def un_pack(dir): """unpack all file""" num = len(os.listdir(dir)) count = 1 for name in os.listdir(dir): progressbar.bar(count, num) file = os.path.join(dir, name) split = os.path.splitext name_end = split(file) # check the .tar.gz file if (name_end[-1] == ".gz" and split(name_end[0])[-1] == '.tar') or name_end[-1] == ".tgz": un_tgz(file) # check the .tar file elif name_end[-1] == '.tar': un_tar(file) elif name_end[-1] == '.zip': un_zip(file) count += 1
def main(): # setup pycuda and torch import pycuda.gl.autoinit import pycuda.gl assert torch.cuda.is_available() print('pytorch using GPU {}'.format(torch.cuda.current_device())) img = Image.open('misc/husky.jpg').transpose(Image.FLIP_TOP_BOTTOM) width, height = img.size state = torch.cuda.FloatTensor(width, height, 4) state = state.byte().contiguous() tex, cuda_buffer, sz = loadTexture('misc/husky.jpg') nbytes = state.numel() * state.element_size() for _ in bar(range(20000)): with cuda_activate(cuda_buffer) as ary: cpy = pycuda.driver.Memcpy2D() cpy.set_dst_device(state.data_ptr()) cpy.set_src_array(ary) cpy.width_in_bytes = cpy.src_pitch = cpy.dst_pitch = nbytes // height cpy.height = height cpy(aligned=False) torch.cuda.synchronize() img_np = state.data.cpu().numpy().reshape(height, width, 4) print(img_np.shape) img_np[:, :, 3] = 255 plt.imshow(img_np) plt.show()
def download_imgs(pages, cookie, directory): """ Takes the `dict` of pages to download, the cookie to use and the directory to save to, and then does the magic. """ proxy = urllib.request.ProxyHandler({}) opener = urllib.request.build_opener(proxy) opener.addheaders = [( "user-agent", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/603.1.30 (KHTML, like Gecko) Version/10.1 Safari/603.1.30" ), ("cookie", cookie)] urllib.request.install_opener(opener) for number, url in bar(pages.items()): urllib.request.urlretrieve( url, os.path.join(directory, f"page{number}.png"))
print("IMAGE", imageDesc, "RUN-TIME:", totalTimeMin, "Minutes and", totalTimeSec, "Seconds") return totalTime # *+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+* # IMAGE 1 RUN [custom complex] # saves the start time of the program startTime = time.time() maxIterations = 255 imgx,imgy = 1000,1000 xmin = -0.1151953125 xmax = -0.0962109375 ymin = -0.935302734375 ymax = -0.916318359375 print("\n\n\nIMAGE 1 [custom complex] PROGRESS:") for y in bar(range(imgy)): cy = ((ymax-ymin)/imgy)*y + ymin for x in range(imgx): cx = ((xmax-xmin)/imgx)*x + xmin c = newComplex(cx,cy) fractResult = mandelbrotNew(c) r = (((fractResult+1)//6)**2) g = 0 b = (fractResult*50)%256 #saves the end time of the program and calculates time to run endTime = time.time() img1cust = timeCalc(startTime, endTime, "1 [custom complex]") # *+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+* # IMAGE 1 RUN [built-in complex]
def __init__(self, params, datasets): super(MobileNetv2_DeepLabv3, self).__init__() self.params = params self.datasets = datasets self.pb = bar() # hand-made progressbar self.epoch = 0 self.init_epoch = 0 self.ckpt_flag = False self.train_loss = [] self.val_loss = [] self.summary_writer = SummaryWriter(log_dir=self.params.summary_dir) # build network block = [] # conv layer 1 block.append(nn.Sequential(nn.Conv2d(3, self.params.c[0], 3, stride=self.params.s[0], padding=1, bias=False), nn.BatchNorm2d(self.params.c[0]), # nn.Dropout2d(self.params.dropout_prob, inplace=True), nn.ReLU6())) # conv layer 2-7 for i in range(6): block.extend(layers.get_inverted_residual_block_arr(self.params.c[i], self.params.c[i+1], t=self.params.t[i+1], s=self.params.s[i+1], n=self.params.n[i+1])) # dilated conv layer 1-4 # first dilation=rate, follows dilation=multi_grid*rate rate = self.params.down_sample_rate // self.params.output_stride block.append(layers.InvertedResidual(self.params.c[6], self.params.c[6], t=self.params.t[6], s=1, dilation=rate)) for i in range(3): block.append(layers.InvertedResidual(self.params.c[6], self.params.c[6], t=self.params.t[6], s=1, dilation=rate*self.params.multi_grid[i])) # ASPP layer block.append(layers.ASPP_plus(self.params)) # final conv layer block.append(nn.Conv2d(256, self.params.num_class, 1)) # bilinear upsample block.append(nn.Upsample(scale_factor=self.params.output_stride, mode='bilinear', align_corners=False)) self.network = nn.Sequential(*block).cuda() # print(self.network) # build loss self.loss_fn = nn.CrossEntropyLoss(ignore_index=255) # optimizer self.opt = torch.optim.RMSprop(self.network.parameters(), lr=self.params.base_lr, momentum=self.params.momentum, weight_decay=self.params.weight_decay) # initialize self.initialize() # load data self.load_checkpoint() self.load_model()
print(np.unique(xe)) START = 0 END = len(xt) // 2 est = SGP4Estimator6D(Filter=UKHF) zz = np.concatenate((xr[START:END], xv[START:END]), axis=1) tt = xt[START:END] y = [] def kf_cb(estimator, i): global y pb.update(i) y.append(np.linalg.norm(estimator.kf.y)) pb = bar().start(len(tt)) pb.start() est.run(tt, zz, cb=kf_cb) pb.finish() # pb = bar().start(len(xt[START:END])) # pb.start() # est.run(tt, zz, cb=kf_cb, flip=True) # pb.finish() ye, yr, yv = est.model.sgp4_array(jd, fr) print(np.unique(xe)) plt.plot(xr - yr)
def Onclick_bt_rk(self, event): import progressbar progressbar.bar() message3 = "完成入库" wx.MessageBox(message3)
with open(file_list_file, 'w') as file_list: for wrf_dir in wrf_dirs: print('processing', wrf_dir) wrf_dir_date = datetime.strptime(wrf_dir, '%Y%m%d') wrf_run_dir = path.join(input_dir, wrf_dir) nc_files = list(map( lambda f: path.join(wrf_run_dir, f), sorted(list(filter( lambda s: s.startswith('auxhist'), listdir(wrf_run_dir) ))))) for f in bar(nc_files, redirect_stdout=True): try: ds = xr.open_dataset(f) for var_name, var_risico in var_names.items(): date_str = ds.Times[0].values.tostring().decode("utf-8") date = datetime.strptime(date_str, '%Y-%m-%d_%H:%M:%S') date = pd.Timestamp(date).round('60min').to_pydatetime() if wrf_dir_date == date: # skip first interval continue if date.hour%3 != 0: continue
def __init__(self, params): super(MobileNetv2, self).__init__() self.params = params self.pb = bar() # hand-made progressbar self.epoch = 0 self.test_epoch = 0 self.train_loss = 0 self.test_loss = 0 self.train_acc = 0 self.test_acc = 0 self.summary_writer = SummaryWriter(log_dir=self.params.summary_dir) # build network block = [] # conv layer 1 block.append( nn.Sequential( nn.Conv2d(3, self.params.c[0], 3, stride=1, padding=1, bias=False), nn.BatchNorm2d(self.params.c[0]), nn.Dropout2d(self.params.dropout_prob, inplace=True), nn.ReLU6())) # conv layer 2-8 for i in range(7): block.extend( layers.get_inverted_residual_block_arr(self.params.c[i], self.params.c[i + 1], t=self.params.t[i + 1], s=self.params.s[i + 1], n=self.params.n[i + 1])) # conv layer 9 block.append( nn.Sequential( nn.Conv2d(self.params.c[-2], self.params.c[-1], 1, bias=False), nn.BatchNorm2d(self.params.c[-1]), nn.ReLU6())) # pool and fc block.append( nn.Sequential( nn.AvgPool2d(self.params.image_size // self.params.down_sample_rate), nn.Dropout2d(self.params.dropout_prob, inplace=True), nn.Conv2d(self.params.c[-1], self.params.num_class, 1, bias=True))) self.network = nn.Sequential(*block).cuda() # print(self.network) # build loss self.loss_fn = nn.CrossEntropyLoss().cuda() # optimizer self.opt = torch.optim.RMSprop(self.network.parameters(), lr=self.params.base_lr, momentum=self.params.momentum, weight_decay=self.params.weight_decay) # initialize self.initialize() # load data self.load_checkpoint() self.load_model()
from PIL import Image, ImageEnhance from progressbar import progressbar as bar import os os.system('clear') img = Image.open("tree.jpg").convert('RGB') #newImg = img.convert('1') for y in bar(range(3456)): for x in range(5184): r, g, b = img.getpixel((x, y)) img.putpixel((x, y), (r, int(g / 2.25), 0)) img.save('result.png', "PNG") img.show() ''' im = Image.open('image.gif') rgb_im = im.convert('RGB') r, g, b = rgb_im.getpixel((1, 1)) print(r, g, b) (65, 100, 137) '''
# dict(var='FFM', fun=perc25_inv_mean, out_name='FFM_P25'), dict(var='FFM', fun=perc50_inv_mean, out_name='FFM_P50') ] if __name__ == '__main__': # risico output folder out_folder = sys.argv[1] # netcdf output file filename = sys.argv[2] aggr_filename = sys.argv[3] files = os.listdir(out_folder) grid = None outputs = {} for f in bar(files): if f.endswith('.zbin'): model, model_date, date_ref, variable = f.split('_') variable = variable.replace('.zbin', '') if variable not in ext_names.keys(): continue if variable not in outputs: outputs[variable] = [] if not grid: values, grid = read_gzip_binary(filename=out_folder + f, read_grid=True) else: values, _ = read_gzip_binary(filename=out_folder + f, read_grid=False)
#l2 = '2 40485 24.3912 120.4159 8777261 17.9050 284.4369 0.28561606 10816' #MIN(bstar) #l1 = '1 81358U 20028.49779613 -.00005615 00000-0 -72071+0 0 9998' #l2 = '2 81358 62.6434 61.1979 0370276 129.5311 233.8804 9.81670356 16' #MAX(no_kozai) #l1 = '1 44216U 19006CS 20035.07310469 .00413944 15423-5 43386-3 0 9995' #l2 = '2 44216 95.9131 264.4538 0065601 211.8276 147.5518 16.05814498 43974' xs = Satrec.twoline2rv(l1, l2) # delta = float(2. * np.pi / (xs.no_kozai * 1440.))/50 #50 points per round start = get_satepoch(xs.epochyr, xs.epochdays) #Start of epoch N = int(31./delta) xt = np.array([start + delta * k for k in range(N + 1)]) xfr, xjd = np.modf(xt) xe,xr,xv = xs.sgp4_array(xjd, xfr) # pb = bar().start(len(xt)) pb.start() xmoe, xtt = sgp4_moe_from_state_arrays(xr,xv,xt,cb=pb.update) pb.finish() #xmoe = norm_moe(xmoe.T).T # est = SGP4MOERegression(p=0) est.fit(xtt, xmoe) em = est.predict(xtt) plt.plot(xtt-xtt[0], _res_kep(xmoe.T,em.T).T) # em = est.predict(xt) ye,yr,yv = state_from_sgp4_moe(xt, em) #plt.plot(xt-xt[0], xr-yr)
def parse_sql(sql, user, db_name, db_host, port, pwd, timeout=False, compute_ground_truth=True, subset_cache_dir="./subset_cache/"): ''' @sql: sql query string. @ret: python dict with the keys: sql: original sql string join_graph: networkX graph representing query and its join_edges. Properties include: Nodes: - table - alias # FIXME: matches, or separate it out into ops AND predicates - matches Edges: - join_condition Note: This is the only place where these strings will be stored. Each of the subqueries will be represented by their nodes within the join_graph, and we can use these properties to reconstruct the appropriate query for the subsets. subset_graph: networkX graph representing each subquery. Properties include all the ground truth data that will need to be computed: - true_count - pg_count - total_count ''' start = time.time() join_graph = extract_join_graph(sql) subset_graph = generate_subset_graph(join_graph) print("query has", len(join_graph.nodes), "relations,", len(join_graph.edges), "joins, and", len(subset_graph), " possible subsets.", "took:", time.time() - start) ret = {} ret["sql"] = sql ret["join_graph"] = join_graph ret["subset_graph"] = subset_graph if not compute_ground_truth: ret["join_graph"] = nx.adjacency_data(ret["join_graph"]) ret["subset_graph"] = nx.adjacency_data(ret["subset_graph"]) return ret assert user is not None make_dir(subset_cache_dir) subset_cache_file = subset_cache_dir + get_subset_cache_name(sql) # we should check and see which cardinalities of the subset graph # we already know. Note thate we have to cache at this level because # the maximal matching might make arbitrary choices each time. with shelve.open(subset_cache_file) as cache: if sql in cache: currently_stored = cache[sql] else: currently_stored = {} unknown_subsets = subset_graph.copy() unknown_subsets = unknown_subsets.subgraph(subset_graph.nodes - currently_stored.keys()) print(len(unknown_subsets.nodes), "/", len(subset_graph.nodes), "subsets still unknown (", len(currently_stored), "known )") # let us update the ground truth values edges = get_optimal_edges(unknown_subsets) paths = list(reconstruct_paths(edges)) for p in paths: for el1, el2 in zip(p, p[1:]): assert len(el1) > len(el2) # ensure the paths we constructed cover every possible path sanity_check_unknown_subsets = unknown_subsets.copy() for n1, n2 in edges.items(): if n1 in sanity_check_unknown_subsets.nodes: sanity_check_unknown_subsets.remove_node(n1) if n2 in sanity_check_unknown_subsets.nodes: sanity_check_unknown_subsets.remove_node(n2) assert len(sanity_check_unknown_subsets.nodes) == 0 subset_sqls = [] for path in paths: join_order = [tuple(sorted(x)) for x in path_to_join_order(path)] join_order.reverse() sql_to_exec = nodes_to_sql(join_order, join_graph) if compute_ground_truth: prefix = "explain (analyze, timing off, format json) " else: prefix = "explain (analyze off, timing off, format json) " sql_to_exec = prefix + sql_to_exec subset_sqls.append(sql_to_exec) print("computing all", len(unknown_subsets), "unknown subset cardinalities with", len(subset_sqls), "queries") pre_exec_sqls = [] # TODO: if we use the min #queries approach, maybe greedy approach and # letting pg choose join order is better? pre_exec_sqls.append("set join_collapse_limit to 1") pre_exec_sqls.append("set from_collapse_limit to 1") if timeout: pre_exec_sqls.append("set statement_timeout = {}".format(timeout)) sanity_check_unknown_subsets = unknown_subsets.copy() for idx, path_sql in enumerate(bar(subset_sqls)): res = execute_query(path_sql, user, db_host, port, pwd, db_name, pre_exec_sqls) if res is None: print("Query failed to execute, ignoring.") breakpoint() continue plan = res[0][0][0] plan_tree = plan["Plan"] results = list(analyze_plan(plan_tree)) for result in results: # this assertion is invalid because PG may choose to use an implicit join predicate, # for example, if a.c1 = b.c1 and b.c1 = c.c1, then PG may choose to join on a.c1 = c.c1 # assert nx.is_connected(join_graph.subgraph(result["aliases"])), (result["aliases"], plan_tree) aliases_key = tuple(sorted(result["aliases"])) if compute_ground_truth: currently_stored[aliases_key] = { "expected": result["expected"], "actual": result["actual"] } else: currently_stored[aliases_key] = { "expected": result["expected"] } if aliases_key in sanity_check_unknown_subsets.nodes: sanity_check_unknown_subsets.remove_node(aliases_key) if idx % 5 == 0: with shelve.open(subset_cache_file) as cache: cache[sql] = currently_stored print(len(currently_stored), "total subsets now known") assert len(sanity_check_unknown_subsets.nodes) == 0 with shelve.open(subset_cache_file) as cache: cache[sql] = currently_stored for node in subset_graph.nodes: subset_graph.nodes[node]["cardinality"] = currently_stored[node] print("total time:", time.time() - start) # json-ify the graphs ret["join_graph"] = nx.adjacency_data(ret["join_graph"]) ret["subset_graph"] = nx.adjacency_data(ret["subset_graph"]) return ret