def main(): parser = argparse.ArgumentParser() help_backtrack = "Backtrack and output an optimal alignment along with the cost" parser.add_argument('-b', '--backtrack', help=help_backtrack, action='store_true') help_seqs = "Path to FASTA file containing the three sequences" parser.add_argument('sequences', help=help_seqs) help_substmatrix = "Path to a file containing the score matrix" parser.add_argument("substmatrix", help=help_substmatrix) help_gapcost = 'Value for the linear gapcost' parser.add_argument('gapcost', type=int, help=help_gapcost) args = parser.parse_args() sequences_names_tuples = prj3.read_input_fasta(args.sequences) seqs = [tup[1] for tup in sequences_names_tuples] alphabet, substmatrix = prj2.read_input_score(args.substmatrix) gapcost = args.gapcost backtrack = args.backtrack print( prj3.sp_exact_3(seqs[0], seqs[1], seqs[2], substmatrix, gapcost, alphabet, backtrack))
def main(): parser = argparse.ArgumentParser() help_seqs = "Path to FASTA file containing the sequences" parser.add_argument('sequences', help=help_seqs) help_substmatrix = "Path to a file containing the score matrix" parser.add_argument("substmatrix", help=help_substmatrix) args = parser.parse_args() sequences_names_tuples = read_input_fasta(args.sequences) alphabet, substmatrix = prj2.read_input_score(args.substmatrix) run_tests(sequences_names_tuples, substmatrix, alphabet, 5)
def main(): parser = argparse.ArgumentParser() help_seqs = "Path to FASTA file containing the three sequences" parser.add_argument('sequences', help=help_seqs) help_substmatrix = "Path to a file containing the score matrix" parser.add_argument("substmatrix", help=help_substmatrix) help_gapcost = 'Value for the linear gapcost' parser.add_argument('gapcost', type=int, help=help_gapcost) args = parser.parse_args() sequences_names_tuples = prj3.read_input_fasta(args.sequences) alphabet, substmatrix = prj2.read_input_score(args.substmatrix) gapcost = args.gapcost prj3.sp_approx_2(sequences_names_tuples, alphabet, substmatrix, gapcost)
def main(): parser = argparse.ArgumentParser() input_seq1 = "Path to FASTA file containing the first sequence" parser.add_argument("seq1", help=input_seq1) input_seq2 = "Path to FASTA file containing the second sequence" parser.add_argument("seq2", help=input_seq2) input_scoreMatrix = "Path to a file containing the score matrix" parser.add_argument("scoreMatrix", help=input_scoreMatrix) input_alpha = "alpha value to be used in affine cost function" parser.add_argument("alpha", help=input_alpha, type=int) input_beta = "beta value to be used in affine cost function" parser.add_argument("beta", help=input_beta, type=int) input_backtrack = "returns an optimal alignment along with the cost" parser.add_argument('-b', '--backtrack', help=input_backtrack, action='store_true') args = parser.parse_args() seq1 = p2.read_input_fasta(args.seq1) seq2 = p2.read_input_fasta(args.seq2) alphabet, scoreMatrix = p2.read_input_score(args.scoreMatrix) alphaCost = args.alpha betaCost = args.beta bool_backtrack = args.backtrack p2.alpha = alphaCost p2.beta = betaCost p2.mSub = scoreMatrix p2.alph = alphabet cost, alignment = p2.optimal_cost(seq1, seq2, min, bool_backtrack) print('cost: %i' % cost) if bool_backtrack: print('>seq1') print(alignment[0]) print() print('>seq2') print(alignment[1])