def _iteration_parameters(image_rows, image_cols, row_block_size, col_block_size, y_overlap=0, x_overlap=0, bands=1): maximum_blocks = 0 for i in range(0, image_rows, row_block_size - y_overlap): for j in range(0, image_cols, col_block_size - x_overlap): if bands > 1: for band in range(1, bands + 1): maximum_blocks += 1 else: maximum_blocks += 1 progress_widgets = [ ' Percent: ', widgets.Percentage(), ' ', widgets.Bar(marker='*', left='[', right=']'), ' ', widgets.ETA(), ' ', widgets.FileTransferSpeed() ] progress_bar = ProgressBar(widgets=progress_widgets, maxval=maximum_blocks) progress_bar.start() return 1, progress_bar
def _iteration_parameters_values(value1, value2): # Set widget and pbar progress_widgets = [' Perc: ', widgets.Percentage(), ' ', \ widgets.Bar(marker='*', left='[', right=']'), ' ', \ widgets.ETA(), ' ', widgets.FileTransferSpeed()] progress_bar = ProgressBar(widgets=progress_widgets, maxval=value1 * value2) progress_bar.start() return 1, progress_bar
def main(): decomposer = Decomposer() print("Loaded %d characters." % len(HANZI_CHARACTERS)) if not is_made_of_radicals_only(u'我'): sys.exit('ERROR: 我 is not made of radicals, wtf?') total_characters = len(HANZI_CHARACTERS) matching_characters = 0 pb = progressbar.ProgressBar(widgets=[PBW.Counter(), PBW.Bar(), PBW.ETA()]) for char in pb(set(HANZI_CHARACTERS)): decomposition = decomposer.decompose(char) if is_made_of_radicals_only(decomposition): matching_characters = 1 print("Matched %d characters out of %d" % (matching_characters, total_characters))
def __init__(self, prefix, max_value): ProgressBar.__init__(self, prefix=prefix, max_value=max_value, is_terminal=True, term_width=200) self.widgets = [ widgets.Percentage(**self.widget_kwargs), ' ', widgets.SimpleProgress(format='(%s)' % widgets.SimpleProgress.DEFAULT_FORMAT, **self.widget_kwargs), ' ', widgets.Bar(**self.widget_kwargs), ' ', widgets.Timer(**self.widget_kwargs), ' ', widgets.ETA(**self.widget_kwargs), ]
def download(url, filename): """Attempts to download url to filename unless the two files have the same size""" r = requests.get(url, stream=True) size = int(r.headers.get('Content-Length')) bname = basename(filename) if size and isfile(filename) and os.path.getsize(filename) == size: print('File %s already exists, skipping download' % bname, file=sys.stderr) return currdown = 0.0 fmt = [ 'Downloading %s: ' % bname, widgets.Bar(), ' ', widgets.RotatingMarker(), ' ', widgets.Percentage(), ' ', widgets.FileTransferSpeed(), ' ', widgets.ETA() ] progress = ProgressBar(maxval=size or 100, widgets=fmt) progress.start() # https://stackoverflow.com/a/5137509 mkdir_p(dirname(realpath(filename))) # https://stackoverflow.com/a/16696317 with open(filename, 'wb') as f: for chunk in r.iter_content(chunk_size=65536): if chunk: f.write(chunk) currdown += len(chunk) if size: progress.update(currdown) else: progress.update(random.randint(0, 100)) progress.finish()
from .Logger import Logger from .analyse.linecoverage import linecoverage # The widgets used by the process bar WIDGETS = [ widgets.Percentage(), ' (', widgets.SimpleProgress(), ')', ' ', widgets.Bar("="), ' ', widgets.Timer(), ' ', widgets.ETA(), ] class Macke: """ Main container for all steps of the MACKE analysis """ # static "constants" SYM_ONLY = 0 FUZZ_ONLY = 1 FLIPPER = 2 def __init__(self, bitcodefile,
else: shuffles = [] indices = list(range(len(paired_results))) for iteration in range(num_tests): # Select randomly half of the results to shuffle to_shuffle = random.sample(indices, len(paired_results)/2) shuffled = [stats2 if i in to_shuffle else stats1 for i,(stats1,stats2) in enumerate(paired_results)] shuffles.append(shuffled) # Show a progress bar if not options.quiet: pbar = ProgressBar(widgets=["Shuffling: ", widgets.Percentage(), " ", widgets.Bar(), ' ', widgets.ETA()], maxval=num_tests).start() # Don't update to often pb_update = max(1000, num_tests/100) # Do the shuffling f_matches = 0 r_matches = 0 p_matches = 0 for iteration,shuffled in enumerate(shuffles): if not options.quiet and (iteration % pb_update) == 0: pbar.update(iteration) # Use the shuffled stats to compute an f-score for the pretend model recall, precision, fscore = _fscore(*zip(*shuffled))