Пример #1
0
    def post(self, project_id):
        current_user_id = get_jwt_identity()
        current_user_roles = get_jwt_claims()['roles']

        project_memory_schema = MetricsSchema()
        project_cpu_data = request.get_json()

        validated_query_data, errors = project_memory_schema.load(
            project_cpu_data)

        if errors:
            return dict(status='fail', message=errors), 400

        project = Project.get_by_id(project_id)

        if not project:
            return dict(status='fail',
                        message=f'project {project_id} not found'), 404

        if not is_owner_or_admin(project, current_user_id, current_user_roles):
            return dict(status='fail', message='unauthorised'), 403

        # Get current time
        current_time = datetime.datetime.now()
        yesterday = current_time + datetime.timedelta(days=-1)
        namespace = project.alias

        prometheus = Prometheus()

        start = validated_query_data.get('start', yesterday.timestamp())
        end = validated_query_data.get('end', current_time.timestamp())
        step = validated_query_data.get('step', '1h')

        prom_data = prometheus.query_rang(
            start=start,
            end=end,
            step=step,
            metric=
            'sum(rate(container_cpu_usage_seconds_total{container!="POD", image!="",namespace="'
            + namespace + '"}[5m]))')
        #  chenge array values to json"values"
        new_data = json.loads(prom_data)
        cpu_data_list = []

        try:
            for value in new_data["data"]["result"][0]["values"]:
                case = {'timestamp': value[0], 'value': value[1]}
                cpu_data_list.append(case)
        except:
            return dict(status='fail', message='No values found'), 404

        return dict(status='success', data=dict(values=cpu_data_list)), 200
Пример #2
0
    def post(self, project_id, app_id):

        current_user_id = get_jwt_identity()
        current_user_roles = get_jwt_claims()['roles']

        project = Project.get_by_id(project_id)

        if not project:
            return dict(status='fail',
                        message=f'project {project_id} not found'), 404

        if not is_owner_or_admin(project, current_user_id, current_user_roles):
            return dict(status='fail', message='unauthorised'), 403

        # Check app from db
        app = App.get_by_id(app_id)

        if not app:
            return dict(status='fail', message=f'app {app_id} not found'), 404

        namespace = project.alias
        app_alias = app.alias

        prometheus = Prometheus()

        try:
            prom_data = prometheus.query(
                metric=
                'sum(kube_persistentvolumeclaim_resource_requests_storage_bytes{namespace="'
                + namespace + '", persistentvolumeclaim=~"' + app_alias +
                '.*"})')
            #  change array values to json
            new_data = json.loads(prom_data)
            values = new_data["data"]

            percentage_data = prometheus.query(
                metric='100*(kubelet_volume_stats_used_bytes{namespace="' +
                namespace + '", persistentvolumeclaim=~"' + app_alias +
                '.*"}/kubelet_volume_stats_capacity_bytes{namespace="' +
                namespace + '", persistentvolumeclaim=~"' + app_alias +
                '.*"})')

            data = json.loads(percentage_data)
            volume_perc_value = data["data"]
        except:
            return dict(status='fail', message='No values found'), 404

        return dict(status='success',
                    data=dict(storage_capacity=values,
                              storage_percentage_usage=volume_perc_value)), 200
Пример #3
0
def promQueries(startTime, stopTime, testDirPath):
    prom = Prometheus()
    
    cpu5s = json.loads(prom.query_rang(metric='sum(container_cpu_usage_seconds_total{namespace="default"}) by (pod_name)', start=startTime, end=stopTime, step='5s'))
    memWriteB5s = json.loads(prom.query_rang(metric='sum(container_fs_writes_bytes_total{namespace="default"}) by (pod_name)', start=startTime, end=stopTime, step='5s'))
    memReadB5s = json.loads(prom.query_rang(metric='sum(container_fs_reads_bytes_total{namespace="default"}) by (pod_name)', start=startTime, end=stopTime, step='5s'))
    netReadB5s = json.loads(prom.query_rang(metric='sum(container_network_receive_bytes_total{namespace="default"}) by (pod_name)', start=startTime, end=stopTime, step='5s'))
    netWriteB5s = json.loads(prom.query_rang(metric='sum(container_network_transmit_bytes_total{namespace="default"}) by (pod_name)', start=startTime, end=stopTime, step='5s'))

    """ cpu5s = json.loads(prom.query_rang(metric='sum(container_cpu_usage_seconds_total{namespace="robot-shop"}) by (pod_name)', start=startTime, end=stopTime, step='5s'))
    memWriteB5s = json.loads(prom.query_rang(metric='sum(container_fs_writes_bytes_total{namespace="robot-shop"}) by (pod_name)', start=startTime, end=stopTime, step='5s'))
    memReadB5s = json.loads(prom.query_rang(metric='sum(container_fs_reads_bytes_total{namespace="robot-shop"}) by (pod_name)', start=startTime, end=stopTime, step='5s'))
    netReadB5s = json.loads(prom.query_rang(metric='sum(container_network_receive_bytes_total{namespace="robot-shop"}) by (pod_name)', start=startTime, end=stopTime, step='5s'))
    netWriteB5s = json.loads(prom.query_rang(metric='sum(container_network_transmit_bytes_total{namespace="robot-shop"}) by (pod_name)', start=startTime, end=stopTime, step='5s')) """
    
    # Can use queries below to find rate of change also
    """  cpuAvg = json.loads(prom.query_rang(metric='sum(rate(container_cpu_usage_seconds_total{namespace="robot-shop"}[1m])) by (pod_name)', start=startTime, end=stopTime, step='5s'))
    memWriteBavg = json.loads(prom.query_rang(metric='sum(rate(container_fs_writes_bytes_total{namespace="robot-shop"}[1m])) by (pod_name)', start=startTime, end=stopTime, step='5s'))
    memReadBavg = json.loads(prom.query_rang(metric='sum(rate(container_fs_reads_bytes_total{namespace="robot-shop"}[1m])) by (pod_name)', start=startTime, end=stopTime, step='5s'))
    netReadBavg = json.loads(prom.query_rang(metric='sum(rate(container_network_receive_bytes_total{namespace="robot-shop"}[1m])) by (pod_name)', start=startTime, end=stopTime, step='5s'))
    netWriteBavg = json.loads(prom.query_rang(metric='sum(rate(container_network_transmit_bytes_total{namespace="robot-shop"}[1m])) by (pod_name)', start=startTime, end=stopTime, step='5s')) """

    podMetricsDict = {} # List of podDataCollection objects
    timestampList = [] # List of scraped timestamps
    podNameList = [] # List of scraped pods

    # Create list of podDataCollection objects, with CPU vals:
    for pod in cpu5s['data']['result']:
        p = podDataCollection(pod['metric']['pod_name'])
        podNameList.append(pod['metric']['pod_name'])
        p.cpu5s = pod['values']
        podMetricsDict[p.podName] = p

    for tStamp, val in pod['values']:
        timestampList.append(tStamp)

    for pod in memWriteB5s['data']['result']:
        podMetricsDict[pod['metric']['pod_name']].memW5s = pod['values']
        
    for pod in memReadB5s['data']['result']:
        podMetricsDict[pod['metric']['pod_name']].memR5s = pod['values']  

    for pod in netWriteB5s['data']['result']:
        podMetricsDict[pod['metric']['pod_name']].netW5s = pod['values']   

    for pod in netReadB5s['data']['result']:
        podMetricsDict[pod['metric']['pod_name']].netR5s = pod['values']

    createRawCSVs(timestampList, podNameList, testDirPath, podMetricsDict)
Пример #4
0
from prometheus_http_client import Prometheus

prometheus = Prometheus()
Пример #5
0
def send_query(query, start, end, step, url):
    prometheus = Prometheus()
    prometheus.url = url

    res = prometheus.query_rang(metric=query, start=start, end=end, step=step)
    return res
Пример #6
0
class PrometheusBackend:
    """Backend for querying metrics from Prometheus."""
    def __init__(self, client=None, url=None, headers=None):
        self.client = client
        if not self.client:
            if url:
                os.environ['PROMETHEUS_URL'] = url
            if headers:
                os.environ['PROMETHEUS_HEAD'] = json.dumps(headers)
            self.client = Prometheus()

    def query_sli(self, timestamp, window, slo_config):
        """Query SLI value from a given PromQL expression.

        Args:
            timestamp (int): UNIX timestamp.
            window (int): Window (in seconds).
            slo_config (dict): SLO configuration.

        Returns:
            float: SLI value.
        """
        conf = slo_config['backend']
        measurement = conf['measurement']
        expr = measurement['expression']
        response = self.query(expr, window, timestamp, operators=[])
        sli_value = PrometheusBackend.count(response)
        LOGGER.debug(f"SLI value: {sli_value}")
        return sli_value

    def good_bad_ratio(self, timestamp, window, slo_config):
        """Compute good bad ratio from two metric filters.

        Args:
            timestamp (int): UNIX timestamp.
            window (int): Window (in seconds).
            slo_config (dict): SLO configuration.

        Note:
            At least one of `filter_bad` or `filter_valid` is required.

        Returns:
            tuple: A tuple of (good_count, bad_count).
        """
        conf = slo_config['backend']
        good = conf['measurement']['filter_good']
        bad = conf['measurement'].get('filter_bad')
        valid = conf['measurement'].get('filter_valid')
        operators = conf['measurement'].get('operators', ['increase', 'sum'])

        # Replace window by its value in the error budget policy step
        res = self.query(good, window, timestamp, operators)
        good_count = PrometheusBackend.count(res)

        if bad:
            res = self.query(bad, window, timestamp, operators)
            bad_count = PrometheusBackend.count(res)
        elif valid:
            res = self.query(valid, window, timestamp, operators)
            valid_count = PrometheusBackend.count(res)
            bad_count = valid_count - good_count
        else:
            raise Exception("`filter_bad` or `filter_valid` is required.")

        LOGGER.debug(f'Good events: {good_count} | '
                     f'Bad events: {bad_count}')

        return (good_count, bad_count)

    # pylint: disable=unused-argument
    def distribution_cut(self, timestamp, window, slo_config):
        """Query events for distributions (histograms).

        Args:
            timestamp (int): UNIX timestamp.
            window (int): Window (in seconds).
            slo_config (dict): SLO configuration.

        Returns:
            float: SLI value.
        """
        conf = slo_config['backend']
        measurement = conf['measurement']
        expr = measurement['expression']
        threshold_bucket = measurement['threshold_bucket']
        labels = {"le": threshold_bucket}
        res_good = self.query(expr,
                              window,
                              operators=['increase', 'sum'],
                              labels=labels)
        good_count = PrometheusBackend.count(res_good)

        # We use the _count metric to figure out the 'valid count'.
        # Trying to get the valid count from the _bucket metric query is hard
        # due to Prometheus 'le' syntax that doesn't have the alternative 'ge'
        # See https://github.com/prometheus/prometheus/issues/2018.
        expr_count = expr.replace('_bucket', '_count')
        res_valid = self.query(expr_count,
                               window,
                               operators=['increase', 'sum'])
        valid_count = PrometheusBackend.count(res_valid)
        bad_count = valid_count - good_count
        LOGGER.debug(f'Good events: {good_count} | '
                     f'Bad events: {bad_count}')
        return (good_count, bad_count)

    # pylint: disable=unused-argument
    def query(self, filter, window, timestamp=None, operators=[], labels={}):
        """Query Prometheus server.

        Args:
            filter (str): Query filter.
            window (int): Window (in seconds).
            timestamp (int): UNIX timestamp.
            operators (list): List of PromQL operators to apply on query.
            labels (dict): Labels dict to add to existing query.

        Returns:
            dict: Response.
        """
        filter = PrometheusBackend._fmt_query(filter, window, operators,
                                              labels)
        LOGGER.debug(f'Query: {filter}')
        response = self.client.query(metric=filter)
        response = json.loads(response)
        LOGGER.debug(pprint.pformat(response))
        return response

    @staticmethod
    def count(response):
        """Count events in Prometheus response.
        Args:
            response (dict): Prometheus query response.
        Returns:
            int: Event count.
        """
        # Note: this function could be replaced by using the `count_over_time`
        # function that Prometheus provides.
        try:
            return float(response['data']['result'][0]['value'][1])
        except (IndexError, KeyError) as exception:
            LOGGER.warning("Couldn't find any values in timeseries response.")
            LOGGER.debug(exception, exc_info=True)
            return NO_DATA  # no events in timeseries

    @staticmethod
    def _fmt_query(query, window, operators=[], labels={}):
        """Format Prometheus query:

        * If the PromQL expression has a `window` placeholder, replace it by the
        current window. Otherwise, append it to the expression.

        * If operators are defined, apply them to the metric in sequential
        order.

        * If labels are defined, append them to existing labels.

        Args:
            query (str): Original query in YAML config.
            window (int): Query window (in seconds).
            operators (list): Operators to wrap query with.
            labels (dict): Labels dict to add to existing query.

        Returns:
            str: Formatted query.
        """
        query = query.strip()
        if '[window' in query:
            query = query.replace('[window', f'[{window}s')
        else:
            query += f'[{window}s]'
        for operator in operators:
            query = f'{operator}({query})'
        for key, value in labels.items():
            query = query.replace('}', f', {key}="{value}"}}')
        return query
Пример #7
0
if 3 > len(argv):
    print('Command line error: Prometheus URL and push gateway are required.')
    print('Usage:')
    print('  %s <Prometheus URL> <push gateway host:port> [<past-days>]' %
          (argv[0], ))
    exit(1)

prometheus_url = argv[1]
pgw_url = argv[2]
past_days = 7

if 4 == len(argv):
    past_days = int(argv[3])

environ['PROMETHEUS_URL'] = prometheus_url
p = Prometheus()

for mesh in ["bare-metal", "svcmesh-linkerd", "svcmesh-istio"]:

    r = CollectorRegistry()
    workaround = mesh
    g, percs, runs = create_summary_gauge(p, mesh, r, past_days=past_days)
    dg, dpercs, druns = create_summary_gauge(p,
                                             mesh,
                                             r,
                                             detailed=True,
                                             past_days=past_days)

    print("%s: %d runs with %d percentiles (coarse)" % (mesh, runs, percs))
    print("%s: %d runs with %d percentiles (detailed)" % (mesh, druns, dpercs))
Пример #8
0
class PrometheusBackend(MetricBackend):
    """Backend for querying metrics from Prometheus."""
    def __init__(self, **kwargs):
        self.client = kwargs.pop('client')
        if not self.client:
            url = kwargs.get('url')
            headers = kwargs.get('headers')
            if url:
                os.environ['PROMETHEUS_URL'] = url
            if headers:
                os.environ['PROMETHEUS_HEAD'] = json.dumps(headers)
            LOGGER.debug(f'Prometheus URL: {url}')
            LOGGER.debug(f'Prometheus headers: {headers}')
            self.client = Prometheus()

    def query_sli(self, **kwargs):
        """Query SLI value from a given PromQL expression.

        Args:
            kwargs (dict):
                timestamp (int): Timestamp to query.
                window (int): Window to query (in seconds).
                measurement (dict):
                    expression (str): PromQL expression.

        Returns:
            float: SLI value.
        """
        window = kwargs['window']
        measurement = kwargs['measurement']
        expr = measurement['expression']
        expression = expr.replace("[window]", f"[{window}s]")
        data = self.query(expression)
        LOGGER.debug(
            f"Expression: {expression} | Result: {pprint.pformat(data)}")
        try:
            sli_value = float(data['data']['result'][0]['value'][1])
        except IndexError:
            sli_value = 0
        LOGGER.debug(f"SLI value: {sli_value}")
        return sli_value

    def good_bad_ratio(self, **kwargs):
        """Compute good bad ratio from two metric filters.

        Args:
            kwargs (dict):
                window (str): Query window.
                measurement (dict): Measurement config
                    filter_good (str): PromQL query for good events.
                    filter_bad (str, optional): PromQL query for bad events.
                    filter_valid (str, optional): PromQL query for valid events.

        Note:
            At least one of `filter_bad` or `filter_valid` is required.

        Returns:
            tuple: A tuple of (good_event_count, bad_event_count).
        """
        window = kwargs['window']
        filter_good = kwargs['measurement']['filter_good']
        filter_bad = kwargs['measurement'].get('filter_bad')
        filter_valid = kwargs['measurement'].get('filter_valid')

        # Replace window by its value in the error budget policy step
        expr_good = filter_good.replace('[window]', f'[{window}s]')
        res_good = self.query(expr_good)
        good_event_count = PrometheusBackend.count(res_good)

        if filter_bad:
            expr_bad = filter_bad.replace('[window]', f'[{window}s]')
            res_bad = self.query(expr_bad)
            bad_event_count = PrometheusBackend.count(res_bad)
        elif filter_valid:
            expr_valid = filter_valid.replace('[window]', f'[{window}s]')
            res_valid = self.query(expr_valid)
            bad_event_count = \
                PrometheusBackend.count(res_valid) - good_event_count
        else:
            raise Exception("`filter_bad` or `filter_valid` is required.")

        LOGGER.debug(f'Good events: {good_event_count} | '
                     f'Bad events: {bad_event_count}')

        return (good_event_count, bad_event_count)

    def query(self, filter):
        """Query Prometheus server.

        Args:
            filter (str): Query filter.

        Returns:
            dict: Response.
        """
        response = self.client.query(metric=filter)
        response = json.loads(response)
        LOGGER.debug(pprint.pformat(response))
        return response

    @staticmethod
    def count(response):
        """Count events in Prometheus response.

        Args:
            response (dict): Prometheus query response.

        Returns:
            int: Event count.
        """
        # Note: this function could be replaced by using the `count_over_time`
        # function that Prometheus provides.
        try:
            return len(response['data']['result'][0]['values'])
        except (IndexError, KeyError) as exception:
            LOGGER.warning("Couldn't find any values in timeseries response")
            LOGGER.debug(exception)
            return 0  # no events in timeseries
from prometheus_http_client import Prometheus 
import prometheus_http_client
from prometheus_http_client.prometheus import *
import os

os.environ['PROMETHEUS_URL'] = 'http://demo.robustperception.io:9090/'
@prom
def up(*args, **kwargs):
    pass
@relabel('100 - (avg by (instance, job) (irate(node_cpu{mode="idle"}[5m])) * 100)')
def hello(*args,**kwargs):
    pass
if __name__ == '__main__':
    print("Up metrics ::",up())
    print("Node CPU Metrics :",hello())
    print("UP With Range ::")
    p = Prometheus()
    print(p.query_rang(metric="up", start=1570221677, end=1570225677))
    print(p.label_values('job'))
    print(dir(Prometheus))
Пример #10
0
class PrometheusBackend:
    """Backend for querying metrics from Prometheus."""
    def __init__(self, client=None, url=None, headers=None):
        self.client = client
        if not self.client:
            if url:
                os.environ['PROMETHEUS_URL'] = url
            if headers:
                os.environ['PROMETHEUS_HEAD'] = json.dumps(headers)
            LOGGER.debug(f'Prometheus URL: {url}')
            LOGGER.debug(f'Prometheus headers: {headers}')
            self.client = Prometheus()

    def query_sli(self, timestamp, window, slo_config):
        """Query SLI value from a given PromQL expression.

        Args:
            timestamp (int): UNIX timestamp.
            window (int): Window (in seconds).
            slo_config (dict): SLO configuration.

        Returns:
            float: SLI value.
        """
        conf = slo_config['backend']
        measurement = conf['measurement']
        expr = measurement['expression']
        expression = expr.replace("[window", f"[{window}s")
        data = self.query(expression, timestamp)
        LOGGER.debug(
            f"Expression: {expression} | Result: {pprint.pformat(data)}")
        try:
            sli_value = float(data['data']['result'][0]['value'][1])
        except IndexError:
            sli_value = 0
        LOGGER.debug(f"SLI value: {sli_value}")
        return sli_value

    def good_bad_ratio(self, timestamp, window, slo_config):
        """Compute good bad ratio from two metric filters.

        Args:
            timestamp (int): UNIX timestamp.
            window (int): Window (in seconds).
            slo_config (dict): SLO configuration.

        Note:
            At least one of `filter_bad` or `filter_valid` is required.

        Returns:
            tuple: A tuple of (good_count, bad_count).
        """
        conf = slo_config['backend']
        filter_good = conf['measurement']['filter_good']
        filter_bad = conf['measurement'].get('filter_bad')
        filter_valid = conf['measurement'].get('filter_valid')

        # Replace window by its value in the error budget policy step
        expr_good = filter_good.replace('[window', f'[{window}s')
        res_good = self.query(expr_good)
        good_count = PrometheusBackend.count(res_good)

        if filter_bad:
            expr_bad = filter_bad.replace('[window', f'[{window}s')
            res_bad = self.query(expr_bad, timestamp)
            bad_count = PrometheusBackend.count(res_bad)
        elif filter_valid:
            expr_valid = filter_valid.replace('[window', f'[{window}s')
            res_valid = self.query(expr_valid, timestamp)
            bad_count = PrometheusBackend.count(res_valid) - good_count
        else:
            raise Exception("`filter_bad` or `filter_valid` is required.")

        LOGGER.debug(f'Good events: {good_count} | '
                     f'Bad events: {bad_count}')

        return (good_count, bad_count)

    def query(self, filter, timestamp=None):  # pylint: disable=unused-argument
        """Query Prometheus server.

        Args:
            filter (str): Query filter.
            timestamp (int): UNIX timestamp.

        Returns:
            dict: Response.
        """
        response = self.client.query(metric=filter)
        response = json.loads(response)
        LOGGER.debug(pprint.pformat(response))
        return response

    @staticmethod
    def count(response):
        """Count events in Prometheus response.

        Args:
            response (dict): Prometheus query response.

        Returns:
            int: Event count.
        """
        # Note: this function could be replaced by using the `count_over_time`
        # function that Prometheus provides.
        try:
            return len(response['data']['result'][0]['values'])
        except (IndexError, KeyError) as exception:
            LOGGER.warning("Couldn't find any values in timeseries response")
            LOGGER.debug(exception, exc_info=True)
            return 0  # no events in timeseries
 def __init__(self, **kwargs):
     self.client = kwargs.get('client')
     if not self.client:
         self.client = Prometheus(**kwargs)
Пример #12
0
def promQueries(startTime, stopTime, testDirPath):
    prom = Prometheus()
    namespace = "robot-shop"
    step = '5s'
    # If you’re using Kubernetes 1.16 and above you’ll have to use pod instead of pod_name and container instead of container_name.
    # Can use queries below to find rate of change also
    cpu5s = json.loads(
        prom.query_rang(
            metric='sum(container_cpu_usage_seconds_total{namespace="' +
            namespace + '"}) by (pod)',
            start=startTime,
            end=stopTime,
            step=step))
    memWriteB5s = json.loads(
        prom.query_rang(
            metric='sum(container_fs_writes_bytes_total{namespace="' +
            namespace + '"}) by (pod)',
            start=startTime,
            end=stopTime,
            step=step))
    memReadB5s = json.loads(
        prom.query_rang(
            metric='sum(container_fs_reads_bytes_total{namespace="' +
            namespace + '"}) by (pod)',
            start=startTime,
            end=stopTime,
            step=step))
    netReadB5s = json.loads(
        prom.query_rang(
            metric='sum(container_network_receive_bytes_total{namespace="' +
            namespace + '"}) by (pod)',
            start=startTime,
            end=stopTime,
            step=step))
    netWriteB5s = json.loads(
        prom.query_rang(
            metric='sum(container_network_transmit_bytes_total{namespace="' +
            namespace + '"}) by (pod)',
            start=startTime,
            end=stopTime,
            step=step))

    #cpu5s = json.loads(prom.query_rang(metric='sum(irate(container_cpu_usage_seconds_total{namespace="'+namespace+'"}[1m])) by (pod)', start=startTime, end=stopTime, step=step))
    #memWriteB5s = json.loads(prom.query_rang(metric='sum(rate(container_fs_writes_bytes_total{namespace="'+namespace+'"}[1m])) by (pod)', start=startTime, end=stopTime, step=step))
    #memReadB5s = json.loads(prom.query_rang(metric='sum(rate(container_fs_reads_bytes_total{namespace="'+namespace+'"}[1m])) by (pod)', start=startTime, end=stopTime, step=step))
    #netReadB5s = json.loads(prom.query_rang(metric='sum(irate(container_network_receive_bytes_total{namespace="'+namespace+'"}[1m])) by (pod)', start=startTime, end=stopTime, step=step))
    #netWriteB5s = json.loads(prom.query_rang(metric='sum(irate(container_network_transmit_bytes_total{namespace="'+namespace+'"}[1m])) by (pod)', start=startTime, end=stopTime, step=step))

    podMetricsDict = {}  # List of podDataCollection objects
    timestampList = []  # List of scraped timestamps
    podNameList = []  # List of scraped pods
    tmp_pod = []
    print("cpu5s, ", cpu5s)
    # Create list of podDataCollection objects, with CPU vals:
    for pod in cpu5s['data']['result']:
        p = podDataCollection(pod['metric']['pod'])
        podNameList.append(pod['metric']['pod'])
        p.cpu5s = pod['values']
        podMetricsDict[p.podName] = p
        if not tmp_pod:
            tmp_pod = pod['values']
    #print("tmp_pdo", tmp_pod)
    for tStamp, val in tmp_pod:
        timestampList.append(tStamp)

    for pod in memWriteB5s['data']['result']:
        podMetricsDict[pod['metric']['pod']].memW5s = pod['values']

    for pod in memReadB5s['data']['result']:
        podMetricsDict[pod['metric']['pod']].memR5s = pod['values']

    for pod in netWriteB5s['data']['result']:
        podMetricsDict[pod['metric']['pod']].netW5s = pod['values']

    for pod in netReadB5s['data']['result']:
        podMetricsDict[pod['metric']['pod']].netR5s = pod['values']
    #print(podMetricsDict)

    createRawCSVs(timestampList, podNameList, testDirPath, podMetricsDict)