Пример #1
0
def write_bad_spills_to_table(server, schema, bad_spill_set, clear=False):

    try:
        db = mdb.connect(read_default_file='../.my.cnf',
                         read_default_group='guest',
                         db=schema,
                         host=server,
                         port=server_dict[server]['port'])
        cur = db.cursor()

        if not table_exists(server, schema, "bad_spills"):
            cur.execute("CREATE TABLE bad_spills (spillID INT PRIMARY KEY)")

        if clear:
            cur.execute("DELETE FROM bad_spills")

        if len(bad_spill_set) > 0:
            query = "INSERT INTO bad_spills (spillID) VALUES "
            for bad_spill in bad_spill_set:
                query += "(" + str(bad_spill) + "), "
            query = query[:-2]

            cur.execute(query)

    except mdb.Error, e:

        print "Error %d: %s" % (e.args[0], e.args[1])
        return 1
Пример #2
0
def mc_truth_get_analysis_data(server='seaquel.physics.illinois.edu',
                               analysis_schema='user_dannowitz_mc',
                               mc_schema_list=['mc_drellyan_LD2_M001_S001'],
                               analysis_table='kDimuon_mc_truth',
                               fresh_start=False,
                               *wargs):

    if not schema_exists(server, analysis_schema):
        make_analysis_schema(server, analysis_schema)
    if not table_exists(server, analysis_schema, analysis_table):
        mc_truth_make_mDimuon_table(server, analysis_schema, analysis_table,
                                    mc_schema_list[0])

    if fresh_start:
        drop_analysis_table(server, analysis_schema, analysis_table)
        mc_truth_make_mDimuon_table(server, analysis_schema, analysis_table,
                                    mc_schema_list[0])

    if fresh_start:
        for merged_schema in mc_schema_list:
            mc_truth_fill_dimuon_table(server, analysis_schema, analysis_table,
                                       merged_schema)

    dimuon_df = mc_truth_get_dimuon_df(server, analysis_schema, analysis_table)

    return dimuon_df
Пример #3
0
def get_dimuon_df(server='e906-db3.fnal.gov',
                  analysis_schema='user_dannowitz_analysis',
                  source_schema_list=(),
                  analysis_table='kDimuon_analysis',
                  fresh_start=False,
                  truth_mc=False,
                  tracked_mc=False,
                  likesign=None):
    
    if len(source_schema_list) == 0:
        print ("Please pass one or many source schemas.")

    if not schema_exists(server, analysis_schema):
        make_analysis_schema(server, analysis_schema)
    if not fresh_start and not table_exists(server, analysis_schema, analysis_table):
        make_analysis_table(server, analysis_schema,
                            analysis_table, source_schema_list[0],
                            truth_mc=truth_mc, tracked_mc=tracked_mc)

    if fresh_start:
        drop_analysis_table(server, analysis_schema, analysis_table)
        make_analysis_table(server, analysis_schema,
                            analysis_table,
                            source_schema_list[0],
                            truth_mc=truth_mc,
                            tracked_mc=tracked_mc,
                            likesign=likesign)
        for source_schema in source_schema_list:
            print ('>>> Retrieving and Cleaning Dimuon Data for %s' %
                   source_schema)
            fill_analysis_table(server, analysis_schema,
                                analysis_table, source_schema,
                                tracked_mc=tracked_mc,
                                truth_mc=truth_mc,
                                likesign=likesign)

    dimuon_df = fetch_analysis_table(server, analysis_schema, analysis_table,
                                     truth_mc=truth_mc,
                                     tracked_mc=tracked_mc)
    
    if all(field in dimuon_df.columns for field in ('dpx', 'dpy')):
        dimuon_df['dpt'] = np.sqrt(dimuon_df['dpx'] ** 2 + dimuon_df['dpy'] ** 2)
    if all(field in dimuon_df.columns for field in ('px1', 'px2', 'py1', 'py2')):
        dimuon_df['pt1'] = np.sqrt(dimuon_df['px1'] ** 2 + dimuon_df['py1'] ** 2)
        dimuon_df['pt2'] = np.sqrt(dimuon_df['px2'] ** 2 + dimuon_df['py2'] ** 2)
   
    dimuon_df = add_target(dimuon_df)
    
    if not truth_mc and not tracked_mc:
        dimuon_df = add_roadset(dimuon_df)
        dimuon_df = add_weight(dimuon_df)

    if 'weight' in dimuon_df.columns:
        dimuon_df['weight_sq'] = dimuon_df['weight'] ** 2

    return dimuon_df
Пример #4
0
def main():
    print 'Hello World!'
    print table_exists('e906-db3.fnal.gov', 'user_dannowitz_analysis_Mar30',
                       "bad_spills")