def calc_bfactors_from_alphaCAs(pdbid): """ Calculate b-factors from the alpha CA network Input ----- pdbid: fname or pdbID PDB file or pdbID Output ------ bfact_alphaCA: numpy bfactors calculated from the alpha carbon network """ calphas = prdy.parsePDB(pdbid).select('calpha and chain A') gnm1 = prdy.GNM() gnm1.buildKirchhoff(calphas) gnm1.calcModes() return prdy.calcTempFactors(gnm1[:],calphas)
def calc_bfactors_from_evoD(pdbid,evod_fname,nres): """ Calculate b-factors from evoD Input ----- pdbid: fname or pdbID PDB file or pdbID Output ------ bfact_evfold: numpy bfactors calculated from the alpha carbon network """ calphas = prdy.parsePDB(pdbid).select('calpha and chain A') n = nres _build_kirchhoff(evod_fname,n) kirchhoff = prdy.parseSparseMatrix('evfold_kirchhoff.txt', symmetric=True) gnm3 = prdy.GNM('GNM for RASH_HUMAN (5p21)') gnm3.setKirchhoff(kirchhoff) gnm3.calcModes() return prdy.calcTempFactors(gnm3[:],calphas)
def prody_anm(opt): """Perform ANM calculations based on command line arguments.""" outdir = opt.outdir if not os.path.isdir(outdir): opt.subparser.error('{0:s} is not a valid path'.format(outdir)) import numpy as np import prody LOGGER = prody.LOGGER pdb = opt.pdb prefix = opt.prefix cutoff, gamma = opt.cutoff, opt.gamma, nmodes, selstr, model = opt.nmodes, opt.select, opt.model pdb = prody.parsePDB(pdb, model=model) if prefix == '_anm': prefix = pdb.getTitle() + '_anm' select = pdb.select(selstr) if select is None: opt.subparser('Selection "{0:s}" do not match any atoms.' .format(selstr)) LOGGER.info('{0:d} atoms will be used for ANM calculations.' .format(len(select))) anm = prody.ANM(pdb.getTitle()) anm.buildHessian(select, cutoff, gamma) anm.calcModes(nmodes) LOGGER.info('Writing numerical output.') if opt.npz: prody.saveModel(anm) prody.writeNMD(os.path.join(outdir, prefix + '.nmd'), anm, select) outall = opt.all delim, ext, format = opt.delim, opt.ext, opt.numformat if outall or opt.eigen: prody.writeArray(os.path.join(outdir, prefix + '_evectors'+ext), anm.getArray(), delimiter=delim, format=format) prody.writeArray(os.path.join(outdir, prefix + '_evalues'+ext), anm.getEigenvalues(), delimiter=delim, format=format) if outall or opt.beta: fout = prody.openFile(prefix + '_beta.txt', 'w', folder=outdir) fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4s} {0[3]:5s} {0[4]:5s}\n' .format(['C', 'RES', '####', 'Exp.', 'The.'])) for data in zip(select.getChids(), select.getResnames(), select.getResnums(), select.getBetas(), prody.calcTempFactors(anm, select)): fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4d} {0[3]:5.2f} {0[4]:5.2f}\n' .format(data)) fout.close() if outall or opt.covar: prody.writeArray(os.path.join(outdir, prefix + '_covariance'+ext), anm.getCovariance(), delimiter=delim, format=format) if outall or opt.ccorr: prody.writeArray(os.path.join(outdir, prefix + '_cross-correlations' + ext), prody.calcCrossCorr(anm), delimiter=delim, format=format) if outall or opt.hessian: prody.writeArray(os.path.join(outdir, prefix + '_hessian'+ext), anm.getHessian(), delimiter=delim, format=format) if outall or opt.kirchhoff: prody.writeArray(os.path.join(outdir, prefix + '_kirchhoff'+ext), anm.getKirchhoff(), delimiter=delim, format=format) if outall or opt.sqflucts: prody.writeArray(os.path.join(outdir, prefix + '_sqflucts'+ext), prody.calcSqFlucts(anm), delimiter=delim, format=format) figall, cc, sf, bf, cm = opt.figures, opt.cc, opt.sf, opt.bf, opt.cm if figall or cc or sf or bf or cm: try: import matplotlib.pyplot as plt except ImportError: LOGGER.warning('Matplotlib could not be imported. ' 'Figures are not saved.') else: LOGGER.info('Saving graphical output.') format, width, height, dpi = \ opt.figformat, opt.width, opt.height, opt.dpi format = format.lower() if figall or cc: plt.figure(figsize=(width, height)) prody.showCrossCorr(anm) plt.savefig(os.path.join(outdir, prefix + '_cc.'+format), dpi=dpi, format=format) plt.close('all') if figall or cm: plt.figure(figsize=(width, height)) prody.showContactMap(anm) plt.savefig(os.path.join(outdir, prefix + '_cm.'+format), dpi=dpi, format=format) plt.close('all') if figall or sf: plt.figure(figsize=(width, height)) prody.showSqFlucts(anm) plt.savefig(os.path.join(outdir, prefix + '_sf.'+format), dpi=dpi, format=format) plt.close('all') if figall or bf: plt.figure(figsize=(width, height)) bexp = select.getBetas() bcal = prody.calcTempFactors(anm, select) plt.plot(bexp, label='Experimental') plt.plot(bcal, label=('Theoretical (R={0:.2f})' .format(np.corrcoef(bcal, bexp)[0,1]))) plt.legend(prop={'size': 10}) plt.xlabel('Node index') plt.ylabel('Experimental B-factors') plt.title(pdb.getTitle() + ' B-factors') plt.savefig(os.path.join(outdir, prefix + '_bf.'+format), dpi=dpi, format=format) plt.close('all')
def corepagecalculation(pdbfilename, selatom, noma1, nummodes, gamcut, cut1, gam2, cut2, showresults, smodes, snmd, smodel, scollec, massnomass, sample1, modeens, confens, rmsdens, traverse1, modetra, steptra, rmsdtra, modelnumber, caanm, cagnm, nohanm, nohgnm, allanm, allgnm, bbanm, bbgnm, scanm, scgnm, nmdfolder, modesfolder, collectivityfolder, modelnewname, nmdnewname, modesnewname, modesendname, collectivitynewname, collectivityendname, samplenewname, traversenewname, crosscorr=0, corrfolder='', corrname='', corrend='', compmode01='7', compmode02='15', sqflucts=0, sqfluctsfolder='', sqfluctsname='', sqfluctsend='', separatevar1='0', temfac=0, temfacfolder='', temfacname='', temfacend='', fracovar=0, fraconame='', fracoend='', ovlap=0, ovlapfold='', ovlapname='', ovlapend='', ovlaptab=0, ovlaptabname='', ovlaptabend='', comppdbfilename=''): # modelnumber import prody import time import os import Tkinter root=Tkinter.Tk() root.title('Info') onlypage=Tkinter.Frame(root) onlypage.pack(side='top') Tkinter.Label(onlypage,text='File: '+pdbfilename).grid(row=0,column=0,sticky='w') Tkinter.Label(onlypage,text='Atoms: '+selatom).grid(row=1,column=0,sticky='w') Tkinter.Label(onlypage,text='Analysis: '+noma1).grid(row=2,column=0,sticky='w') path=os.path.join(os.path.expanduser('~'),'.noma/') fin = open(path+'savefile.txt','r') global savedfile savedfile=fin.readlines() fin.close() i=0 a=len(savedfile) while i<a: savedfile[i]=savedfile[i][:-1] i+=1 if gamcut=='0': Tkinter.Label(onlypage,text='Gamma: r^'+savedfile[91]).grid(row=3,column=0,sticky='w') Tkinter.Label(onlypage,text='Cutoff: '+cut1).grid(row=4,column=0,sticky='w') elif gamcut=='1': Tkinter.Label(onlypage,text='Gamma: '+gam2).grid(row=3,column=0,sticky='w') Tkinter.Label(onlypage,text='Cutoff: '+cut2).grid(row=4,column=0,sticky='w') find = 0 # while find < len(pdbfilename): # if pdbfilename[-(find+1):-find] == '/': # bgn = len(pdbfilename)-find # break # else: # helps in the find +=1 # saving of files try: # float(bgn) # except (NameError): # bgn = 0 # find = 0 # while bgn+find<len(pdbfilename): # if pdbfilename[bgn+find:bgn+find+1] == '.': # end = len(pdbfilename)-(bgn+find) # break # else: # find +=1 # try: # name = pdbfilename[bgn:-end] # except (NameError): # name = pdbfilename[bgn:len(pdbfilename)] # name of the file bgn = pdbfilename[:bgn] # path for file mytimeis = time.asctime(time.localtime(time.time())) start = time.time() try: p38 = prody.parsePDB(pdbfilename,model=int(modelnumber)) except: import tkMessageBox tkMessageBox.askokcancel("File Error","""This is not the correct path or name. Try entering /some/path/nameoffile.pdb If you need help finding the path, open a new terminal and enter: find -name 'filename.pdb' use the output as the pdb input If this doesn't work, make sure the file is in PDB format.""") p38 = prody.parsePDB(pdbfilename) print 'Submitted: '+pdbfilename+' at '+mytimeis Tkinter.Label(onlypage,text='Submitted at: '+mytimeis).grid(row=5,column=0,sticky='w') root.update() if selatom == "C-alpha" and noma1 == "Gaussian Normal Mode": folder = cagnm+'/' pro = p38.select('protein and name CA') # selects only carbon alpahs elif selatom == "C-alpha" and noma1 == "Anisotropic Normal Mode": folder = caanm+'/' pro = p38.select('protein and name CA') elif selatom == "Heavy" and noma1 == "Gaussian Normal Mode": folder = nohgnm+'/' pro = p38.select('protein and not name "[1-9]?H.*"') # gets rid of all Hydrogens elif selatom == "Heavy" and noma1 == "Anisotropic Normal Mode": folder = nohanm+'/' pro = p38.select('protein and not name "[1-9]?H.*"') elif selatom == "All" and noma1 == "Gaussian Normal Mode": folder = allgnm+'/' pro = p38.select('protein') elif selatom == "All" and noma1 == "Anisotropic Normal Mode": folder = allanm+'/' pro = p38.select('protein') elif selatom == "Backbone" and noma1 == "Gaussian Normal Mode": folder = bbgnm+'/' pro = p38.select('protein and name CA C O N H') # selects backbone elif selatom == "Backbone" and noma1 == "Anisotropic Normal Mode": folder = bbanm+'/' pro = p38.select('protein and name CA C O N H') # selects backbone elif selatom == "Sidechain" and noma1 == "Gaussian Normal Mode": folder = scgnm+'/' pro = p38.select('protein and not name CA C O N H') # selects sidechain elif selatom == "Sidechain" and noma1 == "Anisotropic Normal Mode": folder = scanm+'/' pro = p38.select('protein and not name CA C O N H') # selects sidechain try: # open(bgn+folder) # creates the folders except (IOError): # where the files will try: # be saved only if they os.makedirs(bgn+folder) # are not there except (OSError): # mer = 0 # if noma1 == "Gaussian Normal Mode": print 'Building the Kirchhoff matrix' Tkinter.Label(onlypage,text='Building Kirchhoff').grid(row=6,column=0,sticky='w') root.update() anm = prody.GNM(name)### if gamcut=='0': anm.buildKirchhoff(pro,cutoff=float(cut1),gamma=gammaDistanceDependent)### anm.setKirchhoff(anm.getKirchhoff()) elif gamcut=='1': anm.buildKirchhoff(pro,cutoff=float(cut2),gamma=float(gam2))### brat = 2 elif noma1 == "Anisotropic Normal Mode": print 'Building the Hessian matrix' Tkinter.Label(onlypage,text='Building Hessian').grid(row=6,column=0,sticky='w') root.update() anm = prody.ANM(name)### if gamcut=='0': anm.buildHessian(pro,cutoff=float(cut1),gamma=gammaDistanceDependent)### anm.setHessian(anm.getHessian())### elif gamcut=='1': anm.buildHessian(pro,cutoff=float(cut2),gamma=float(gam2))### brat = 7 print 'Calculating modes' Tkinter.Label(onlypage,text='Calculating modes').grid(row=7,column=0,sticky='w') root.update() anm.calcModes(int(nummodes),zeros = True)### numatom=anm.numAtoms()### eigval=anm.getEigvals()### atomname=pro.getNames()### if smodel==1: if brat==2: modelfilename=bgn+folder+name+modelnewname+'.gnm.npz' elif brat==7: modelfilename=bgn+folder+name+modelnewname+'.anm.npz' print 'Saving Model' Tkinter.Label(onlypage,text='Saving Model').grid(row=8,column=0,sticky='w') root.update() try: prody.saveModel(anm,bgn+folder+name+modelnewname,True)### except: print 'Matrix not saved due to size' Tkinter.Label(onlypage,text='Matrix not saved').grid(row=8,column=0,sticky='w') root.update() prody.saveModel(anm,bgn+folder+name+modelnewname)### if snmd==1: print 'Saving NMD' Tkinter.Label(onlypage,text='Saving NMD').grid(row=9,column=0,sticky='w') root.update() try: # os.makedirs(bgn+folder+nmdfolder+'/') # except (OSError): # mer = 0 # prody.writeNMD(bgn+folder+nmdfolder+'/'+name+nmdnewname+'.nmd',anm[:len(eigval)],pro)### # this can be viewed in VMD if smodes==1: print 'Saving Modes' Tkinter.Label(onlypage,text='Saving Modes').grid(row=10,column=0,sticky='w') root.update() try: # os.makedirs(bgn+folder+modesfolder+'/') # except (OSError): # mer = 0 # modefile = bgn+folder+modesfolder+'/'+name+modesnewname+'.'+modesendname fout = open(modefile,'w') mer = 0 while mer< len(eigval): slowest_mode = anm[mer]### r = slowest_mode.getEigvec()### p = slowest_mode.getEigval()### tq = 0 tt = 0 ttt = 1 tttt = 2 fout.write('MODE {0:3d} {1:15e}'.format(mer+1,p)) fout.write(""" ------------------------------------------------- """) if noma1 == "Gaussian Normal Mode": while tq < numatom: fout.write("""{0:4s}{1:15e} """.format(atomname[tq],r[tq])) tq +=1 elif noma1 == "Anisotropic Normal Mode": while tt < numatom*3: fout.write("""{0:4s}{1:15e}{2:15e}{3:15e} """.format(atomname[tq],r[tt],r[ttt],r[tttt])) tq+=1 tt +=3 ttt+=3 tttt+=3 mer +=1 fout.close() if showresults=='1': os.system('/usr/bin/gnome-open '+modefile) if scollec==1: print 'Saving collectivity' Tkinter.Label(onlypage,text='Saving collectivity').grid(row=11,column=0,sticky='w') root.update() try: # os.makedirs(bgn+folder+collectivityfolder+'/') # except (OSError): # mer = 0 # mer = 0 xx = [0]*(numatom) # sets the array to zero and other initial conditions i = 0 aa = 0 no = 0 var3 = 0 sss = [0]*(len(eigval)) while mer< len(eigval): slowest_mode = anm[mer]### r = slowest_mode.getEigvec()### p = slowest_mode.getEigval()### a = 0 tt = 0 ttt = 1 tttt = 2 while a < numatom: atom = atomname[a] mass = 0 while mass < 2: if atom[mass] == "N": # all nitrogen m = 14.0067 break elif atom[mass] == 'H': # all hydrogen m = 1.00794 break elif atom[mass] == "C" : # all carbon m = 12.0107 break elif atom[mass] == "O" : # all oxygen m = 15.9994 break elif atom[mass] == 'S': # all sulfur m = 32.065 break elif atom[mass] == 'P' : # all phosphorus m = 30.973762 break else: if mass == 0: mass +=1 try: atom[mass] except (IndexError): m = 1 if no == 0: print 'Enter atom '+atom+' in to the system. Its mass was set to 1 in this simulation.' no +=1 break else: m = 1 if no == 0: print 'Enter atom '+atom+' in to the system. Its mass was set to 1 in this simulation' no +=1 break if len(r)/numatom == 3: xx[i] = (r[tt]**2 + r[ttt]**2 + r[tttt]**2)/m i +=1 tt +=3 ttt+=3 tttt+=3 else: xx[i] = (r[tt]**2)/m i +=1 tt +=1 a +=1 var3 = 0 j = 0 loop = 1 while loop == 1: if sum(xx) == 0: # need this because you can't divide by 0 loop = 0 elif j <(numatom): var1 = xx[j]/sum(xx) if var1 == 0: var2 = 0 elif var1 != 0: from math import log # this means natural log var2 = var1* log(var1) var3 += var2 j +=1 else: from math import exp k = exp(-var3)/numatom sss[aa] = k, aa+1 aa +=1 mer +=1 loop = 0 i = 0 xx = [0]*(numatom) # goes through all this until the big loop is done a = 0 k=[0]*(len(eigval)) while a < len(eigval): k[a]=prody.calcCollectivity(anm[a]),a+1 a +=1 collectivefile = bgn+folder+collectivityfolder+'/'+name+collectivitynewname+'.'+collectivityendname fout = open(collectivefile,'w') if massnomass=='0': fout.write('MODE COLLECTIVITY(mass)') fout.write(""" --------------------------- """) for h in sorted(sss,reverse=True): fout.write(str(h)[-3:-1]+' '+str(h)[1:19]+""" """) fout.write(""" MODE COLLECTIVITY(without mass)""") fout.write(""" --------------------------- """) for hh in sorted(k,reverse=True): fout.write(str(hh)[-3:-1]+' '+str(hh)[1:19]+""" """) elif massnomass=='1': fout.write('MODE COLLECTIVITY(without mass)') fout.write(""" --------------------------- """) for hh in sorted(k,reverse=True): fout.write(str(hh)[-3:-1]+' '+str(hh)[1:19]+""" """) fout.write(""" MODE COLLECTIVITY(mass)""") fout.write(""" --------------------------- """) for h in sorted(sss,reverse=True): fout.write(str(h)[-3:-1]+' '+str(h)[1:19]+""" """) fout.close() if showresults=='1': os.system('/usr/bin/gnome-open '+collectivefile) fin = open(collectivefile,'r') lst = fin.readlines() hi0 = 2 looop = 1 prut=0 secoll=0 thicoll=0 while looop == 1: fine = lst[hi0] if int(fine[0:2]) >= brat: if prut==0: prut=fine[0:2] elif secoll==0: secoll=fine[0:2] elif thicoll==0: thicoll=fine[0:2] else: foucoll=fine[0:2] looop = 0 else: hi0 +=1 mostcollective= "Mode "+prut+" is the most collective." Tkinter.Label(onlypage,text='Mode '+prut+' is the most collective').grid(row=12,column=0,sticky='w') root.update() print mostcollective fin.close() if sample1 == 1: print 'Saving sample file' Tkinter.Label(onlypage,text='Saving sample file').grid(row=13,column=0,sticky='w') root.update() a = modeens+' ' b = [0]*(len(a)+1) i = 0 j = 0 b1 = 0 while i < len(a): if a[i:i+1] ==' ' or a[i:i+1]==',': try: b[b1]=int(a[j:i])-1 except: if '1c' in a[j:i]: b[b1]=int(prut)-1 elif '2c' in a[j:i]: b[b1]=int(prut)-1 b1 +=1 b[b1]=int(secoll)-1 elif '3c' in a[j:i]: b[b1]=int(prut)-1 b1 +=1 b[b1]=int(secoll)-1 b1 +=1 b[b1]=int(thicoll)-1 elif '4c' in a[j:i]: b[b1]=int(prut)-1 b1 +=1 b[b1]=int(secoll)-1 b1 +=1 b[b1]=int(thicoll)-1 b1+=1 b[b1]=int(foucoll)-1 j = i+1 i +=1 b1 +=1 else: i +=1 del b[b1:] ensemble = prody.sampleModes(anm[b],pro, n_confs=int(confens), rmsd =float(rmsdens)) p38ens=pro.copy() p38ens.delCoordset(0) p38ens.addCoordset(ensemble.getCoordsets()) prody.writePDB(bgn+folder+name+samplenewname+'.pdb',p38ens) if traverse1 ==1: print 'Saving traverse file' Tkinter.Label(onlypage,text='Saving traverse file').grid(row=14,column=0,sticky='w') root.update() if modetra=='c': modefortra=int(prut)-1 else: modefortra=int(modetra)-1 trajectory=prody.traverseMode(anm[modefortra],pro,n_steps=int(steptra),rmsd=float(rmsdtra)) prody.calcRMSD(trajectory).round(2) p38traj=pro.copy() p38traj.delCoordset(0) p38traj.addCoordset(trajectory.getCoordsets()) prody.writePDB(bgn+folder+name+'_mode'+str(modefortra+1)+traversenewname+'.pdb',p38traj) if crosscorr==1: print 'Saving cross correlation' Tkinter.Label(onlypage,text='Saving cross-correlation').grid(row=15,column=0,sticky='w') root.update() try: # os.makedirs(bgn+folder+corrfolder+'/') # except (OSError): # mer = 0 i=int(compmode01) while i <= int(compmode02): x=i-1 correlationdataname=bgn+folder+corrfolder+'/'+name+corrname+'_mode'+str(x+1)+'.'+corrend prody.writeArray(correlationdataname,prody.calcCrossCorr(anm[x]),'%.18e') print correlationdataname i+=1 ## if sqflucts==1: print 'Saving square fluctuation' Tkinter.Label(onlypage,text='Saving square fluctuation').grid(row=16,column=0,sticky='w') root.update() try: # os.makedirs(bgn+folder+sqfluctsfolder+'/') # except (OSError): # mer = 0 i=int(compmode01) while i < int(compmode02): yelp = i-1 sqfluctdataname = bgn+folder+sqfluctsfolder+'/'+name+sqfluctsname+'_mode'+str(yelp+1)+'.'+sqfluctsend fout = open(sqfluctdataname,'w') if separatevar1=='0': a = 0 while a < numatom: fout.write(str(a)) fout.write(""" """) fout.write(str(prody.calcSqFlucts(anm[yelp])[a])) fout.write(""" """) a +=1 elif separatevar1=='1': a=0 while a <numatom: firstresnum=int(p38.getResnums()[0:1][0]) origiresnum=int(p38.getResnums()[0:1][0]) while firstresnum<(int(numatom*1.0/p38.numChains())+origiresnum): fout.write(str(firstresnum)) fout.write('\t') fout.write(str(prody.calcSqFlucts(anm[yelp])[a])) fout.write('\n') a+=1 firstresnum+=1 fout.write('&\n') fout.close() print sqfluctdataname i+=1 if temfac==1: print 'Saving temperature factors' Tkinter.Label(onlypage,text='Saving temperature factors').grid(row=17,column=0,sticky='w') root.update() try: # os.makedirs(bgn+folder+temfacfolder+'/') # except (OSError): # mer = 0 fin=open(pdbfilename,'r') d = [None]*len(atomname) e = 0 for line in fin: pair = line.split() if 'ATOM ' in line and e < len(atomname): if str(pair[2]) == str(atomname[e]): d[e]=str(pair[1]) e+=1 else: e+=0 else: continue fin.close() sqf = prody.calcSqFlucts(anm) x = sqf/((sqf**2).sum()**.5) y = prody.calcTempFactors(anm,pro) a = 0 tempfactorsdataname =bgn+folder+temfacfolder+'/'+name+temfacname+'.'+temfacend fout=open(tempfactorsdataname,'w') fout.write("""Atom Residue TempFactor TempFactor with exp beta """) while a < numatom: fout.write("""{0:4s} {1:4d} {2:15f} {3:15f} """.format(d[a],a+1,x[a],y[a])) a +=1 fout.close() print tempfactorsdataname if fracovar==1: try: import matplotlib.pyplot as plt print 'Saving Fraction of Variance' Tkinter.Label(onlypage,text='Saving Fraction of Variance').grid(row=18,column=0,sticky='w') root.update() try: # os.makedirs(bgn+folder+modesfolder+'/') # except (OSError): # mer = 0 # plt.figure(figsize = (5,4)) prody.showFractVars(anm) prody.showCumulFractVars(anm) fracvardataname =bgn+folder+modesfolder+'/'+name+fraconame+'.'+fracoend plt.savefig(fracvardataname) print fracvardataname if showresults=='1': os.system('/usr/bin/gnome-open '+fracvardataname) except: print 'Error: Fraction of Variance' Tkinter.Label(onlypage,text='Error: Fraction of Variance').grid(row=18,column=0,sticky='w') root.update() mer=0 if ovlap==1 or ovlaptab==1: try: import matplotlib.pyplot as plt print 'Saving Overlap' Tkinter.Label(onlypage,text='Saving Overlap').grid(row=19,column=0,sticky='w') root.update() Tkinter.Label(onlypage,text='Comparison: '+comppdbfilename).grid(row=20,column=0,sticky='w') ## find = 0 while find < len(comppdbfilename): if comppdbfilename[-(find+1):-find] == '/': bgn1 = len(comppdbfilename)-find break else: find +=1 try: float(bgn1) except (NameError): bgn1 = 0 find = 0 while bgn1+find<len(comppdbfilename): if comppdbfilename[bgn1+find:bgn1+find+1] == '.': end1 = len(comppdbfilename)-(bgn1+find) break else: find +=1 try: name1 = comppdbfilename[bgn1:-end1] except (NameError): name1 = comppdbfilename[bgn1:len(comppdbfilename)] bgn1 = comppdbfilename[:bgn1] p381 = prody.parsePDB(comppdbfilename,model=int(modelnumber)) if selatom == "C-alpha" and noma1 == "Gaussian Normal Mode": pro1 = p381.select('protein and name CA') elif selatom == "C-alpha" and noma1 == "Anisotropic Normal Mode": pro1 = p381.select('protein and name CA') elif selatom == "Heavy" and noma1 == "Gaussian Normal Mode": pro1 = p381.select('protein and not name "[1-9]?H.*"') elif selatom == "Heavy" and noma1 == "Anisotropic Normal Mode": pro1 = p381.select('protein and not name "[1-9]?H.*"') elif selatom == "All" and noma1 == "Gaussian Normal Mode": pro1 = p381.select('protein') elif selatom == "All" and noma1 == "Anisotropic Normal Mode": pro1 = p381.select('protein') elif selatom == "Backbone" and noma1 == "Gaussian Normal Mode": pro1 = p381.select('protein and name CA C O N H') elif selatom == "Backbone" and noma1 == "Anisotropic Normal Mode": pro1 = p381.select('protein and name CA C O N H') elif selatom == "Sidechain" and noma1 == "Gaussian Normal Mode": pro1 = p381.select('protein and not name CA C O N H') elif selatom == "Sidechain" and noma1 == "Anisotropic Normal Mode": pro1 = p381.select('protein and not name CA C O N H') if noma1 == "Gaussian Normal Mode": print 'Building the Kirchhoff matrix' Tkinter.Label(onlypage,text='Building Kirchhoff').grid(row=21,column=0,sticky='w') root.update() anm1 = prody.GNM(name1) if gamcut=='0': anm1.buildKirchhoff(pro1,cutoff=float(cut1),gamma=gammaDistanceDependent) anm1.setKirchhoff(anm1.getKirchhoff()) elif gamcut=='1': anm1.buildKirchhoff(pro1,cutoff=float(cut2),gamma=float(gam2)) brat = 2 elif noma1 == "Anisotropic Normal Mode": print 'Building the Hessian matrix' Tkinter.Label(onlypage,text='Building Hessian').grid(row=21,column=0,sticky='w') root.update() anm1 = prody.ANM(name1) if gamcut=='0': anm1.buildHessian(pro1,cutoff=float(cut1),gamma=gammaDistanceDependent) anm1.setHessian(anm1.getHessian()) elif gamcut=='1': anm1.buildHessian(pro1,cutoff=float(cut2),gamma=float(gam2)) brat = 7 print 'Calculating modes' Tkinter.Label(onlypage,text='Calculating modes').grid(row=22,column=0,sticky='w') root.update() anm1.calcModes(int(nummodes),zeros = True) ## try: os.makedirs(bgn+folder+ovlapfold+'/') except (OSError): mer = 0 if ovlap==1: i=int(compmode01) while i < int(compmode02): a = i-1 plt.figure(figsize=(5,4)) prody.showCumulOverlap(anm[a],anm1) prody.showOverlap(anm[a],anm1) plt.title('Overlap with Mode '+str(a+1)+' from '+name) plt.xlabel(name1+' mode index') overlapname = bgn+folder+ovlapfold+'/'+name+'_'+name1+ovlapname+'_mode'+str(a+1)+'.'+ovlapend plt.savefig(overlapname) print overlapname i+=1 if ovlaptab==1: plt.figure(figsize=(5,4)) prody.showOverlapTable(anm1,anm) plt.xlim(int(compmode01)-1,int(compmode02)) plt.ylim(int(compmode01)-1,int(compmode02)) plt.title(name1+' vs '+name+' Overlap') plt.ylabel(name1) plt.xlabel(name) overlapname = bgn+folder+ovlapfold+'/'+name+'_'+name1+ovlaptabname+'.'+ovlaptabend plt.savefig(overlapname) print overlapname except: mer=0 root.destroy() mynewtimeis = float(time.time()-start) if mynewtimeis <= 60.00: timeittook= "The calculations took %.2f s."%(mynewtimeis) elif mynewtimeis > 60.00 and mynewtimeis <= 3600.00: timeittook= "The calculations took %.2f min."%((mynewtimeis/60.00)) else: timeittook= "The calculations took %.2f hrs."%((mynewtimeis/3600.00)) print timeittook if smodel==1 and scollec==1: return (timeittook,modelfilename,str(int(prut))) elif scollec==1: return (timeittook,'nofile',str(int(prut))) elif smodel==1: return (timeittook,modelfilename,'nocoll') else: return (timeittook,'nofile','nocoll')
def prody_anm(pdb, **kwargs): """Perform ANM calculations for *pdb*. """ for key in DEFAULTS: if not key in kwargs: kwargs[key] = DEFAULTS[key] from os.path import isdir, join outdir = kwargs.get('outdir') if not isdir(outdir): raise IOError('{0} is not a valid path'.format(repr(outdir))) import numpy as np import prody LOGGER = prody.LOGGER selstr = kwargs.get('select') prefix = kwargs.get('prefix') cutoff = kwargs.get('cutoff') gamma = kwargs.get('gamma') nmodes = kwargs.get('nmodes') selstr = kwargs.get('select') model = kwargs.get('model') pdb = prody.parsePDB(pdb, model=model) if prefix == '_anm': prefix = pdb.getTitle() + '_anm' select = pdb.select(selstr) if select is None: LOGGER.warn('Selection {0} did not match any atoms.' .format(repr(selstr))) return LOGGER.info('{0} atoms will be used for ANM calculations.' .format(len(select))) anm = prody.ANM(pdb.getTitle()) anm.buildHessian(select, cutoff, gamma) anm.calcModes(nmodes) LOGGER.info('Writing numerical output.') if kwargs.get('outnpz'): prody.saveModel(anm, join(outdir, prefix)) prody.writeNMD(join(outdir, prefix + '.nmd'), anm, select) extend = kwargs.get('extend') if extend: if extend == 'all': extended = prody.extendModel(anm, select, pdb) else: extended = prody.extendModel(anm, select, select | pdb.bb) prody.writeNMD(join(outdir, prefix + '_extended_' + extend + '.nmd'), *extended) outall = kwargs.get('outall') delim = kwargs.get('numdelim') ext = kwargs.get('numext') format = kwargs.get('numformat') if outall or kwargs.get('outeig'): prody.writeArray(join(outdir, prefix + '_evectors'+ext), anm.getArray(), delimiter=delim, format=format) prody.writeArray(join(outdir, prefix + '_evalues'+ext), anm.getEigvals(), delimiter=delim, format=format) if outall or kwargs.get('outbeta'): from prody.utilities import openFile fout = openFile(prefix + '_beta.txt', 'w', folder=outdir) fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4s} {0[3]:5s} {0[4]:5s}\n' .format(['C', 'RES', '####', 'Exp.', 'The.'])) for data in zip(select.getChids(), select.getResnames(), select.getResnums(), select.getBetas(), prody.calcTempFactors(anm, select)): fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4d} {0[3]:5.2f} {0[4]:5.2f}\n' .format(data)) fout.close() if outall or kwargs.get('outcov'): prody.writeArray(join(outdir, prefix + '_covariance' + ext), anm.getCovariance(), delimiter=delim, format=format) if outall or kwargs.get('outcc') or kwargs.get('outhm'): cc = prody.calcCrossCorr(anm) if outall or kwargs.get('outcc'): prody.writeArray(join(outdir, prefix + '_cross-correlations' + ext), cc, delimiter=delim, format=format) if outall or kwargs.get('outhm'): prody.writeHeatmap(join(outdir, prefix + '_cross-correlations.hm'), cc, resnum=select.getResnums(), xlabel='Residue', ylabel='Residue', title=anm.getTitle() + ' cross-correlations') if outall or kwargs.get('hessian'): prody.writeArray(join(outdir, prefix + '_hessian'+ext), anm.getHessian(), delimiter=delim, format=format) if outall or kwargs.get('kirchhoff'): prody.writeArray(join(outdir, prefix + '_kirchhoff'+ext), anm.getKirchhoff(), delimiter=delim, format=format) if outall or kwargs.get('outsf'): prody.writeArray(join(outdir, prefix + '_sqflucts'+ext), prody.calcSqFlucts(anm), delimiter=delim, format=format) figall = kwargs.get('figall') cc = kwargs.get('figcc') sf = kwargs.get('figsf') bf = kwargs.get('figbeta') cm = kwargs.get('figcmap') if figall or cc or sf or bf or cm: try: import matplotlib.pyplot as plt except ImportError: LOGGER.warning('Matplotlib could not be imported. ' 'Figures are not saved.') else: prody.SETTINGS['auto_show'] = False LOGGER.info('Saving graphical output.') format = kwargs.get('figformat') width = kwargs.get('figwidth') height = kwargs.get('figheight') dpi = kwargs.get('figdpi') format = format.lower() if figall or cc: plt.figure(figsize=(width, height)) prody.showCrossCorr(anm) plt.savefig(join(outdir, prefix + '_cc.'+format), dpi=dpi, format=format) plt.close('all') if figall or cm: plt.figure(figsize=(width, height)) prody.showContactMap(anm) plt.savefig(join(outdir, prefix + '_cm.'+format), dpi=dpi, format=format) plt.close('all') if figall or sf: plt.figure(figsize=(width, height)) prody.showSqFlucts(anm) plt.savefig(join(outdir, prefix + '_sf.'+format), dpi=dpi, format=format) plt.close('all') if figall or bf: plt.figure(figsize=(width, height)) bexp = select.getBetas() bcal = prody.calcTempFactors(anm, select) plt.plot(bexp, label='Experimental') plt.plot(bcal, label=('Theoretical (R={0:.2f})' .format(np.corrcoef(bcal, bexp)[0,1]))) plt.legend(prop={'size': 10}) plt.xlabel('Node index') plt.ylabel('Experimental B-factors') plt.title(pdb.getTitle() + ' B-factors') plt.savefig(join(outdir, prefix + '_bf.'+format), dpi=dpi, format=format) plt.close('all')
def prody_anm(pdb, **kwargs): """Perform ANM calculations for *pdb*. """ for key in DEFAULTS: if not key in kwargs: kwargs[key] = DEFAULTS[key] from os.path import isdir, join outdir = kwargs.get('outdir') if not isdir(outdir): raise IOError('{0} is not a valid path'.format(repr(outdir))) import numpy as np import prody LOGGER = prody.LOGGER selstr = kwargs.get('select') prefix = kwargs.get('prefix') cutoff = kwargs.get('cutoff') gamma = kwargs.get('gamma') nmodes = kwargs.get('nmodes') selstr = kwargs.get('select') model = kwargs.get('model') pdb = prody.parsePDB(pdb, model=model) if prefix == '_anm': prefix = pdb.getTitle() + '_anm' select = pdb.select(selstr) if select is None: LOGGER.warn('Selection {0} did not match any atoms.'.format( repr(selstr))) return LOGGER.info('{0} atoms will be used for ANM calculations.'.format( len(select))) anm = prody.ANM(pdb.getTitle()) anm.buildHessian(select, cutoff, gamma) anm.calcModes(nmodes) LOGGER.info('Writing numerical output.') if kwargs.get('outnpz'): prody.saveModel(anm, join(outdir, prefix)) prody.writeNMD(join(outdir, prefix + '.nmd'), anm, select) extend = kwargs.get('extend') if extend: if extend == 'all': extended = prody.extendModel(anm, select, pdb) else: extended = prody.extendModel(anm, select, select | pdb.bb) prody.writeNMD(join(outdir, prefix + '_extended_' + extend + '.nmd'), *extended) outall = kwargs.get('outall') delim = kwargs.get('numdelim') ext = kwargs.get('numext') format = kwargs.get('numformat') if outall or kwargs.get('outeig'): prody.writeArray(join(outdir, prefix + '_evectors' + ext), anm.getArray(), delimiter=delim, format=format) prody.writeArray(join(outdir, prefix + '_evalues' + ext), anm.getEigvals(), delimiter=delim, format=format) if outall or kwargs.get('outbeta'): from prody.utilities import openFile fout = openFile(prefix + '_beta.txt', 'w', folder=outdir) fout.write( '{0[0]:1s} {0[1]:4s} {0[2]:4s} {0[3]:5s} {0[4]:5s}\n'.format( ['C', 'RES', '####', 'Exp.', 'The.'])) for data in zip(select.getChids(), select.getResnames(), select.getResnums(), select.getBetas(), prody.calcTempFactors(anm, select)): fout.write( '{0[0]:1s} {0[1]:4s} {0[2]:4d} {0[3]:5.2f} {0[4]:5.2f}\n'. format(data)) fout.close() if outall or kwargs.get('outcov'): prody.writeArray(join(outdir, prefix + '_covariance' + ext), anm.getCovariance(), delimiter=delim, format=format) if outall or kwargs.get('outcc') or kwargs.get('outhm'): cc = prody.calcCrossCorr(anm) if outall or kwargs.get('outcc'): prody.writeArray(join(outdir, prefix + '_cross-correlations' + ext), cc, delimiter=delim, format=format) if outall or kwargs.get('outhm'): prody.writeHeatmap(join(outdir, prefix + '_cross-correlations.hm'), cc, resnum=select.getResnums(), xlabel='Residue', ylabel='Residue', title=anm.getTitle() + ' cross-correlations') if outall or kwargs.get('hessian'): prody.writeArray(join(outdir, prefix + '_hessian' + ext), anm.getHessian(), delimiter=delim, format=format) if outall or kwargs.get('kirchhoff'): prody.writeArray(join(outdir, prefix + '_kirchhoff' + ext), anm.getKirchhoff(), delimiter=delim, format=format) if outall or kwargs.get('outsf'): prody.writeArray(join(outdir, prefix + '_sqflucts' + ext), prody.calcSqFlucts(anm), delimiter=delim, format=format) figall = kwargs.get('figall') cc = kwargs.get('figcc') sf = kwargs.get('figsf') bf = kwargs.get('figbeta') cm = kwargs.get('figcmap') if figall or cc or sf or bf or cm: try: import matplotlib.pyplot as plt except ImportError: LOGGER.warning('Matplotlib could not be imported. ' 'Figures are not saved.') else: prody.SETTINGS['auto_show'] = False LOGGER.info('Saving graphical output.') format = kwargs.get('figformat') width = kwargs.get('figwidth') height = kwargs.get('figheight') dpi = kwargs.get('figdpi') format = format.lower() if figall or cc: plt.figure(figsize=(width, height)) prody.showCrossCorr(anm) plt.savefig(join(outdir, prefix + '_cc.' + format), dpi=dpi, format=format) plt.close('all') if figall or cm: plt.figure(figsize=(width, height)) prody.showContactMap(anm) plt.savefig(join(outdir, prefix + '_cm.' + format), dpi=dpi, format=format) plt.close('all') if figall or sf: plt.figure(figsize=(width, height)) prody.showSqFlucts(anm) plt.savefig(join(outdir, prefix + '_sf.' + format), dpi=dpi, format=format) plt.close('all') if figall or bf: plt.figure(figsize=(width, height)) bexp = select.getBetas() bcal = prody.calcTempFactors(anm, select) plt.plot(bexp, label='Experimental') plt.plot(bcal, label=('Theoretical (R={0:.2f})'.format( np.corrcoef(bcal, bexp)[0, 1]))) plt.legend(prop={'size': 10}) plt.xlabel('Node index') plt.ylabel('Experimental B-factors') plt.title(pdb.getTitle() + ' B-factors') plt.savefig(join(outdir, prefix + '_bf.' + format), dpi=dpi, format=format) plt.close('all')
def prody_gnm(pdb, **kwargs): """Perform GNM calculations for *pdb*. """ for key in DEFAULTS: if not key in kwargs: kwargs[key] = DEFAULTS[key] from os.path import isdir, splitext, join outdir = kwargs.get("outdir") if not isdir(outdir): raise IOError("{0} is not a valid path".format(repr(outdir))) import numpy as np import prody LOGGER = prody.LOGGER selstr = kwargs.get("select") prefix = kwargs.get("prefix") cutoff = kwargs.get("cutoff") gamma = kwargs.get("gamma") nmodes = kwargs.get("nmodes") selstr = kwargs.get("select") model = kwargs.get("model") pdb = prody.parsePDB(pdb, model=model) if prefix == "_gnm": prefix = pdb.getTitle() + "_gnm" select = pdb.select(selstr) if select is None: raise ValueError("selection {0} do not match any atoms".format(repr(selstr))) LOGGER.info("{0} atoms will be used for GNM calculations.".format(len(select))) gnm = prody.GNM(pdb.getTitle()) gnm.buildKirchhoff(select, cutoff, gamma) gnm.calcModes(nmodes) LOGGER.info("Writing numerical output.") if kwargs.get("outnpz"): prody.saveModel(gnm, join(outdir, prefix)) prody.writeNMD(join(outdir, prefix + ".nmd"), gnm, select) extend = kwargs.get("extend") if extend: if extend == "all": extended = prody.extendModel(gnm, select, pdb) else: extended = prody.extendModel(gnm, select, select | pdb.bb) prody.writeNMD(join(outdir, prefix + "_extended_" + extend + ".nmd"), *extended) outall = kwargs.get("outall") delim = kwargs.get("numdelim") ext = kwargs.get("numext") format = kwargs.get("numformat") if outall or kwargs.get("outeig"): prody.writeArray(join(outdir, prefix + "_evectors" + ext), gnm.getArray(), delimiter=delim, format=format) prody.writeArray(join(outdir, prefix + "_evalues" + ext), gnm.getEigvals(), delimiter=delim, format=format) if outall or kwargs.get("outbeta"): from prody.utilities import openFile fout = openFile(prefix + "_beta.txt", "w", folder=outdir) fout.write("{0[0]:1s} {0[1]:4s} {0[2]:4s} {0[3]:5s} {0[4]:5s}\n".format(["C", "RES", "####", "Exp.", "The."])) for data in zip( select.getChids(), select.getResnames(), select.getResnums(), select.getBetas(), prody.calcTempFactors(gnm, select), ): fout.write("{0[0]:1s} {0[1]:4s} {0[2]:4d} {0[3]:5.2f} {0[4]:5.2f}\n".format(data)) fout.close() if outall or kwargs.get("outcov"): prody.writeArray( join(outdir, prefix + "_covariance" + ext), gnm.getCovariance(), delimiter=delim, format=format ) if outall or kwargs.get("outcc") or kwargs.get("outhm"): cc = prody.calcCrossCorr(gnm) if outall or kwargs.get("outcc"): prody.writeArray(join(outdir, prefix + "_cross-correlations" + ext), cc, delimiter=delim, format=format) if outall or kwargs.get("outhm"): prody.writeHeatmap( join(outdir, prefix + "_cross-correlations.hm"), cc, resnum=select.getResnums(), xlabel="Residue", ylabel="Residue", title=gnm.getTitle() + " cross-correlations", ) if outall or kwargs.get("kirchhoff"): prody.writeArray(join(outdir, prefix + "_kirchhoff" + ext), gnm.getKirchhoff(), delimiter=delim, format=format) if outall or kwargs.get("outsf"): prody.writeArray( join(outdir, prefix + "_sqfluct" + ext), prody.calcSqFlucts(gnm), delimiter=delim, format=format ) figall = kwargs.get("figall") cc = kwargs.get("figcc") sf = kwargs.get("figsf") bf = kwargs.get("figbeta") cm = kwargs.get("figcmap") modes = kwargs.get("figmode") if figall or cc or sf or bf or cm or modes: try: import matplotlib.pyplot as plt except ImportError: LOGGER.warning("Matplotlib could not be imported. " "Figures are not saved.") else: prody.SETTINGS["auto_show"] = False LOGGER.info("Saving graphical output.") format = kwargs.get("figformat") width = kwargs.get("figwidth") height = kwargs.get("figheight") dpi = kwargs.get("figdpi") format = format.lower() if figall or cc: plt.figure(figsize=(width, height)) prody.showCrossCorr(gnm) plt.savefig(join(outdir, prefix + "_cc." + format), dpi=dpi, format=format) plt.close("all") if figall or cm: plt.figure(figsize=(width, height)) prody.showContactMap(gnm) plt.savefig(join(outdir, prefix + "_cm." + format), dpi=dpi, format=format) plt.close("all") if figall or sf: plt.figure(figsize=(width, height)) prody.showSqFlucts(gnm) plt.savefig(join(outdir, prefix + "_sf." + format), dpi=dpi, format=format) plt.close("all") if figall or bf: plt.figure(figsize=(width, height)) bexp = select.getBetas() bcal = prody.calcTempFactors(gnm, select) plt.plot(bexp, label="Experimental") plt.plot(bcal, label=("Theoretical (corr coef = {0:.2f})".format(np.corrcoef(bcal, bexp)[0, 1]))) plt.legend(prop={"size": 10}) plt.xlabel("Node index") plt.ylabel("Experimental B-factors") plt.title(pdb.getTitle() + " B-factors") plt.savefig(join(outdir, prefix + "_bf." + format), dpi=dpi, format=format) plt.close("all") if modes: indices = [] items = modes.split() items = sum([item.split(",") for item in items], []) for item in items: try: item = item.split("-") if len(item) == 1: indices.append(int(item[0]) - 1) elif len(item) == 2: indices.extend(range(int(item[0]) - 1, int(item[1]))) except: pass for index in indices: try: mode = gnm[index] except: pass else: plt.figure(figsize=(width, height)) prody.showMode(mode) plt.grid() plt.savefig( join(outdir, prefix + "_mode_" + str(mode.getIndex() + 1) + "." + format), dpi=dpi, format=format, ) plt.close("all")
def prody_gnm(pdb, **kwargs): """Perform GNM calculations for *pdb*. """ for key in DEFAULTS: if not key in kwargs: kwargs[key] = DEFAULTS[key] from os.path import isdir, splitext, join outdir = kwargs.get('outdir') if not isdir(outdir): raise IOError('{0} is not a valid path'.format(repr(outdir))) import numpy as np import prody LOGGER = prody.LOGGER selstr = kwargs.get('select') prefix = kwargs.get('prefix') cutoff = kwargs.get('cutoff') gamma = kwargs.get('gamma') nmodes = kwargs.get('nmodes') selstr = kwargs.get('select') model = kwargs.get('model') altloc = kwargs.get('altloc') zeros = kwargs.get('zeros') pdb = prody.parsePDB(pdb, model=model, altloc=altloc) if prefix == '_gnm': prefix = pdb.getTitle() + '_gnm' select = pdb.select(selstr) if select is None: raise ValueError('selection {0} do not match any atoms'.format( repr(selstr))) LOGGER.info('{0} atoms will be used for GNM calculations.'.format( len(select))) gnm = prody.GNM(pdb.getTitle()) nproc = kwargs.get('nproc') if nproc: try: from threadpoolctl import threadpool_limits except ImportError: raise ImportError( 'Please install threadpoolctl to control threads') with threadpool_limits(limits=nproc, user_api="blas"): gnm.buildKirchhoff(select, cutoff, gamma) gnm.calcModes(nmodes, zeros=zeros) else: gnm.buildKirchhoff(select, cutoff, gamma) gnm.calcModes(nmodes, zeros=zeros) LOGGER.info('Writing numerical output.') if kwargs.get('outnpz'): prody.saveModel(gnm, join(outdir, prefix)) if kwargs.get('outscipion'): prody.writeScipionModes(outdir, gnm) prody.writeNMD(join(outdir, prefix + '.nmd'), gnm, select) extend = kwargs.get('extend') if extend: if extend == 'all': extended = prody.extendModel(gnm, select, pdb) else: extended = prody.extendModel(gnm, select, select | pdb.bb) prody.writeNMD(join(outdir, prefix + '_extended_' + extend + '.nmd'), *extended) outall = kwargs.get('outall') delim = kwargs.get('numdelim') ext = kwargs.get('numext') format = kwargs.get('numformat') if outall or kwargs.get('outeig'): prody.writeArray(join(outdir, prefix + '_evectors' + ext), gnm.getArray(), delimiter=delim, format=format) prody.writeArray(join(outdir, prefix + '_evalues' + ext), gnm.getEigvals(), delimiter=delim, format=format) if outall or kwargs.get('outbeta'): from prody.utilities import openFile fout = openFile(prefix + '_beta' + ext, 'w', folder=outdir) fout.write( '{0[0]:1s} {0[1]:4s} {0[2]:4s} {0[3]:5s} {0[4]:5s}\n'.format( ['C', 'RES', '####', 'Exp.', 'The.'])) for data in zip(select.getChids(), select.getResnames(), select.getResnums(), select.getBetas(), prody.calcTempFactors(gnm, select)): fout.write( '{0[0]:1s} {0[1]:4s} {0[2]:4d} {0[3]:5.2f} {0[4]:5.2f}\n'. format(data)) fout.close() if outall or kwargs.get('outcov'): prody.writeArray(join(outdir, prefix + '_covariance' + ext), gnm.getCovariance(), delimiter=delim, format=format) if outall or kwargs.get('outcc') or kwargs.get('outhm'): cc = prody.calcCrossCorr(gnm) if outall or kwargs.get('outcc'): prody.writeArray(join(outdir, prefix + '_cross-correlations' + ext), cc, delimiter=delim, format=format) if outall or kwargs.get('outhm'): prody.writeHeatmap(join(outdir, prefix + '_cross-correlations.hm'), cc, resnum=select.getResnums(), xlabel='Residue', ylabel='Residue', title=gnm.getTitle() + ' cross-correlations') if outall or kwargs.get('kirchhoff'): prody.writeArray(join(outdir, prefix + '_kirchhoff' + ext), gnm.getKirchhoff(), delimiter=delim, format=format) if outall or kwargs.get('outsf'): prody.writeArray(join(outdir, prefix + '_sqfluct' + ext), prody.calcSqFlucts(gnm), delimiter=delim, format=format) figall = kwargs.get('figall') cc = kwargs.get('figcc') sf = kwargs.get('figsf') bf = kwargs.get('figbeta') cm = kwargs.get('figcmap') modes = kwargs.get('figmode') if figall or cc or sf or bf or cm or modes: try: import matplotlib.pyplot as plt except ImportError: LOGGER.warning('Matplotlib could not be imported. ' 'Figures are not saved.') else: prody.SETTINGS['auto_show'] = False LOGGER.info('Saving graphical output.') format = kwargs.get('figformat') width = kwargs.get('figwidth') height = kwargs.get('figheight') dpi = kwargs.get('figdpi') format = format.lower() if figall or cc: plt.figure(figsize=(width, height)) prody.showCrossCorr(gnm) plt.savefig(join(outdir, prefix + '_cc.' + format), dpi=dpi, format=format) plt.close('all') if figall or cm: plt.figure(figsize=(width, height)) prody.showContactMap(gnm) plt.savefig(join(outdir, prefix + '_cm.' + format), dpi=dpi, format=format) plt.close('all') if figall or sf: plt.figure(figsize=(width, height)) prody.showSqFlucts(gnm) plt.savefig(join(outdir, prefix + '_sf.' + format), dpi=dpi, format=format) plt.close('all') if figall or bf: plt.figure(figsize=(width, height)) bexp = select.getBetas() bcal = prody.calcTempFactors(gnm, select) plt.plot(bexp, label='Experimental') plt.plot(bcal, label=('Theoretical (corr coef = {0:.2f})'.format( np.corrcoef(bcal, bexp)[0, 1]))) plt.legend(prop={'size': 10}) plt.xlabel('Node index') plt.ylabel('Experimental B-factors') plt.title(pdb.getTitle() + ' B-factors') plt.savefig(join(outdir, prefix + '_bf.' + format), dpi=dpi, format=format) plt.close('all') if modes: indices = [] items = modes.split() items = sum([item.split(',') for item in items], []) for item in items: try: item = item.split('-') if len(item) == 1: indices.append(int(item[0]) - 1) elif len(item) == 2: indices.extend( list(range(int(item[0]) - 1, int(item[1])))) except: pass for index in indices: try: mode = gnm[index] except: pass else: plt.figure(figsize=(width, height)) prody.showMode(mode) plt.grid() plt.savefig(join( outdir, prefix + '_mode_' + str(mode.getIndex() + 1) + '.' + format), dpi=dpi, format=format) plt.close('all')