Пример #1
0
def migrate_articles(app, limit, article_filepath):
    click.echo('Starting article migration.')
    old_articles = load_json_file(article_filepath)
    if limit:
        old_articles = old_articles[:limit]
    bar = ProgressBar(total=len(old_articles),
                      template=PROGRESSIST_TEMPLATE,
                      done_char='📃')
    with app.app_context():
        for old_article in bar.iter(old_articles):
            create_article(old_article)
        bar.done = 0  # Reset.
        for old_article in bar.iter(old_articles):
            create_article(old_article)
    click.echo('Articles migrated.')
Пример #2
0
async def fetch_statistics(datasets: List[Dataset]) -> List[Dataset]:
    print(f"Fetching statistics")
    nb_updated_datasets = 0
    bar = ProgressBar(total=len(datasets))
    for dataset in bar.iter(datasets):
        results = await fetch_stats_for(dataset.page)
        if results["2020"]:
            dataset.nb_hits = results["2020"][0]["nb_hits"]
            nb_updated_datasets += 1
    print(f"{nb_updated_datasets} datasets updated from Matomo")
    return datasets
Пример #3
0
async def fetch_stats():
    conn = await get_conn()
    rows = await conn.fetch('SELECT id, url FROM datasets;')
    bar = ProgressBar(total=len(rows))
    for row in bar.iter(rows):
        stats = await fetch_stats_for(row['url'])
        if stats.get('2020'):
            await conn.execute(
                'UPDATE datasets SET nb_hits = $1 WHERE id = $2',
                stats['2020'][0]['nb_hits'],
                row['id']
            )
Пример #4
0
def migrate_users(app, limit, users_filepath):
    click.echo('Starting users migration.')
    ds = app.user_datastore
    old_users = load_json_file(users_filepath)
    if limit:
        old_users = old_users[:limit]
    bar = ProgressBar(total=len(old_users),
                      template=PROGRESSIST_TEMPLATE,
                      done_char='👤')
    editor_role = Role.objects.get(name='editor')
    with app.app_context():
        for old_user in bar.iter(old_users):
            create_user(ds, old_user, editor_role)
    click.echo('Users migrated.')
Пример #5
0
async def as_xlsx(max_rows=None, debug=False):
    """Export des données au format souhaité par la DGT.

    :max_rows:          Max number of rows to process.
    :debug:             Turn on debug to be able to read the generated Workbook
    """
    print("Reading from DB")
    records = await db.declaration.completed()
    print("Flattening JSON")
    if max_rows:
        records = records[:max_rows]
    wb = Workbook(write_only=not debug)
    ws = wb.create_sheet()
    ws.title = "BDD REPONDANTS"
    wb.active = ws
    ws_ues = wb.create_sheet()
    ws_ues.title = "BDD UES détail entreprises"
    ws_ues.append([
        "Annee_indicateurs",
        "Region",
        "Departement",
        "Adresse",
        "CP",
        "Commune",
        "Tranche_effectif",
        "Nom_UES",
        "Siren_entreprise_declarante",
        "Nom_entreprise_declarante",
        "Nom_entreprise",
        "Siren",
    ])
    headers, columns = await get_headers_columns()
    ws.append(headers)
    bar = ProgressBar(prefix="Computing", total=len(records))
    for record in bar.iter(records):
        data = record.data
        if not data:
            continue
        ues_data(ws_ues, data)
        data = prepare_record(data)
        data["modified_at"] = record["modified_at"]
        ws.append([clean_cell(fmt(data.get(c))) for c, fmt in columns])
    return wb
Пример #6
0
async def fetch_datasets_from_urls(dataset_urls: List[str]) -> List[Dataset]:
    print("Fetching datasets from URLs.")
    dataset_slugs = [
        extract_slug(dataset_url) for dataset_url in dataset_urls
        if dataset_url.startswith("https://www.data.gouv.fr/fr/datasets/")
    ]
    datasets = []
    bar = ProgressBar(total=len(dataset_slugs))
    for i, dataset_slug in enumerate(bar.iter(dataset_slugs)):
        data = await fetch_json_data(
            f"/api/1/datasets/{dataset_slug}/",
            headers={
                "X-Fields": ("id,title,metrics,description,acronym,page,"
                             "owner{first_name,last_name,avatar_thumbnail},"
                             "organization{name,slug,logo_thumbnail}")
            },
        )
        if data and "id" in data:
            dataset = await convert_to_dataset(data, i)
            datasets.append(dataset)
    return datasets