data_files(files_to_store, job_exe), results_manifest)