Пример #1
0
    def __init__(self, configuration: BrainConfiguration):
        self._configuration = configuration
        self._aiml_parser = AIMLParser(self)

        self._denormal_collection = DenormalCollection()
        self._normal_collection = NormalCollection()
        self._gender_collection = GenderCollection()
        self._person_collection = PersonCollection()
        self._person2_collection = PersonCollection()
        self._predicates_collection = PredicatesCollection()
        self._pronouns_collection = PronounsCollection()
        self._triples_collection = TriplesCollection()
        self._sets_collection = SetCollection()
        self._maps_collection = MapCollection()
        self._properties_collection = PropertiesCollection()

        self._preprocessors = ProcessorLoader()
        self._postprocessors = ProcessorLoader()

        self._authentication = None
        self._authorisation = None

        self._default_oob = None
        self._oob = {}

        self.load(self._configuration)
Пример #2
0
    def test_collection(self):
        collection = PronounsCollection()
        self.assertIsNotNone(collection)

        count = collection.load_from_text("""
            he
            she
            it
            they
            we
           """)
        self.assertEqual(count, 5)
        self.assertTrue(collection.is_pronoun("he"))
Пример #3
0
    def test_collection(self):
        collection = PronounsCollection()
        self.assertIsNotNone(collection)

        count = collection.load_from_text("""
            he
            she
            it
            they
            we
           """)
        self.assertEqual(count, 5)
        self.assertTrue(collection.is_pronoun("he"))
Пример #4
0
    def __init__(self, configuration: BrainConfiguration):
        self._configuration = configuration
        self._aiml_parser = AIMLParser()

        self._denormal_collection = DenormalCollection()
        self._normal_collection = NormalCollection()
        self._gender_collection = GenderCollection()
        self._person_collection = PersonCollection()
        self._person2_collection = PersonCollection()
        self._predicates_collection = PredicatesCollection()
        self._pronouns_collection = PronounsCollection()
        self._triples_collection = TriplesCollection()
        self._sets_collection = SetCollection()
        self._maps_collection = MapCollection()
        self._properties_collection = PropertiesCollection()

        self._preprocessors = ProcessorLoader()
        self._postprocessors = ProcessorLoader()

        self.load(self._configuration)
Пример #5
0
class Brain(object):
    def __init__(self, configuration: BrainConfiguration):
        self._configuration = configuration
        self._aiml_parser = AIMLParser()

        self._denormal_collection = DenormalCollection()
        self._normal_collection = NormalCollection()
        self._gender_collection = GenderCollection()
        self._person_collection = PersonCollection()
        self._person2_collection = PersonCollection()
        self._predicates_collection = PredicatesCollection()
        self._pronouns_collection = PronounsCollection()
        self._triples_collection = TriplesCollection()
        self._sets_collection = SetCollection()
        self._maps_collection = MapCollection()
        self._properties_collection = PropertiesCollection()

        self._preprocessors = ProcessorLoader()
        self._postprocessors = ProcessorLoader()

        self.load(self._configuration)

    @property
    def configuration(self):
        return self._configuration

    @property
    def aiml_parser(self):
        return self._aiml_parser

    @property
    def denormals(self):
        return self._denormal_collection

    @property
    def normals(self):
        return self._normal_collection

    @property
    def genders(self):
        return self._gender_collection

    @property
    def persons(self):
        return self._person_collection

    @property
    def person2s(self):
        return self._person2_collection

    @property
    def predicates(self):
        return self._predicates_collection

    @property
    def pronounds(self):
        return self._pronouns_collection

    @property
    def triples(self):
        return self._triples_collection

    @property
    def sets(self):
        return self._sets_collection

    @property
    def maps(self):
        return self._maps_collection

    @property
    def properties(self):
        return self._properties_collection

    @property
    def preprocessors(self):
        return self._preprocessors

    @property
    def postprocessors(self):
        return self._postprocessors

    def load(self, brain_configuration: BrainConfiguration):
        self._aiml_parser.load_aiml(brain_configuration)
        self.load_collections(brain_configuration)
        self.load_services(brain_configuration)

    def _load_denormals(self, brain_configuration):
        if brain_configuration.denormal is not None:
            total = self._denormal_collection.load_from_filename(
                brain_configuration.denormal)
            logging.info("Loaded a total of %d denormalisations", total)
        else:
            logging.warning("No configuration setting for denormal")

    def _load_normals(self, brain_configuration):
        if brain_configuration.normal is not None:
            total = self._normal_collection.load_from_filename(
                brain_configuration.normal)
            logging.info("Loaded a total of %d normalisations", total)
        else:
            logging.warning("No configuration setting for normal")

    def _load_genders(self, brain_configuration):
        if brain_configuration.gender is not None:
            total = self._gender_collection.load_from_filename(
                brain_configuration.gender)
            logging.info("Loaded a total of %d genderisations", total)
        else:
            logging.warning("No configuration setting for gender")

    def _load_persons(self, brain_configuration):
        if brain_configuration.person is not None:
            total = self._person_collection.load_from_filename(
                brain_configuration.person)
            logging.info("Loaded a total of %d persons", total)
        else:
            logging.warning("No configuration setting for person")

    def _load_person2s(self, brain_configuration):
        if brain_configuration.person2 is not None:
            total = self._person2_collection.load_from_filename(
                brain_configuration.person2)
            logging.info("Loaded a total of %d person2s", total)
        else:
            logging.warning("No configuration setting for person2")

    def _load_predicates(self, brain_configuration):
        if brain_configuration.predicates is not None:
            total = self._predicates_collection.load_from_filename(
                brain_configuration.predicates)
            logging.info("Loaded a total of %d predicates", total)
        else:
            logging.warning("No configuration setting for predicates")

    def _load_pronouns(self, brain_configuration):
        if brain_configuration.pronouns is not None:
            total = self._pronouns_collection.load_from_filename(
                brain_configuration.pronouns)
            logging.info("Loaded a total of %d pronouns", total)
        else:
            logging.warning("No configuration setting for pronouns")

    def _load_properties(self, brain_configuration):
        if brain_configuration.properties is not None:
            total = self._properties_collection.load_from_filename(
                brain_configuration.properties)
            logging.info("Loaded a total of %d properties", total)
        else:
            logging.warning("No configuration setting for properties")

    def _load_triples(self, brain_configuration):
        if brain_configuration.triples is not None:
            total = self._properties_collection.load_from_filename(
                brain_configuration.triples)
            logging.info("Loaded a total of %d triples", total)
        else:
            logging.warning("No configuration setting for triples")

    def _load_sets(self, brain_configuration):
        if brain_configuration.set_files is not None:
            total = self._sets_collection.load(brain_configuration.set_files)
            logging.info("Loaded a total of %d sets files", total)
        else:
            logging.warning("No configuration setting for set files")

    def _load_maps(self, brain_configuration):
        if brain_configuration.map_files is not None:
            total = self._maps_collection.load(brain_configuration.map_files)
            logging.info("Loaded a total of %d maps files", total)
        else:
            logging.warning("No configuration setting for map files")

    def _load_preprocessors(self, brain_configuration):
        if brain_configuration.preprocessors is not None:
            total = self._preprocessors.load(brain_configuration.preprocessors)
            logging.info("Loaded a total of %d pre processors", total)
        else:
            logging.warning("No configuration setting for pre processors")

    def _load_postprocessors(self, brain_configuration):
        if brain_configuration.postprocessors is not None:
            total = self._postprocessors.load(
                brain_configuration.postprocessors)
            logging.info("Loaded a total of %d post processors", total)
        else:
            logging.warning("No configuration setting for post processors")

    def load_collections(self, brain_configuration):
        self._load_denormals(brain_configuration)
        self._load_normals(brain_configuration)
        self._load_genders(brain_configuration)
        self._load_persons(brain_configuration)
        self._load_person2s(brain_configuration)
        self._load_predicates(brain_configuration)
        self._load_pronouns(brain_configuration)
        self._load_properties(brain_configuration)
        self._load_triples(brain_configuration)
        self._load_sets(brain_configuration)
        self._load_maps(brain_configuration)
        self._load_preprocessors(brain_configuration)
        self._load_postprocessors(brain_configuration)

    def load_services(self, brain_configuration):
        ServiceFactory.preload_services(brain_configuration.services)

    def pre_process_question(self, bot, clientid, question):
        return self.preprocessors.process(bot, clientid, question)

    def ask_question(self, bot, clientid, sentence) -> str:

        conversation = bot.get_conversation(clientid)

        topic_pattern = conversation.predicate("topic")
        if topic_pattern is None:
            logging.info("No Topic pattern default to [*]")
            topic_pattern = "*"
        else:
            logging.info("Topic pattern = [%s]", topic_pattern)

        try:
            that_question = conversation.nth_question(2)
            that_sentence = that_question.current_sentence()

            # If the last response was valid, i.e not none and not empty string, then use
            # that as the that_pattern, otherwise we default to '*' as pattern
            if that_sentence.response is not None and that_sentence.response != '':
                that_pattern = that_sentence.response
                logging.info("That pattern = [%s]", that_pattern)
            else:
                logging.info("That pattern, no response, default to [*]")
                that_pattern = "*"

        except Exception:
            logging.info("No That pattern default to [*]")
            that_pattern = "*"

        match_context = self._aiml_parser.match_sentence(
            bot,
            clientid,
            sentence,
            topic_pattern=topic_pattern,
            that_pattern=that_pattern)

        if match_context is not None:
            template_node = match_context.template_node()
            logging.debug("AIML Parser evaluating template [%s]",
                          template_node.to_string())
            return template_node.template.resolve(bot, clientid)

        return None

    def post_process_response(self, bot, clientid, response: str):
        return self.postprocessors.process(bot, clientid, response)

    def dump_tree(self):
        self._aiml_parser.pattern_parser.root.dump(tabs="")

    def write_learnf_to_file(self, bot, clientid, pattern, topic, that,
                             template):
        learnf_path = "%s/learnf%s" % (
            self._configuration.aiml_files.files,
            self._configuration.aiml_files.extension)
        logging.debug("Writing learnf to %s", learnf_path)

        if os.path.isfile(learnf_path) is False:
            file = open(learnf_path, "w+")
            file.write('<?xml version="1.0" encoding="UTF-8"?>\n')
            file.write('<aiml>\n')
            file.write('</aiml>\n')
            file.close()

        tree = ET.parse(learnf_path)
        root = tree.getroot()

        # Add our new element
        child = ET.Element("category")
        child.append(pattern)
        child.append(topic)
        child.append(that)
        child.append(template.xml_tree(bot, clientid))

        root.append(child)

        tree.write(learnf_path, method="xml")
Пример #6
0
class Brain(object):
    def __init__(self, configuration: BrainConfiguration):
        self._configuration = configuration
        self._aiml_parser = AIMLParser()

        self._denormal_collection = DenormalCollection()
        self._normal_collection = NormalCollection()
        self._gender_collection = GenderCollection()
        self._person_collection = PersonCollection()
        self._person2_collection = PersonCollection()
        self._predicates_collection = PredicatesCollection()
        self._pronouns_collection = PronounsCollection()
        self._triples_collection = TriplesCollection()
        self._sets_collection = SetCollection()
        self._maps_collection = MapCollection()
        self._properties_collection = PropertiesCollection()

        self._preprocessors = ProcessorLoader()
        self._postprocessors = ProcessorLoader()

        self.load(self._configuration)

    @property
    def aiml_parser(self):
        return self._aiml_parser

    @property
    def denormals(self):
        return self._denormal_collection

    @property
    def normals(self):
        return self._normal_collection

    @property
    def genders(self):
        return self._gender_collection

    @property
    def persons(self):
        return self._person_collection

    @property
    def person2s(self):
        return self._person2_collection

    @property
    def predicates(self):
        return self._predicates_collection

    @property
    def pronounds(self):
        return self._pronouns_collection

    @property
    def triples(self):
        return self._triples_collection

    @property
    def sets(self):
        return self._sets_collection

    @property
    def maps(self):
        return self._maps_collection

    @property
    def properties(self):
        return self._properties_collection

    @property
    def preprocessors(self):
        return self._preprocessors

    @property
    def postprocessors(self):
        return self._postprocessors

    def load(self, brain_configuration: BrainConfiguration):
        self._aiml_parser.load_aiml(brain_configuration)
        self.load_collections(brain_configuration)

    def load_collections(self, brain_configuration):
        if brain_configuration.denormal is not None:
            total = self._denormal_collection.load_from_filename(
                brain_configuration.denormal)
            logging.info("Loaded a total of %d denormalisations" % (total))
        else:
            logging.warning("No configuration setting for denormal")

        if brain_configuration.normal is not None:
            total = self._normal_collection.load_from_filename(
                brain_configuration.normal)
            logging.info("Loaded a total of %d normalisations" % (total))
        else:
            logging.warning("No configuration setting for normal")

        if brain_configuration.gender is not None:
            total = self._gender_collection.load_from_filename(
                brain_configuration.gender)
            logging.info("Loaded a total of %d genderisations" % (total))
        else:
            logging.warning("No configuration setting for gender")

        if brain_configuration.person is not None:
            total = self._person_collection.load_from_filename(
                brain_configuration.person)
            logging.info("Loaded a total of %d persons" % (total))
        else:
            logging.warning("No configuration setting for person")

        if brain_configuration.person2 is not None:
            total = self._person2_collection.load_from_filename(
                brain_configuration.person2)
            logging.info("Loaded a total of %d person2s" % (total))
        else:
            logging.warning("No configuration setting for person2")

        if brain_configuration.predicates is not None:
            total = self._predicates_collection.load_from_filename(
                brain_configuration.predicates)
            logging.info("Loaded a total of %d predicates" % (total))
        else:
            logging.warning("No configuration setting for predicates")

        if brain_configuration.pronouns is not None:
            total = self._pronouns_collection.load_from_filename(
                brain_configuration.pronouns)
            logging.info("Loaded a total of %d pronouns" % (total))
        else:
            logging.warning("No configuration setting for pronouns")

        if brain_configuration.properties is not None:
            total = self._properties_collection.load_from_filename(
                brain_configuration.properties)
            logging.info("Loaded a total of %d properties" % (total))
        else:
            logging.warning("No configuration setting for properties")

        if brain_configuration.triples is not None:
            total = self._properties_collection.load_from_filename(
                brain_configuration.triples)
            logging.info("Loaded a total of %d triples" % (total))
        else:
            logging.warning("No configuration setting for triples")

        if brain_configuration.set_files is not None:
            total = self._sets_collection.load(brain_configuration.set_files)
            logging.info("Loaded a total of %d sets files" % (total))
        else:
            logging.warning("No configuration setting for set files")

        if brain_configuration.map_files is not None:
            total = self._maps_collection.load(brain_configuration.map_files)
            logging.info("Loaded a total of %d maps files" % (total))
        else:
            logging.warning("No configuration setting for map files")

        if brain_configuration.preprocessors is not None:
            total = self._preprocessors.load(brain_configuration.preprocessors)
            logging.info("Loaded a total of %d pre processors" % (total))
        else:
            logging.warning("No configuration setting for pre processors")

        if brain_configuration.postprocessors is not None:
            total = self._postprocessors.load(
                brain_configuration.postprocessors)
            logging.info("Loaded a total of %d post processors" % (total))
        else:
            logging.warning("No configuration setting for post processors")

    def pre_process_question(self, question):
        return self.preprocessors.process(question)

    def ask_question(self, bot, clientid, sentence) -> str:

        conversation = bot.get_conversation(clientid)

        try:
            topic_pattern = conversation.predicate("topic")
        except:
            topic_pattern = "*"

        try:
            that_question = conversation.nth_question(2)
            that_sentence = that_question.current_sentence()
            that_pattern = that_sentence.text()
        except:
            that_pattern = "*"

        return self._aiml_parser.match_sentence(bot,
                                                clientid,
                                                sentence,
                                                topic_pattern=topic_pattern,
                                                that_pattern=that_pattern)

    def post_process_response(self, response: str):
        return self.postprocessors.process(response)

    def dump_tree(self):
        self._aiml_parser.pattern_parser.root.dump(tabs="")

    def write_learnf_to_file(self, bot, clientid, pattern, topic, that,
                             template):
        learnf_path = "%s/learnf%s" % (
            self._configuration.aiml_files.files,
            self._configuration.aiml_files.extension)
        logging.debug("Writing learnf to %s" % learnf_path)

        import os.path
        if os.path.isfile(learnf_path) is False:
            file = open(learnf_path, "w+")
            file.write('<?xml version="1.0" encoding="UTF-8"?>\n')
            file.write('<aiml>\n')
            file.write('</aiml>\n')
            file.close()

        tree = ET.parse(learnf_path)
        root = tree.getroot()

        # Add our new element
        child = ET.Element("category")
        child.append(pattern)
        child.append(topic)
        child.append(that)
        child.append(template.xml_tree(bot, clientid))

        root.append(child)

        tree.write(learnf_path, method="xml")
Пример #7
0
class Brain(object):

    def __init__(self, configuration: BrainConfiguration):
        self._configuration = configuration
        self._aiml_parser = AIMLParser()

        self._denormal_collection = DenormalCollection()
        self._normal_collection = NormalCollection()
        self._gender_collection = GenderCollection()
        self._person_collection = PersonCollection()
        self._person2_collection = PersonCollection()
        self._predicates_collection = PredicatesCollection()
        self._pronouns_collection = PronounsCollection()
        self._triples_collection = TriplesCollection()
        self._sets_collection = SetCollection()
        self._maps_collection = MapCollection()
        self._properties_collection = PropertiesCollection()

        self._preprocessors = ProcessorLoader()
        self._postprocessors = ProcessorLoader()

        self.load(self._configuration)

    @property
    def configuration(self):
        return self._configuration

    @property
    def aiml_parser(self):
        return self._aiml_parser

    @property
    def denormals(self):
        return self._denormal_collection

    @property
    def normals(self):
        return self._normal_collection

    @property
    def genders(self):
        return self._gender_collection

    @property
    def persons(self):
        return self._person_collection

    @property
    def person2s(self):
        return self._person2_collection

    @property
    def predicates(self):
        return self._predicates_collection

    @property
    def pronounds(self):
        return self._pronouns_collection

    @property
    def triples(self):
        return self._triples_collection

    @property
    def sets(self):
        return self._sets_collection

    @property
    def maps(self):
        return self._maps_collection

    @property
    def properties(self):
        return self._properties_collection

    @property
    def preprocessors(self):
        return self._preprocessors

    @property
    def postprocessors(self):
        return self._postprocessors

    def load(self, brain_configuration: BrainConfiguration):
        self._aiml_parser.load_aiml(brain_configuration)
        self.load_collections(brain_configuration)
        self.load_services(brain_configuration)

    def _load_denormals(self, brain_configuration):
        if brain_configuration.denormal is not None:
            total = self._denormal_collection.load_from_filename(brain_configuration.denormal)
            logging.info("Loaded a total of %d denormalisations", total)
        else:
            logging.warning("No configuration setting for denormal")

    def _load_normals(self, brain_configuration):
        if brain_configuration.normal is not None:
            total = self._normal_collection.load_from_filename(brain_configuration.normal)
            logging.info("Loaded a total of %d normalisations", total)
        else:
            logging.warning("No configuration setting for normal")

    def _load_genders(self, brain_configuration):
        if brain_configuration.gender is not None:
            total = self._gender_collection.load_from_filename(brain_configuration.gender)
            logging.info("Loaded a total of %d genderisations", total)
        else:
            logging.warning("No configuration setting for gender")

    def _load_persons(self, brain_configuration):
        if brain_configuration.person is not None:
            total = self._person_collection.load_from_filename(brain_configuration.person)
            logging.info("Loaded a total of %d persons", total)
        else:
            logging.warning("No configuration setting for person")

    def _load_person2s(self, brain_configuration):
        if brain_configuration.person2 is not None:
            total = self._person2_collection.load_from_filename(brain_configuration.person2)
            logging.info("Loaded a total of %d person2s", total)
        else:
            logging.warning("No configuration setting for person2")

    def _load_predicates(self, brain_configuration):
        if brain_configuration.predicates is not None:
            total = self._predicates_collection.load_from_filename(brain_configuration.predicates)
            logging.info("Loaded a total of %d predicates", total)
        else:
            logging.warning("No configuration setting for predicates")

    def _load_pronouns(self, brain_configuration):
        if brain_configuration.pronouns is not None:
            total = self._pronouns_collection.load_from_filename(brain_configuration.pronouns)
            logging.info("Loaded a total of %d pronouns", total)
        else:
            logging.warning("No configuration setting for pronouns")

    def _load_properties(self, brain_configuration):
        if brain_configuration.properties is not None:
            total = self._properties_collection.load_from_filename(brain_configuration.properties)
            logging.info("Loaded a total of %d properties", total)
        else:
            logging.warning("No configuration setting for properties")

    def _load_triples(self, brain_configuration):
        if brain_configuration.triples is not None:
            total = self._properties_collection.load_from_filename(brain_configuration.triples)
            logging.info("Loaded a total of %d triples", total)
        else:
            logging.warning("No configuration setting for triples")

    def _load_sets(self, brain_configuration):
        if brain_configuration.set_files is not None:
            total = self._sets_collection.load(brain_configuration.set_files)
            logging.info("Loaded a total of %d sets files", total)
        else:
            logging.warning("No configuration setting for set files")

    def _load_maps(self, brain_configuration):
        if brain_configuration.map_files is not None:
            total = self._maps_collection.load(brain_configuration.map_files)
            logging.info("Loaded a total of %d maps files", total)
        else:
            logging.warning("No configuration setting for map files")

    def _load_preprocessors(self, brain_configuration):
        if brain_configuration.preprocessors is not None:
            total = self._preprocessors.load(brain_configuration.preprocessors)
            logging.info("Loaded a total of %d pre processors", total)
        else:
            logging.warning("No configuration setting for pre processors")

    def _load_postprocessors(self, brain_configuration):
        if brain_configuration.postprocessors is not None:
            total = self._postprocessors.load(brain_configuration.postprocessors)
            logging.info("Loaded a total of %d post processors", total)
        else:
            logging.warning("No configuration setting for post processors")

    def load_collections(self, brain_configuration):
        self._load_denormals(brain_configuration)
        self._load_normals(brain_configuration)
        self._load_genders(brain_configuration)
        self._load_persons(brain_configuration)
        self._load_person2s(brain_configuration)
        self._load_predicates(brain_configuration)
        self._load_pronouns(brain_configuration)
        self._load_properties(brain_configuration)
        self._load_triples(brain_configuration)
        self._load_sets(brain_configuration)
        self._load_maps(brain_configuration)
        self._load_preprocessors(brain_configuration)
        self._load_postprocessors(brain_configuration)

    def load_services(self, brain_configuration):
        ServiceFactory.preload_services(brain_configuration.services)

    def pre_process_question(self, bot, clientid, question):
        return self.preprocessors.process(bot, clientid, question)

    def ask_question(self, bot, clientid, sentence) -> str:

        conversation = bot.get_conversation(clientid)

        topic_pattern = conversation.predicate("topic")
        if topic_pattern is None:
            logging.info("No Topic pattern default to [*]")
            topic_pattern = "*"
        else:
            logging.info("Topic pattern = [%s]", topic_pattern)

        try:
            that_question = conversation.nth_question(2)
            that_sentence = that_question.current_sentence()

            # If the last response was valid, i.e not none and not empty string, then use
            # that as the that_pattern, otherwise we default to '*' as pattern
            if that_sentence.response is not None and that_sentence.response != '':
                that_pattern = TextUtils.strip_all_punctuation(that_sentence.response)
                logging.info("That pattern = [%s]", that_pattern)
            else:
                logging.info("That pattern, no response, default to [*]")
                that_pattern = "*"

        except Exception:
            logging.info("No That pattern default to [*]")
            that_pattern = "*"

        match_context =  self._aiml_parser.match_sentence(bot, clientid,
                                                        sentence,
                                                        topic_pattern=topic_pattern,
                                                        that_pattern=that_pattern)

        if match_context is not None:
            template_node = match_context.template_node()
            logging.debug("AIML Parser evaluating template [%s]", template_node.to_string())
            return template_node.template.resolve(bot, clientid)

        return None

    def post_process_response(self, bot, clientid, response: str):
        return self.postprocessors.process(bot, clientid, response)

    def dump_tree(self):
        self._aiml_parser.pattern_parser.root.dump(tabs="")

    def write_learnf_to_file(self, bot, clientid, pattern, topic, that, template):
        learnf_path = "%s/learnf%s" % (self._configuration.aiml_files.files, self._configuration.aiml_files.extension)
        logging.debug("Writing learnf to %s", learnf_path)

        if os.path.isfile(learnf_path) is False:
            file = open(learnf_path, "w+")
            file.write('<?xml version="1.0" encoding="UTF-8"?>\n')
            file.write('<aiml>\n')
            file.write('</aiml>\n')
            file.close()

        tree = ET.parse(learnf_path)
        root = tree.getroot()

        # Add our new element
        child = ET.Element("category")
        child.append(pattern)
        child.append(topic)
        child.append(that)
        child.append(template.xml_tree(bot, clientid))

        root.append(child)

        tree.write(learnf_path, method="xml")
Пример #8
0
class Brain(object):
    def __init__(self, configuration: BrainConfiguration):
        self._configuration = configuration
        self._aiml_parser = AIMLParser(self)

        self._denormal_collection = DenormalCollection()
        self._normal_collection = NormalCollection()
        self._gender_collection = GenderCollection()
        self._person_collection = PersonCollection()
        self._person2_collection = PersonCollection()
        self._predicates_collection = PredicatesCollection()
        self._pronouns_collection = PronounsCollection()
        self._triples_collection = TriplesCollection()
        self._sets_collection = SetCollection()
        self._maps_collection = MapCollection()
        self._properties_collection = PropertiesCollection()

        self._preprocessors = ProcessorLoader()
        self._postprocessors = ProcessorLoader()

        self._authentication = None
        self._authorisation = None

        self._default_oob = None
        self._oob = {}

        self.load(self._configuration)

    @property
    def configuration(self):
        return self._configuration

    @property
    def aiml_parser(self):
        return self._aiml_parser

    @property
    def denormals(self):
        return self._denormal_collection

    @property
    def normals(self):
        return self._normal_collection

    @property
    def genders(self):
        return self._gender_collection

    @property
    def persons(self):
        return self._person_collection

    @property
    def person2s(self):
        return self._person2_collection

    @property
    def predicates(self):
        return self._predicates_collection

    @property
    def pronouns(self):
        return self._pronouns_collection

    @property
    def triples(self):
        return self._triples_collection

    @property
    def sets(self):
        return self._sets_collection

    @property
    def maps(self):
        return self._maps_collection

    @property
    def properties(self):
        return self._properties_collection

    @property
    def preprocessors(self):
        return self._preprocessors

    @property
    def postprocessors(self):
        return self._postprocessors

    @property
    def authentication(self):
        return self._authentication

    @property
    def authorisation(self):
        return self._authorisation

    @property
    def default_oob(self):
        return self._default_oob

    @property
    def oobs(self):
        return self._oob

    def load_binary(self, brain_configuration):
        logging.info("Loading binary brain from [%s]" %
                     brain_configuration.binaries.binary_filename)
        try:
            start = datetime.datetime.now()
            gc.disable()
            f = open(brain_configuration.binaries.binary_filename, "rb")
            self._aiml_parser = pickle.load(f)
            gc.enable()
            f.close()
            stop = datetime.datetime.now()
            diff = stop - start
            logging.info("Brain load took a total of %.2f sec" %
                         diff.total_seconds())
            load_aiml = False
        except Exception as e:
            logging.exception(e)
            if brain_configuration.binaries.load_aiml_on_binary_fail is True:
                load_aiml = True
            else:
                raise e

    def load_aiml(self, brain_configuration):
        logging.info("Loading aiml source brain")
        self._aiml_parser.load_aiml(brain_configuration)

    def save_binary(self, brain_configuration):
        logging.info("Saving binary brain to [%s]" %
                     brain_configuration.binaries.binary_filename)
        start = datetime.datetime.now()
        f = open(brain_configuration.binaries.binary_filename, "wb")
        pickle.dump(self._aiml_parser, f)
        f.close()
        stop = datetime.datetime.now()
        diff = stop - start
        logging.info("Brain save took a total of %.2f sec" %
                     diff.total_seconds())

    def load(self, brain_configuration: BrainConfiguration):

        if brain_configuration.binaries.load_binary is True:
            self.load_binary(brain_configuration)

        self.load_aiml(brain_configuration)

        if brain_configuration.binaries.save_binary is True:
            self.save_binary(brain_configuration)

        logging.info("Loading collections")
        self.load_collections(brain_configuration)

        logging.info("Loading services")
        self.load_services(brain_configuration)

        logging.info("Loading security services")
        self.load_security_services(brain_configuration)

        logging.info("Loading oob processors")
        self.load_oob_processors(brain_configuration)

    def _load_denormals(self, brain_configuration):
        if brain_configuration.files.denormal is not None:
            total = self._denormal_collection.load_from_filename(
                brain_configuration.files.denormal)
            logging.info("Loaded a total of %d denormalisations", total)
        else:
            logging.warning("No configuration setting for denormal")

    def _load_normals(self, brain_configuration):
        if brain_configuration.files.normal is not None:
            total = self._normal_collection.load_from_filename(
                brain_configuration.files.normal)
            logging.info("Loaded a total of %d normalisations", total)
        else:
            logging.warning("No configuration setting for normal")

    def _load_genders(self, brain_configuration):
        if brain_configuration.files.gender is not None:
            total = self._gender_collection.load_from_filename(
                brain_configuration.files.gender)
            logging.info("Loaded a total of %d genderisations", total)
        else:
            logging.warning("No configuration setting for gender")

    def _load_persons(self, brain_configuration):
        if brain_configuration.files.person is not None:
            total = self._person_collection.load_from_filename(
                brain_configuration.files.person)
            logging.info("Loaded a total of %d persons", total)
        else:
            logging.warning("No configuration setting for person")

    def _load_person2s(self, brain_configuration):
        if brain_configuration.files.person2 is not None:
            total = self._person2_collection.load_from_filename(
                brain_configuration.files.person2)
            logging.info("Loaded a total of %d person2s", total)
        else:
            logging.warning("No configuration setting for person2")

    def _load_predicates(self, brain_configuration):
        if brain_configuration.files.predicates is not None:
            total = self._predicates_collection.load_from_filename(
                brain_configuration.files.predicates)
            logging.info("Loaded a total of %d predicates", total)
        else:
            logging.warning("No configuration setting for predicates")

    def _load_pronouns(self, brain_configuration):
        if brain_configuration.files.pronouns is not None:
            total = self._pronouns_collection.load_from_filename(
                brain_configuration.files.pronouns)
            logging.info("Loaded a total of %d pronouns", total)
        else:
            logging.warning("No configuration setting for pronouns")

    def _load_properties(self, brain_configuration):
        if brain_configuration.files.properties is not None:
            total = self._properties_collection.load_from_filename(
                brain_configuration.files.properties)
            logging.info("Loaded a total of %d properties", total)
        else:
            logging.warning("No configuration setting for properties")

    def _load_triples(self, brain_configuration):
        if brain_configuration.files.triples is not None:
            total = self._properties_collection.load_from_filename(
                brain_configuration.files.triples)
            logging.info("Loaded a total of %d triples", total)
        else:
            logging.warning("No configuration setting for triples")

    def _load_sets(self, brain_configuration):
        total = self._sets_collection.load(brain_configuration.files.set_files)
        logging.info("Loaded a total of %d sets files", total)

    def _load_maps(self, brain_configuration):
        total = self._maps_collection.load(brain_configuration.files.map_files)
        logging.info("Loaded a total of %d maps files", total)

    def _load_preprocessors(self, brain_configuration):
        if brain_configuration.files.preprocessors is not None:
            total = self._preprocessors.load(
                brain_configuration.files.preprocessors)
            logging.info("Loaded a total of %d pre processors", total)
        else:
            logging.warning("No configuration setting for pre processors")

    def _load_postprocessors(self, brain_configuration):
        if brain_configuration.files.postprocessors is not None:
            total = self._postprocessors.load(
                brain_configuration.files.postprocessors)
            logging.info("Loaded a total of %d post processors", total)
        else:
            logging.warning("No configuration setting for post processors")

    def load_collections(self, brain_configuration):
        self._load_denormals(brain_configuration)
        self._load_normals(brain_configuration)
        self._load_genders(brain_configuration)
        self._load_persons(brain_configuration)
        self._load_person2s(brain_configuration)
        self._load_predicates(brain_configuration)
        self._load_pronouns(brain_configuration)
        self._load_properties(brain_configuration)
        self._load_triples(brain_configuration)
        self._load_sets(brain_configuration)
        self._load_maps(brain_configuration)
        self._load_preprocessors(brain_configuration)
        self._load_postprocessors(brain_configuration)

    def load_services(self, brain_configuration):
        ServiceFactory.preload_services(brain_configuration.services)

    def load_security_services(self, brain_configuration):
        if brain_configuration.security is not None:
            if brain_configuration.security.authentication is not None:
                if brain_configuration.security.authentication.classname is not None:
                    try:
                        classobject = ClassLoader.instantiate_class(
                            brain_configuration.security.authentication.
                            classname)
                        self._authentication = classobject(
                            brain_configuration.security.authentication)
                    except Exception as excep:
                        logging.exception(excep)
            else:
                logging.debug("No authentication configuration defined")

            if brain_configuration.security.authorisation is not None:
                if brain_configuration.security.authorisation.classname is not None:
                    try:
                        classobject = ClassLoader.instantiate_class(
                            brain_configuration.security.authorisation.
                            classname)
                        self._authorisation = classobject(
                            brain_configuration.security.authorisation)
                    except Exception as excep:
                        logging.exception(excep)
            else:
                logging.debug("No authorisation configuration defined")

        else:
            logging.debug("No security configuration defined, running open...")

    def pre_process_question(self, bot, clientid, question):
        return self.preprocessors.process(bot, clientid, question)

    def ask_question(self, bot, clientid, sentence) -> str:

        if self.authentication is not None:
            if self.authentication.authenticate(clientid) is False:
                logging.error("[%s] failed authentication!")
                return self.authentication.configuration.denied_srai

        conversation = bot.get_conversation(clientid)

        topic_pattern = conversation.predicate("topic")
        if topic_pattern is None:
            logging.info("No Topic pattern default to [*]")
            topic_pattern = "*"
        else:
            logging.info("Topic pattern = [%s]", topic_pattern)

        try:
            that_question = conversation.nth_question(2)
            that_sentence = that_question.current_sentence()

            # If the last response was valid, i.e not none and not empty string, then use
            # that as the that_pattern, otherwise we default to '*' as pattern
            if that_sentence.response is not None and that_sentence.response != '':
                that_pattern = TextUtils.strip_all_punctuation(
                    that_sentence.response)
                logging.info("That pattern = [%s]", that_pattern)
            else:
                logging.info("That pattern, no response, default to [*]")
                that_pattern = "*"

        except Exception:
            logging.info("No That pattern default to [*]")
            that_pattern = "*"

        match_context = self._aiml_parser.match_sentence(
            bot,
            clientid,
            sentence,
            topic_pattern=topic_pattern,
            that_pattern=that_pattern)

        if match_context is not None:
            template_node = match_context.template_node()
            logging.debug("AIML Parser evaluating template [%s]",
                          template_node.to_string())
            response = template_node.template.resolve(bot, clientid)
            if "<oob>" in response:
                response, oob = self.strip_oob(response)
                if oob is not None:
                    oob_response = self.process_oob(bot, clientid, oob)
                    response = response + " " + oob_response
            return response

        return None

    def load_oob_processors(self, brain_configuration):
        if brain_configuration.oob is not None:
            if brain_configuration.oob.default() is not None:
                try:
                    logging.info("Loading default oob")
                    classobject = ClassLoader.instantiate_class(
                        brain_configuration.oob.default().classname)
                    self._default_oob = classobject()
                except Exception as excep:
                    logging.exception(excep)

            for oob_name in brain_configuration.oob.oobs():
                try:
                    logging.info("Loading oob: %s" % oob_name)
                    classobject = ClassLoader.instantiate_class(
                        brain_configuration.oob.oob(oob_name).classname)
                    self._oob[oob_name] = classobject()
                except Exception as excep:
                    logging.exception(excep)

    def strip_oob(self, response):
        m = re.compile("(.*)(<\s*oob\s*>.*<\/\s*oob\s*>)(.*)")
        g = m.match(response)
        if g is not None:
            front = g.group(1).strip()
            back = g.group(3).strip()
            response = ""
            if front != "":
                response = front + " "
            response += back
            oob = g.group(2)
            return response, oob
        return response, None

    def process_oob(self, bot, clientid, oob_command):

        oob_content = ET.fromstring(oob_command)

        if oob_content.tag == 'oob':
            for tag in oob_content:
                if tag in self._oob:
                    oob_class = self._oob[tag]
                    return oob_class.process_out_of_bounds(bot, clientid, tag)
                else:
                    return self._default_oob.process_out_of_bounds(
                        bot, clientid, tag)

        return ""

    def post_process_response(self, bot, clientid, response: str):
        return self.postprocessors.process(bot, clientid, response)

    def dump_tree(self):
        self._aiml_parser.pattern_parser.root.dump(tabs="")