def get_phase_ranges(archive: str): p, _ = prof_utils.get_from_ascii(archive) try: pdict = prof_utils.auto_gfit(p) phase_ranges = [] for component in pdict["comp_idx"].keys(): phase_ranges.append(pdict["comp_idx"][component][0] / len(pdict["profile"])) phase_ranges.append(pdict["comp_idx"][component][-1] / len(pdict["profile"])) except prof_utils.NoFitError as e: logger.warn( "No suitable fit found for profile. Will use entire phase range.") phase_ranges = [0, 1] return phase_ranges
def find_on_pulse_ranges(I, **kwargs): """ Find ranges of pulse components from a pulse profile by fitting a gaussian distribution Parameters: ----------- I:list The pulse profile **kwargs: Keyword arguments for prof_utils.auto_gfit Returns: -------- phases: list A list of phases (from 0 to 1) corresponding to the on-pulse components """ prof_dict = prof_utils.auto_gfit(I, **kwargs) phases = [] for comp_no in prof_dict["comp_idx"].keys(): phases.append(min(prof_dict["comp_idx"][comp_no]) / len(I)) phases.append(max(prof_dict["comp_idx"][comp_no]) / len(I)) return phases
def flux_cal_and_submit(time_obs, metadata, bestprof_data, pul_ra, pul_dec, coh, auth, pulsar=None, trcvr=data_load.TRCVR_FILE): """ time_obs: the time in seconds of the dectection from the metadata metadata: list from the function get_obs_metadata bestprof_data: list from the function get_from_bestprof trcvr: the file location of antena temperatures """ #unpack the bestprof_data #[obsid, pulsar, dm, period, period_uncer, obsstart, obslength, profile, bin_num] obsid, prof_psr, dm, period, _, beg, t_int, profile, num_bins = bestprof_data if not pulsar: pulsar = prof_psr period = float(period) num_bins = int(num_bins) #get r_sys and gain t_sys, _, gain, u_gain = snfe.find_t_sys_gain(pulsar, obsid, obs_metadata=metadata,\ beg=beg, end=(t_int + beg - 1)) #estimate S/N try: prof_dict = prof_utils.auto_gfit(profile,\ period = period, plot_name="{0}_{1}_{2}_bins_gaussian_fit.png".format(obsid, pulsar, num_bins)) except (prof_utils.ProfileLengthError, prof_utils.NoFitError) as _: prof_dict = None if not prof_dict: logger.info( "Profile couldn't be fit. Using old style of profile analysis") prof_dict = prof_utils.auto_analyse_pulse_prof(profile, period) if prof_dict: sn = prof_dict["sn"] u_sn = prof_dict["sn_e"] w_equiv_bins = prof_dict["w_equiv_bins"] u_w_equiv_bins = prof_dict["w_equiv_bins_e"] w_equiv_ms = period / num_bins * w_equiv_bins u_w_equiv_ms = period / num_bins * u_w_equiv_bins scattering = prof_dict[ "scattering"] * period / num_bins / 1000 #convert to seconds u_scattering = prof_dict["scattering_e"] * period / num_bins / 1000 scattered = prof_dict["scattered"] else: logger.warn("Profile could not be analysed using any methods") sn = None u_sn = None w_equiv_bins = None u_w_equiv_bins = None w_equiv_ms = None u_w_equiv_ms = None scattering = None u_scattering = None scattered = None S_mean = None u_S_mean = None else: sn = prof_dict["sn"] u_sn = prof_dict["sn_e"] w_equiv_bins = prof_dict["Weq"] u_w_equiv_bins = prof_dict["Weq_e"] w_equiv_ms = period / num_bins * w_equiv_bins u_w_equiv_ms = period / num_bins * u_w_equiv_bins scattering = prof_dict[ "Wscat"] * period / num_bins / 1000 #convert to seconds u_scattering = prof_dict["Wscat_e"] * period / num_bins / 1000 scattered = prof_dict["scattered"] if prof_dict: logger.info("Profile scattered? {0}".format(scattered)) logger.info("S/N: {0} +/- {1}".format(sn, u_sn)) logger.debug("Gain {0} K/Jy".format(gain)) logger.debug("Equivalent width in bins: {0}".format(w_equiv_bins)) logger.debug("T_sys: {0} K".format(t_sys)) logger.debug("Bandwidth: {0}".format(bandwidth)) logger.debug("Detection time: {0}".format(t_int)) logger.debug("NUmber of bins: {0}".format(num_bins)) if scattered == False: #final calc of the mean fluxdesnity in mJy S_mean = sn * t_sys / ( gain * math.sqrt(2. * float(t_int) * bandwidth)) *\ math.sqrt( w_equiv_bins / (num_bins - w_equiv_bins)) * 1000. #constants to make uncertainty calc easier S_mean_cons = t_sys / ( math.sqrt(2. * float(t_int) * bandwidth)) *\ math.sqrt( w_equiv_bins / (num_bins - w_equiv_bins)) * 1000. u_S_mean = math.sqrt( math.pow(S_mean_cons * u_sn / gain , 2) +\ math.pow(sn * S_mean_cons * u_gain / math.pow(gain,2) , 2) ) logger.info('Smean {0:.2f} +/- {1:.2f} mJy'.format( S_mean, u_S_mean)) else: logger.info("Profile is scattered. Flux cannot be estimated") S_mean = None u_S_mean = None #calc obstype if (maxfreq - minfreq) == 23: obstype = 1 else: obstype = 2 subbands = get_subbands(metadata) web_address, auth = get_db_auth_addr() #get cal id if coh: cal_list = client.calibrator_list(web_address, auth) cal_already_created = False for c in cal_list: if (c[u'observationid'] == int( args.cal_id)) and (c[u'caltype'] == calibrator_type): cal_already_created = True cal_db_id = c[u'id'] if not cal_already_created: cal_db_id = int( client.calibrator_create(web_address, auth, observationid=str(args.cal_id), caltype=calibrator_type)[u'id']) else: cal_db_id = None if S_mean is not None: #prevent TypeError caused by trying to format Nones given to fluxes for highly scattered pulsars S_mean = float("{0:.2f}".format(S_mean)) u_S_mean = float("{0:.2f}".format(u_S_mean)) #format data for uploading if w_equiv_ms: w_equiv_ms = float("{0:.2f}".format(w_equiv_ms)) if u_w_equiv_ms: u_w_equiv_ms = float("{0:.2f}".format(u_w_equiv_ms)) if scattering: scattering = float("{0:.5f}".format(scattering)) if u_scattering: u_scattering = float("{0:.5f}".format(u_scattering)) det_kwargs = {} det_kwargs["observationid"] = int(obsid) det_kwargs["pulsar"] = str(pulsar) det_kwargs["subband"] = int(subbands) det_kwargs["coherent"] = coh, det_kwargs["observation_type"] = int(obstype) det_kwargs["calibrator"] = cal_db_id det_kwargs["startcchan"] = int(minfreq) det_kwargs["stopcchan"] = int(maxfreq) det_kwargs["flux"] = S_mean det_kwargs["flux_error"] = u_S_mean det_kwargs["width"] = w_equiv_ms det_kwargs["width_error"] = u_w_equiv_ms det_kwargs["scattering"] = scattering det_kwargs["scattering_error"] = u_scattering det_kwargs["dm"] = float(dm) try: client.detection_create(web_address, auth, **det_kwargs) except: logger.info("Detection already on database so updating the values") client.detection_update(web_address, auth, **det_kwargs) logger.info("Observation submitted to database") return subbands