Пример #1
0
def get_wf(wavelength, gridsize, PASSVALUE={}):
    diam = PASSVALUE.get('diam', 0.3)  # telescope diameter in meters
    m1_fl = PASSVALUE.get('m1_fl', 0.5717255)  # primary focal length (m)
    #beam_ratio     = PASSVALUE.get('beam_ratio',0.99)             # initial beam width/grid width
    tilt_x = PASSVALUE.get('tilt_x', 0.)  # Tilt angle along x (arc seconds)
    tilt_y = PASSVALUE.get('tilt_y', 0.)  # Tilt angle along y (arc seconds)

    beam_ratio = 0.99
    # Define the wavefront
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)

    # Point off-axis
    prop_tilt(wfo, tilt_x, tilt_y)

    # Input aperture
    proper.prop_circular_aperture(wfo, diam / 2.)

    # Define entrance
    proper.prop_define_entrance(wfo)

    proper.prop_lens(wfo, m1_fl, "primary")

    opd1_func = PASSVALUE['opd_func']

    def build_m1_opd():
        return gen_opdmap(opd1_func, proper.prop_get_gridsize(wfo),
                          proper.prop_get_sampling(wfo))

    wfo.wfarr *= build_phase_map(
        wfo, load_cacheable_grid(opd1_func.__name__, wfo, build_m1_opd, False))

    wf = proper.prop_get_wavefront(wfo)

    return wf
Пример #2
0
def simple_telescope(wavelength, gridsize):
    d_objective = 0.060
    fl_objective = 15.0 * d_objective
    fl_eyepiece = 0.021
    fl_eye = 0.022
    beam_ratio = 0.5

    wfo = proper.propbegin(d_objective, wavelength, gridsize, beam_ratio)

    proper.prop_circular_aperture(wfo, d_objective / 2)
    proper.prop_define_entrance(wfo)

    proper.prop_lens(wfo, fl_objective, "objective")

    proper.prop_propagate(wfo, fl_objective + fl_eyepiece, "eyepiece")
    proper.prop_lens(wfo, fl_eyepiece, "eyepiece")

    exit_pupil_distance = fl_eyepiece / (1 - fl_eyepiece /
                                         (fl_objective + fl_eyepiece))
    proper.prop_propagate(wfo, exit_pupil_distance, "exit pupil at eye lens:")
    proper.prop_lenx(wfo, fl_eye, "eye")

    proper.prop_propagate(wfo, fl_eye, "retina")

    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
Пример #3
0
def lyot_stop(wf, mode='RAVC', ravc_r=0.6, ls_dRext=0.03, ls_dRint=0.05, 
        ls_dRspi=0.04, spi_width=0.5, spi_angles=[0,60,120], diam_ext=37, 
        diam_int=11, ls_misalign=None, file_app_phase='', file_app_amp='', 
        ngrid=1024, npupil=285, margin=50, get_amp=False, 
        get_phase=False, verbose=False, **conf):

    """Add a Lyot stop, or an APP."""
    
    # case 1: Lyot stop
    if mode in ['CVC', 'RAVC']:
        # LS parameters
        r_obstr = ravc_r if mode in ['RAVC'] else diam_int/diam_ext
        ls_int = r_obstr + ls_dRint
        ls_ext = 1 - ls_dRext
        ls_spi = spi_width/diam_ext + ls_dRspi
        # LS misalignments
        ls_misalign = [0,0,0,0,0,0] if ls_misalign is None else list(ls_misalign)
        dx_amp, dy_amp, dz_amp = ls_misalign[0:3]
        dx_phase, dy_phase, dz_phase = ls_misalign[3:6]
        # create Lyot stop
        proper.prop_circular_aperture(wf, ls_ext, dx_amp, dy_amp, NORM=True)
        if diam_int > 0:
            proper.prop_circular_obscuration(wf, ls_int, dx_amp, dy_amp, NORM=True)
        if spi_width > 0:
            for angle in spi_angles:
                proper.prop_rectangular_obscuration(wf, ls_spi, 2, \
                        dx_amp, dy_amp, ROTATION=angle, NORM=True)
        if verbose is True:
            print('Create Lyot stop')
            print('   ls_int=%3.4f, ls_ext=%3.4f, ls_spi=%3.4f'\
                %(ls_int, ls_ext, ls_spi))
            print('')

    # case 2: APP
    elif mode in ['APP']:
        if verbose is True:
            print('Load APP from files\n')
        # get amplitude and phase data
        APP_amp = fits.getdata(file_app_amp) if os.path.isfile(file_app_amp) \
                else np.ones((npupil, npupil))
        APP_phase = fits.getdata(file_app_phase) if os.path.isfile(file_app_phase) \
                else np.zeros((npupil, npupil))
        # resize to npupil
        APP_amp = impro.resize_img(APP_amp, npupil)
        APP_phase = impro.resize_img(APP_phase, npupil)
        # pad with zeros to match PROPER ngrid
        APP_amp = impro.pad_img(APP_amp, ngrid, 1)
        APP_phase = impro.pad_img(APP_phase, ngrid, 0)
        # multiply the loaded APP
        proper.prop_multiply(wf, APP_amp*np.exp(1j*APP_phase))
    
    # get the LS amplitude and phase for output
    LS_amp = impro.crop_img(proper.prop_get_amplitude(wf), npupil, margin)\
            if get_amp is True else None
    LS_phase = impro.crop_img(proper.prop_get_phase(wf), npupil, margin)\
            if get_phase is True else None
    
    return wf, LS_amp, LS_phase
Пример #4
0
def falco_gen_annular_FPM(pixresFPM,
                          rhoInner,
                          rhoOuter,
                          FPMampFac,
                          centering,
                          rot180=False):
    dxiUL = 1.0 / pixresFPM  # lambda_c/D per pixel. "UL" for unitless

    if np.isinf(rhoOuter):
        if centering == "interpixel":
            # number of points across the inner diameter of the FPM.
            Narray = utils.ceil_even((2 * rhoInner / dxiUL))
        else:
            # number of points across the inner diameter of the FPM. Another half pixel added for pixel-centered masks.
            Narray = utils.ceil_even(2 * (rhoInner / dxiUL + 0.5))
    else:
        if centering == "interpixel":
            # number of points across the outer diameter of the FPM.
            Narray = utils.ceil_even(2 * rhoOuter / dxiUL)
        else:
            # number of points across the outer diameter of the FPM. Another half pixel added for pixel-centered masks.
            Narray = utils.ceil_even(2 * (rhoOuter / dxiUL + 0.5))

    xshift = 0  # translation in x of FPM (in lambda_c/D)
    yshift = 0  # translation in y of FPM (in lambda_c/D)

    Darray = Narray * dxiUL  # width of array in lambda_c/D
    diam = Darray
    wl_dummy = 1e-6  # wavelength (m); Dummy value--no propagation here, so not used.

    if centering == "interpixel":
        cshift = -diam / 2 / Narray
    elif rot180:
        cshift = -diam / Narray
    else:
        cshift = 0

    wf = proper.prop_begin(diam, wl_dummy, Narray, 1.0)

    if not np.isinf(rhoOuter):
        # Outer opaque ring of FPM
        cx_OD = 0 + cshift + xshift
        cy_OD = 0 + cshift + yshift
        proper.prop_circular_aperture(wf, rhoOuter, cx_OD, cy_OD)

    # Inner spot of FPM (Amplitude transmission can be nonzero)
    ra_ID = (rhoInner)
    cx_ID = 0 + cshift + xshift
    cy_ID = 0 + cshift + yshift
    innerSpot = proper.prop_ellipse(
        wf, rhoInner, rhoInner, cx_ID, cy_ID,
        DARK=True) * (1 - FPMampFac) + FPMampFac

    mask = np.fft.ifftshift(np.abs(wf.wfarr))  # undo PROPER's fftshift
    return mask * innerSpot  # Include the inner FPM spot
Пример #5
0
def falco_gen_DM_stop(dx, Dmask, centering):
    diam = Dmask  # diameter of the mask (meters)
    # minimum even number of points across to fully contain the actual aperture (if interpixel centered)
    NapAcross = Dmask / dx

    wf = _init_proper(Dmask, dx, centering)

    # 0 shift for pixel-centered pupil, or -dx shift for inter-pixel centering
    cshift = -dx / 2 * (centering == "interpixel")

    # Outer diameter of aperture
    proper.prop_circular_aperture(wf, diam / 2, cshift, cshift)

    return np.fft.ifftshift(np.abs(wf.wfarr))
Пример #6
0
    def initialize_proper(self, set_up_beam=False):
        """

        Initialize the Wavefronts in Proper

        :param set_up_beam: bool applies prop_circular_aperture and prop_define_entrance before spectral scaling
            instead of during prescription wher it normally goes

        returns wf_colllection attribute array of wavefronts
        """
        for iw, wavelength in enumerate(self.wsamples):
            # Scale beam ratio by wavelength for polychromatic imaging
            # see Proper manual pg 37
            # Proper is devised such that you get a Nyquist sampled image in the focal plane. If you optical system
            #  goes directly from pupil plane to focal plane, then you need to scale the beam ratio such that sampling
            #  in the focal plane is constant. You can check this with check_sampling, which returns the value from
            #  prop_get_sampling. If the optical system does not go directly from pupil-to-object plane at each optical
            #  plane, the beam ratio does not need to be scaled by wavelength, because of some optics wizardry that
            #  I don't fully understand. KD 2019
            if sp.focused_sys:
                beam_ratio = sp.beam_ratio
            else:
                beam_ratio = sp.beam_ratio * ap.wvl_range[0] / wavelength
                # dprint(f"iw={iw}, w={w}, beam ratio is {self.beam_ratios[iw]}")

            # Initialize the wavefront at entrance pupil
            wfp = proper.prop_begin(tp.entrance_d, wavelength, sp.grid_size, beam_ratio)
            if set_up_beam:
                proper.prop_circular_aperture(wfp, radius = tp.entrance_d / 2)
                proper.prop_define_entrance(wfp)  # normalizes the intensity
            wfp.wfarr = np.multiply(wfp.wfarr, np.sqrt(self.spectra[0][iw]), out=wfp.wfarr, casting='unsafe')

            wfs = [wfp]
            names = ['star']

            # Initiate wavefronts for companion(s)
            if ap.companion:
                for ix in range(len(ap.contrast)):
                    wfc = proper.prop_begin(tp.entrance_d, wavelength, sp.grid_size, beam_ratio)
                    if set_up_beam:
                        proper.prop_circular_aperture(wfc, radius=tp.entrance_d / 2)
                        proper.prop_define_entrance(wfc)  # normalizes the intensity
                    wfc.wfarr = np.multiply(wfc.wfarr, np.sqrt(self.spectra[ix][iw]), out=wfc.wfarr, casting='unsafe')
                    wfs.append(wfc)
                    names.append('companion_%i' % ix)

            for io, (name, wf) in enumerate(zip(names, wfs)):
                self.wf_collection[iw, io] = Wavefront(wf, wavelength, name, beam_ratio, iw, io)
Пример #7
0
def prefocal_image(wavelength, gridsize, PASSVAL):
    diam = PASSVAL['diam']
    focal_length = PASSVAL['focal_length']
    beam_ratio = PASSVAL['beam_ratio']
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)

    proper.prop_circular_aperture(wfo, diam/2)
    proper.prop_define_entrance(wfo)
    proper.prop_zernikes(wfo, [i+1 for i in range(len(PASSVAL['ZERN']))], PASSVAL['ZERN'])
    #print(proper.prop_get_phase(wfo)[gridsize//2,:])
    proper.prop_lens(wfo, focal_length)

    proper.prop_propagate(wfo, focal_length - PASSVAL['DEFOCUS'], TO_PLANE=False)
    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
Пример #8
0
def lyot_stop(wf, mode='RAVC', ravc_r=0.6, ls_dRext=0.03, ls_dRint=0.05, 
        ls_dRspi=0.04, spi_width=0.5, spi_angles=[0,60,120], diam_ext=37, 
        diam_int=11, diam_nominal=37, ls_misalign=None, ngrid=1024, npupil=285, 
        file_lyot_stop='', verbose=False, **conf):

    """ Add a Lyot stop for a focal plane mask """
    
    if mode in ['CVC', 'RAVC', 'CLC']:

        # load lyot stop from file if provided
        if os.path.isfile(file_lyot_stop):
            if verbose is True:
                print("   apply lyot stop from '%s'"%os.path.basename(file_lyot_stop))
            # get amplitude and phase data
            ls_mask = fits.getdata(file_lyot_stop)
            # resize to npupil
            ls_mask = resize_img(ls_mask, npupil)
            # pad with zeros and add to wavefront
            proper.prop_multiply(wf, pad_img(ls_mask, ngrid))

        # if no lyot stop, create one
        else:
            # scale nominal values to pupil external diameter
            scaling = diam_nominal/diam_ext
            # LS parameters
            r_obstr = ravc_r if mode in ['RAVC'] else diam_int/diam_ext
            ls_int = r_obstr + ls_dRint*scaling
            ls_ext = 1 - ls_dRext*scaling
            ls_spi = spi_width/diam_ext + ls_dRspi*scaling
            # LS misalignments
            ls_misalign = [0,0,0,0,0,0] if ls_misalign is None else list(ls_misalign)
            dx_amp, dy_amp, dz_amp = ls_misalign[0:3]
            dx_phase, dy_phase, dz_phase = ls_misalign[3:6]
            # create Lyot stop
            proper.prop_circular_aperture(wf, ls_ext, dx_amp, dy_amp, NORM=True)
            if diam_int > 0:
                proper.prop_circular_obscuration(wf, ls_int, dx_amp, dy_amp, NORM=True)
            if spi_width > 0:
                for angle in spi_angles:
                    proper.prop_rectangular_obscuration(wf, 2*ls_spi, 2, \
                            dx_amp, dy_amp, ROTATION=angle, NORM=True)
            if verbose is True:
                print('   apply Lyot stop: ls_int=%s, ls_ext=%s, ls_spi=%s'\
                    %(round(ls_int, 4), round(ls_ext, 4), round(ls_spi, 4)))
    
    return wf
def simple_telescope(wavelength, gridsize):
    diam = 1.0
    focal_ratio = 15.0
    focal_length = diam * focal_ratio
    beam_ratio = 0.5

    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)

    proper.prop_circular_aperture(wfo, diam / 2)
    proper.prop_zernikes(wfo, [5], [1e-6])
    proper.prop_define_entrance(wfo)
    proper.prop_lens(wfo, focal_length * 0.98)

    proper.prop_propagate(wfo, focal_length)

    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
Пример #10
0
def lens(wf,
         focal=660,
         offset_before=0,
         offset_after=0,
         offset_light_trap=0,
         diam_light_trap=0,
         **conf):

    # propagation before lens
    proper.prop_propagate(wf, focal + offset_before)
    # Fourier transform of an image using a lens
    proper.prop_lens(wf, focal)

    # check for light trap
    if offset_light_trap == 0 and diam_light_trap == 0:
        # propagation after lens
        proper.prop_propagate(wf, focal + offset_after)
    else:
        # add light trap
        proper.prop_propagate(wf, focal - offset_light_trap)
        proper.prop_circular_aperture(wf, diam_light_trap, 0, 0, NORM=True)
        proper.prop_propagate(wf, offset_light_trap + offset_after)
Пример #11
0
def coronagraph(wfo, f_lens, occulter_type, diam):
    
    proper.prop_lens(wfo, f_lens, "coronagraph imaging lens")
    proper.prop_propagate(wfo, f_lens, "occulter")
    
    # occulter sizes are specified here in units of lambda/diameter;
    # convert lambda/diam to radians then to meters
    lamda = proper.prop_get_wavelength(wfo)
    occrad = 4.                           # occulter radius in lam/D
    occrad_rad = occrad * lamda / diam    # occulter radius in radians
    dx_m = proper.prop_get_sampling(wfo)
    dx_rad = proper.prop_get_sampling_radians(wfo)    
    occrad_m = occrad_rad * dx_m / dx_rad  # occulter radius in meters

    plt.figure(figsize=(12,8))
        
    if occulter_type == "GAUSSIAN":
        r = proper.prop_radius(wfo)
        h = np.sqrt(-0.5 * occrad_m**2 / np.log(1 - np.sqrt(0.5)))
        gauss_spot = 1 - np.exp(-0.5 * (r/h)**2)
        proper.prop_multiply(wfo, gauss_spot)
        plt.suptitle("Gaussian spot", fontsize = 18)
    elif occulter_type == "SOLID":
        proper.prop_circular_obscuration(wfo, occrad_m)
        plt.suptitle("Solid spot", fontsize = 18)
    elif occulter_type == "8TH_ORDER":
        proper.prop_8th_order_mask(wfo, occrad, CIRCULAR = True)
        plt.suptitle("8th order band limited spot", fontsize = 18)
        
    # After occulter
    plt.subplot(1,2,1)
    plt.imshow(np.sqrt(proper.prop_get_amplitude(wfo)), origin = "lower", cmap = plt.cm.gray)
    plt.text(200, 10, "After Occulter", color = "w")
        
    proper.prop_propagate(wfo, f_lens, "pupil reimaging lens")  
    proper.prop_lens(wfo, f_lens, "pupil reimaging lens")
    
    proper.prop_propagate(wfo, 2*f_lens, "lyot stop")

    plt.subplot(1,2,2)        
    plt.imshow(proper.prop_get_amplitude(wfo)**0.2, origin = "lower", cmap = plt.cm.gray)
    plt.text(200, 10, "Before Lyot Stop", color = "w")
    plt.show()   
    
    if occulter_type == "GAUSSIAN":
        proper.prop_circular_aperture(wfo, 0.25, NORM = True)
    elif occulter_type == "SOLID":
        proper.prop_circular_aperture(wfo, 0.84, NORM = True)
    elif occulter_type == "8TH_ORDER":
        proper.prop_circular_aperture(wfo, 0.50, NORM = True)
    
    proper.prop_propagate(wfo, f_lens, "reimaging lens")
    proper.prop_lens(wfo, f_lens, "reimaging lens")
    
    proper.prop_propagate(wfo, f_lens, "final focus")
    
    return
def prescription_quad_tiltafter(wavelength, gridsize, 
                          PASSVALUE = {'diam': 0.3, 
                                       'm1_fl': 0.5717255, 
                                       'beam_ratio': 0.2, 
                                       'tilt_x': 0.0,
                                       'tilt_y': 0.0
                                      }):
    diam           = PASSVALUE['diam']           # telescope diameter in meters
    m1_fl          = PASSVALUE['m1_fl']          # primary focal length (m)
    beam_ratio     = PASSVALUE['beam_ratio']     # initial beam width/grid width
        
    tilt_x         = PASSVALUE['tilt_x']         # Tilt angle along x (arc seconds)
    tilt_y         = PASSVALUE['tilt_y']         # Tilt angle along y (arc seconds)
    
    # Define the wavefront
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)
        
    # Input aperture
    proper.prop_circular_aperture(wfo, diam/2)
    
    # Define entrance
    proper.prop_define_entrance(wfo)

    # Primary mirror (treat as quadratic lens)
    proper.prop_lens(wfo, m1_fl, "primary")

    # Point off-axis
    prop_tilt(wfo, tilt_x, tilt_y)

    # Focus
    proper.prop_propagate(wfo, m1_fl, "focus", TO_PLANE=True)

    # End
    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
Пример #13
0
    def apply_lyot(self, wf):
        """
        applies the appropriately sized Lyot stop depending on the coronagraph type

        :param wf: 2D wavefront
        :return:
        """
        if not hasattr(tp, 'lyot_size'):
            raise ValueError(
                "must set tp.lyot_size in units fraction of the beam radius at the current surface"
            )
        if self.mode is 'Gaussian':
            proper.prop_circular_aperture(wf, tp.lyot_size, NORM=True)
        elif self.mode is 'Solid':
            proper.prop_circular_aperture(wf, tp.lyot_size, NORM=True)
        elif self.mode is '8th_Order':
            proper.prop_circular_aperture(wf, tp.lyot_size, NORM=True)
Пример #14
0
def scexao_model(lmda, grid_size, kwargs):
    """
    propagates instantaneous complex E-field thru Subaru from the DM through SCExAO

    uses PyPROPER3 to generate the complex E-field at the pupil plane, then propagates it through SCExAO 50x50 DM,
        then coronagraph, to the focal plane
    :returns spectral cube at instantaneous time in the focal_plane()
    """
    # print("Propagating Broadband Wavefront Through Subaru")

    # Initialize the Wavefront in Proper
    wfo = proper.prop_begin(entrance_d, lmda, grid_size, beam_ratio)

    # Defines aperture (baffle-before primary)
    proper.prop_circular_aperture(wfo, entrance_d / 2)
    proper.prop_define_entrance(wfo)  # normalizes abs intensity

    # Test Sampling
    if kwargs['verbose'] and kwargs['ix'] == 0:
        check1 = proper.prop_get_sampling(wfo)
        print(
            f"\n\tDM Pupil Plane\n"
            f"sampling at aperture is {check1 * 1e3:.4f} mm\n"
            f"Total Sim is {check1 * 1e3 * grid_size:.2f}x{check1 * 1e3 * grid_size:.2f} mm\n"
            f"Diameter of beam is {check1 * 1e3 * grid_size * beam_ratio:.4f} mm over {grid_size * beam_ratio} pix"
        )

    # SCExAO Reimaging 1
    proper.prop_lens(
        wfo, fl_SxOAPG)  # produces f#14 beam (approx exit beam of AO188)
    proper.prop_propagate(wfo, fl_SxOAPG * 2)  # move to second pupil
    if kwargs['verbose'] and kwargs['ix'] == 0:
        print(f"initial f# is {proper.prop_get_fratio(wfo):.2f}\n")

    ########################################
    # Import/Apply Actual DM Map
    # #######################################
    plot_flag = False
    if kwargs['verbose'] and kwargs['ix'] == 0:
        plot_flag = True

    dm_map = kwargs['map']
    errormap(wfo,
             dm_map,
             SAMPLING=dm_pitch,
             MIRROR_SURFACE=True,
             MASKING=True,
             BR=beam_ratio,
             PLOT=plot_flag)  # MICRONS=True

    if kwargs['verbose'] and kwargs['ix'] == 0:
        fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
        ax1, ax2 = subplot.flatten()
        fig.suptitle('SCExAO Model WFO after errormap',
                     fontweight='bold',
                     fontsize=14)
        ax1.imshow(proper.prop_get_amplitude(wfo), interpolation='none'
                   )  # np.abs(proper.prop_shift_center(wfo.wfarr))**2
        ax1.set_title('Amplitude')
        ax2.imshow(
            proper.prop_get_phase(wfo),
            interpolation=
            'none',  # np.angle(proper.prop_shift_center(wfo.wfarr))
            vmin=-1 * np.pi,
            vmax=1 * np.pi,
            cmap='hsv')  # , cmap='hsv'
        ax2.set_title('Phase')

    # ------------------------------------------------
    # SCExAO Reimaging 2
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo,
                          fl_SxOAPG)  # focus at exit of DM telescope system
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo,
                          fl_SxOAPG)  # focus at exit of DM telescope system

    # # Coronagraph
    SubaruPupil(wfo)  # focal plane mask
    # if kwargs['verbose'] and kwargs['ix']==0:
    #     fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
    #     ax1, ax2 = subplot.flatten()
    #     fig.suptitle('SCExAO Model WFO after FPM', fontweight='bold', fontsize=14)
    #     # ax.imshow(dm_map, interpolation='none')
    #     ax1.imshow(np.abs(proper.prop_shift_center(wfo.wfarr))**2, interpolation='none', norm=LogNorm(vmin=1e-7,vmax=1e-2))
    #     ax1.set_title('Amplitude')
    #     ax2.imshow(np.angle(proper.prop_shift_center(wfo.wfarr)), interpolation='none',
    #                vmin=-2*np.pi, vmax=2*np.pi, cmap='hsv')  # , cmap='hsv'
    #     ax2.set_title('Phase')
    proper.prop_propagate(wfo, fl_SxOAPG)
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo, fl_SxOAPG)  # middle of 2f system
    proper.prop_circular_aperture(wfo, lyot_size, NORM=True)  # lyot stop
    proper.prop_propagate(wfo, fl_SxOAPG)  #
    proper.prop_lens(wfo, fl_SxOAPG)  # exit lens of gaussian telescope
    proper.prop_propagate(wfo, fl_SxOAPG)  # to focus

    # MEC Pickoff reimager.
    proper.prop_propagate(wfo, mec_parax_fl)  # to another pupil
    proper.prop_lens(
        wfo, mec_parax_fl)  # collimating lens, pupil size should be 8 mm
    proper.prop_propagate(wfo, mec1_fl +
                          .0142557)  # mec1_fl  .054  mec1_fl+.0101057
    # if kwargs['verbose'] and kwargs['ix']==0:
    #     current = proper.prop_get_beamradius(wfo)
    #     print(f'Beam Radius after SCExAO exit (at MEC foreoptics entrance) is {current*1e3:.3f} mm\n'
    #           f'current f# is {proper.prop_get_fratio(wfo):.2f}\n')

    # ##################################
    # MEC Optics Box
    # ###################################
    proper.prop_circular_aperture(wfo,
                                  0.00866)  # reading off the zemax diameter
    proper.prop_lens(wfo, mec1_fl)  # MEC lens 1
    proper.prop_propagate(wfo,
                          mec_l1_l2)  # there is a image plane at z=mec1_fl
    proper.prop_lens(wfo, mec2_fl)  # MEC lens 2 (tiny lens)
    proper.prop_propagate(wfo, mec_l2_l3)
    proper.prop_lens(wfo, mec3_fl)  # MEC lens 3
    proper.prop_propagate(wfo, mec3_fl,
                          TO_PLANE=False)  # , TO_PLANE=True mec_l3_focus

    # #######################################
    # Focal Plane
    # #######################################
    # Check Sampling in focal plane
    # shifts wfo from Fourier Space (origin==lower left corner) to object space (origin==center)
    # wf, samp = proper.prop_end(wfo, NoAbs=True)
    wf = proper.prop_shift_center(wfo.wfarr)
    wf = extract_center(wf, new_size=np.array(kwargs['psf_size']))
    samp = proper.prop_get_sampling(wfo)
    smp_asec = proper.prop_get_sampling_arcsec(wfo)

    if kwargs['verbose'] and kwargs['ix'] == 0:
        fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
        fig.subplots_adjust(left=0.08, hspace=.4, wspace=0.2)

        ax1, ax2 = subplot.flatten()
        fig.suptitle('SCExAO Model Focal Plane',
                     fontweight='bold',
                     fontsize=14)
        tic_spacing, tic_labels, axlabel = scale_lD(
            wfo, newsize=kwargs['psf_size'][0])
        tic_spacing[0] = tic_spacing[0] + 1  # hack for edge effects
        tic_spacing[-1] = tic_spacing[-1] - 1  # hack for edge effects

        im = ax1.imshow(
            np.abs(wf)**2,
            interpolation='none',
            norm=LogNorm(
                vmin=1e-7,
                vmax=1e-2))  # np.abs(proper.prop_shift_center(wfo.wfarr))**2
        ax1.set_xticks(tic_spacing)
        ax1.set_xticklabels(tic_labels)
        ax1.set_yticks(tic_spacing)
        ax1.set_yticklabels(tic_labels)
        ax1.set_ylabel(axlabel, fontsize=8)
        add_colorbar(im)

        im = ax2.imshow(np.angle(wf),
                        interpolation='none',
                        vmin=-np.pi,
                        vmax=np.pi,
                        cmap='hsv')
        ax2.set_xticks(tic_spacing)
        ax2.set_xticklabels(tic_labels)
        ax2.set_yticks(tic_spacing)
        ax2.set_yticklabels(tic_labels)
        ax2.set_ylabel(axlabel, fontsize=8)
        add_colorbar(im)

    if kwargs['verbose'] and kwargs['ix'] == 0:
        print(
            f"\nFocal Plane\n"
            f"sampling at focal plane is {samp*1e6:.1f} um ~= {smp_asec * 1e3:.4f} mas\n"
            f"\tfull FOV is {samp * kwargs['psf_size'][0] * 1e3:.2f} x {samp * kwargs['psf_size'][1] * 1e3:.2f} mm "
        )
        # s_rad = proper.prop_get_sampling_radians(wfo)
        # print(f"sampling at focal plane is {s_rad * 1e6:.6f} urad")
        print(f'final focal ratio is {proper.prop_get_fratio(wfo)}')

        print(f"Finished simulation")

    return wf, samp
Пример #15
0
def wfirst_phaseb(lambda_m, output_dim0, PASSVALUE={'dummy': 0}):

    # "output_dim" is used to specify the output dimension in pixels at the final image plane.
    # Computational grid sizes are hardcoded for each coronagraph.
    # Based on Zemax prescription "WFIRST_CGI_DI_LOWFS_Sep24_2018.zmx" by Hong Tang.

    data_dir = wfirst_phaseb_proper.data_dir
    if 'PASSVALUE' in locals():
        if 'data_dir' in PASSVALUE: data_dir = PASSVALUE['data_dir']

    map_dir = data_dir + wfirst_phaseb_proper.map_dir
    polfile = data_dir + wfirst_phaseb_proper.polfile

    cor_type = 'hlc'  # coronagraph type ('hlc', 'spc', 'none')
    source_x_offset_mas = 0  # source offset in mas (tilt applied at primary)
    source_y_offset_mas = 0
    source_x_offset = 0  # source offset in lambda0_m/D radians (tilt applied at primary)
    source_y_offset = 0
    polaxis = 0  # polarization axis aberrations:
    #    -2 = -45d in, Y out
    #    -1 = -45d in, X out
    #     1 = +45d in, X out
    #     2 = +45d in, Y out
    #     5 = mean of modes -1 & +1 (X channel polarizer)
    #     6 = mean of modes -2 & +2 (Y channel polarizer)
    #    10 = mean of all modes (no polarization filtering)
    use_errors = 1  # use optical surface phase errors? 1 or 0
    zindex = np.array([0, 0])  # array of Zernike polynomial indices
    zval_m = np.array([0, 0])  # array of Zernike coefficients (meters RMS WFE)
    use_aperture = 0  # use apertures on all optics? 1 or 0
    cgi_x_shift_pupdiam = 0  # X,Y shear of wavefront at FSM (bulk displacement of CGI); normalized relative to pupil diameter
    cgi_y_shift_pupdiam = 0
    cgi_x_shift_m = 0  # X,Y shear of wavefront at FSM (bulk displacement of CGI) in meters
    cgi_y_shift_m = 0
    fsm_x_offset_mas = 0  # offset in focal plane caused by tilt of FSM in mas
    fsm_y_offset_mas = 0
    fsm_x_offset = 0  # offset in focal plane caused by tilt of FSM in lambda0/D
    fsm_y_offset = 0
    end_at_fsm = 0  # end propagation after propagating to FSM (no FSM errors)
    focm_z_shift_m = 0  # offset (meters) of focus correction mirror (+ increases path length)
    use_hlc_dm_patterns = 0  # use Dwight's HLC default DM wavefront patterns? 1 or 0
    use_dm1 = 0  # use DM1? 1 or 0
    use_dm2 = 0  # use DM2? 1 or 0
    dm_sampling_m = 0.9906e-3  # actuator spacing in meters
    dm1_xc_act = 23.5  # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center
    dm1_yc_act = 23.5
    dm1_xtilt_deg = 0  # tilt around X axis (deg)
    dm1_ytilt_deg = 5.7  # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity
    dm1_ztilt_deg = 0  # rotation of DM about optical axis (deg)
    dm2_xc_act = 23.5  # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center
    dm2_yc_act = 23.5
    dm2_xtilt_deg = 0  # tilt around X axis (deg)
    dm2_ytilt_deg = 5.7  # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity
    dm2_ztilt_deg = 0  # rotation of DM about optical axis (deg)
    use_pupil_mask = 1  # SPC only: use SPC pupil mask (0 or 1)
    mask_x_shift_pupdiam = 0  # X,Y shear of shaped pupil mask; normalized relative to pupil diameter
    mask_y_shift_pupdiam = 0
    mask_x_shift_m = 0  # X,Y shear of shaped pupil mask in meters
    mask_y_shift_m = 0
    use_fpm = 1  # use occulter? 1 or 0
    fpm_x_offset = 0  # FPM x,y offset in lambda0/D
    fpm_y_offset = 0
    fpm_x_offset_m = 0  # FPM x,y offset in meters
    fpm_y_offset_m = 0
    fpm_z_shift_m = 0  # occulter offset in meters along optical axis (+ = away from prior optics)
    pinhole_diam_m = 0  # FPM pinhole diameter in meters
    end_at_fpm_exit_pupil = 0  # return field at FPM exit pupil?
    output_field_rootname = ''  # rootname of FPM exit pupil field file (must set end_at_fpm_exit_pupil=1)
    use_lyot_stop = 1  # use Lyot stop? 1 or 0
    lyot_x_shift_pupdiam = 0  # X,Y shear of Lyot stop mask; normalized relative to pupil diameter
    lyot_y_shift_pupdiam = 0
    lyot_x_shift_m = 0  # X,Y shear of Lyot stop mask in meters
    lyot_y_shift_m = 0
    use_field_stop = 1  # use field stop (HLC)? 1 or 0
    field_stop_radius_lam0 = 0  # field stop radius in lambda0/D (HLC or SPC-wide mask only)
    field_stop_x_offset = 0  # field stop offset in lambda0/D
    field_stop_y_offset = 0
    field_stop_x_offset_m = 0  # field stop offset in meters
    field_stop_y_offset_m = 0
    use_pupil_lens = 0  # use pupil imaging lens? 0 or 1
    use_defocus_lens = 0  # use defocusing lens? Options are 1, 2, 3, 4, corresponding to +18.0, +9.0, -4.0, -8.0 waves P-V @ 550 nm
    defocus = 0  # instead of specific lens, defocus in waves P-V @ 550 nm (-8.7 to 42.0 waves)
    final_sampling_m = 0  # final sampling in meters (overrides final_sampling_lam0)
    final_sampling_lam0 = 0  # final sampling in lambda0/D
    output_dim = output_dim0  # dimension of output in pixels (overrides output_dim0)

    if 'PASSVALUE' in locals():
        if 'use_fpm' in PASSVALUE: use_fpm = PASSVALUE['use_fpm']
        if 'cor_type' in PASSVALUE: cor_type = PASSVALUE['cor_type']

    is_spc = False
    is_hlc = False

    if cor_type == 'hlc':
        is_hlc = True
        file_directory = data_dir + '/hlc_20190210/'  # must have trailing "/"
        prefix = file_directory + 'run461_'
        pupil_diam_pix = 309.0
        pupil_file = prefix + 'pupil_rotated.fits'
        lyot_stop_file = prefix + 'lyot.fits'
        lambda0_m = 0.575e-6
        lam_occ = [
            5.4625e-07, 5.49444444444e-07, 5.52638888889e-07, 5.534375e-07,
            5.55833333333e-07, 5.59027777778e-07, 5.60625e-07,
            5.62222222222e-07, 5.65416666667e-07, 5.678125e-07,
            5.68611111111e-07, 5.71805555556e-07, 5.75e-07, 5.78194444444e-07,
            5.81388888889e-07, 5.821875e-07, 5.84583333333e-07,
            5.87777777778e-07, 5.89375e-07, 5.90972222222e-07,
            5.94166666667e-07, 5.965625e-07, 5.97361111111e-07,
            6.00555555556e-07, 6.0375e-07
        ]
        lam_occs = [
            '5.4625e-07', '5.49444444444e-07', '5.52638888889e-07',
            '5.534375e-07', '5.55833333333e-07', '5.59027777778e-07',
            '5.60625e-07', '5.62222222222e-07', '5.65416666667e-07',
            '5.678125e-07', '5.68611111111e-07', '5.71805555556e-07',
            '5.75e-07', '5.78194444444e-07', '5.81388888889e-07',
            '5.821875e-07', '5.84583333333e-07', '5.87777777778e-07',
            '5.89375e-07', '5.90972222222e-07', '5.94166666667e-07',
            '5.965625e-07', '5.97361111111e-07', '6.00555555556e-07',
            '6.0375e-07'
        ]
        lam_occs = [
            prefix + 'occ_lam' + s + 'theta6.69polp_' for s in lam_occs
        ]
        # find nearest matching FPM wavelength
        wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin()
        occulter_file_r = lam_occs[wlam] + 'real.fits'
        occulter_file_i = lam_occs[wlam] + 'imag.fits'
        n_default = 1024  # gridsize in non-critical areas
        if use_fpm == 1:
            n_to_fpm = 2048
        else:
            n_to_fpm = 1024
        n_from_lyotstop = 1024
        field_stop_radius_lam0 = 9.0
    elif cor_type == 'hlc_erkin':
        is_hlc = True
        file_directory = data_dir + '/hlc_20190206_v3/'  # must have trailing "/"
        prefix = file_directory + 'dsn17d_run2_pup310_fpm2048_'
        pupil_diam_pix = 310.0
        pupil_file = prefix + 'pupil.fits'
        lyot_stop_file = prefix + 'lyot.fits'
        lambda0_m = 0.575e-6
        lam_occ = [
            5.4625e-07, 5.4944e-07, 5.5264e-07, 5.5583e-07, 5.5903e-07,
            5.6222e-07, 5.6542e-07, 5.6861e-07, 5.7181e-07, 5.75e-07,
            5.7819e-07, 5.8139e-07, 5.8458e-07, 5.8778e-07, 5.9097e-07,
            5.9417e-07, 5.9736e-07, 6.0056e-07, 6.0375e-07
        ]
        lam_occs = [
            '5.4625e-07', '5.4944e-07', '5.5264e-07', '5.5583e-07',
            '5.5903e-07', '5.6222e-07', '5.6542e-07', '5.6861e-07',
            '5.7181e-07', '5.75e-07', '5.7819e-07', '5.8139e-07', '5.8458e-07',
            '5.8778e-07', '5.9097e-07', '5.9417e-07', '5.9736e-07',
            '6.0056e-07', '6.0375e-07'
        ]
        lam_occs = [
            prefix + 'occ_lam' + s + 'theta6.69pols_' for s in lam_occs
        ]
        # find nearest matching FPM wavelength
        wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin()
        occulter_file_r = lam_occs[wlam] + 'real_rotated.fits'
        occulter_file_i = lam_occs[wlam] + 'imag_rotated.fits'
        n_default = 1024  # gridsize in non-critical areas
        if use_fpm == 1:
            n_to_fpm = 2048
        else:
            n_to_fpm = 1024
        n_from_lyotstop = 1024
        field_stop_radius_lam0 = 9.0
    elif cor_type == 'spc-ifs_short' or cor_type == 'spc-ifs_long' or cor_type == 'spc-spec_short' or cor_type == 'spc-spec_long':
        is_spc = True
        file_dir = data_dir + '/spc_20190130/'  # must have trailing "/"
        pupil_diam_pix = 1000.0
        pupil_file = file_dir + 'pupil_SPC-20190130_rotated.fits'
        pupil_mask_file = file_dir + 'SPM_SPC-20190130.fits'
        fpm_file = file_dir + 'fpm_0.05lamdivD.fits'
        fpm_sampling = 0.05  # sampling in fpm_sampling_lambda_m/D of FPM mask
        if cor_type == 'spc-ifs_short' or cor_type == 'spc-spec_short':
            fpm_sampling_lambda_m = 0.66e-6
            lambda0_m = 0.66e-6
        else:
            fpm_sampling_lambda_m = 0.73e-6
            lambda0_m = 0.73e-6  # FPM scaled for this central wavelength
        lyot_stop_file = file_dir + 'LS_SPC-20190130.fits'
        n_default = 2048  # gridsize in non-critical areas
        n_to_fpm = 2048  # gridsize to/from FPM
        n_mft = 1400  # gridsize to FPM (propagation to/from FPM handled by MFT)
        n_from_lyotstop = 4096
    elif cor_type == 'spc-wide':
        is_spc = True
        file_dir = data_dir + '/spc_20181220/'  # must have trailing "/"
        pupil_diam_pix = 1000.0
        pupil_file = file_dir + 'pupil_SPC-20181220_1k_rotated.fits'
        pupil_mask_file = file_dir + 'SPM_SPC-20181220_1000_rounded9_gray.fits'
        fpm_file = file_dir + 'fpm_0.05lamdivD.fits'
        fpm_sampling = 0.05  # sampling in lambda0/D of FPM mask
        fpm_sampling_lambda_m = 0.825e-6
        lambda0_m = 0.825e-6  # FPM scaled for this central wavelength
        lyot_stop_file = file_dir + 'LS_SPC-20181220_1k.fits'
        n_default = 2048  # gridsize in non-critical areas
        n_to_fpm = 2048  # gridsize to/from FPM
        n_mft = 1400
        n_from_lyotstop = 4096
    elif cor_type == 'none':
        file_directory = data_dir + '/hlc_20190210/'  # must have trailing "/"
        prefix = file_directory + 'run461_'
        pupil_diam_pix = 309.0
        pupil_file = prefix + 'pupil_rotated.fits'
        lambda0_m = 0.575e-6
        use_fpm = 0
        use_lyot_stop = 0
        use_field_stop = 0
        n_default = 1024
        n_to_fpm = 1024
        n_from_lyotstop = 1024
    else:
        raise Exception('ERROR: Unsupported cor_type: ' + cor_type)

    if 'PASSVALUE' in locals():
        if 'lam0' in PASSVALUE: lamba0_m = PASSVALUE['lam0'] * 1.0e-6
        if 'lambda0_m' in PASSVALUE: lambda0_m = PASSVALUE['lambda0_m']
        mas_per_lamD = lambda0_m * 360.0 * 3600.0 / (
            2 * np.pi * 2.363) * 1000  # mas per lambda0/D
        if 'source_x_offset' in PASSVALUE:
            source_x_offset = PASSVALUE['source_x_offset']
        if 'source_y_offset' in PASSVALUE:
            source_y_offset = PASSVALUE['source_y_offset']
        if 'source_x_offset_mas' in PASSVALUE:
            source_x_offset = PASSVALUE['source_x_offset_mas'] / mas_per_lamD
        if 'source_y_offset_mas' in PASSVALUE:
            source_y_offset = PASSVALUE['source_y_offset_mas'] / mas_per_lamD
        if 'use_errors' in PASSVALUE: use_errors = PASSVALUE['use_errors']
        if 'polaxis' in PASSVALUE: polaxis = PASSVALUE['polaxis']
        if 'zindex' in PASSVALUE: zindex = np.array(PASSVALUE['zindex'])
        if 'zval_m' in PASSVALUE: zval_m = np.array(PASSVALUE['zval_m'])
        if 'end_at_fsm' in PASSVALUE: end_at_fsm = PASSVALUE['end_at_fsm']
        if 'cgi_x_shift_pupdiam' in PASSVALUE:
            cgi_x_shift_pupdiam = PASSVALUE['cgi_x_shift_pupdiam']
        if 'cgi_y_shift_pupdiam' in PASSVALUE:
            cgi_y_shift_pupdiam = PASSVALUE['cgi_y_shift_pupdiam']
        if 'cgi_x_shift_m' in PASSVALUE:
            cgi_x_shift_m = PASSVALUE['cgi_x_shift_m']
        if 'cgi_y_shift_m' in PASSVALUE:
            cgi_y_shift_m = PASSVALUE['cgi_y_shift_m']
        if 'fsm_x_offset' in PASSVALUE:
            fsm_x_offset = PASSVALUE['fsm_x_offset']
        if 'fsm_y_offset' in PASSVALUE:
            fsm_y_offset = PASSVALUE['fsm_y_offset']
        if 'fsm_x_offset_mas' in PASSVALUE:
            fsm_x_offset = PASSVALUE['fsm_x_offset_mas'] / mas_per_lamD
        if 'fsm_y_offset_mas' in PASSVALUE:
            fsm_y_offset = PASSVALUE['fsm_y_offset_mas'] / mas_per_lamD
        if 'focm_z_shift_m' in PASSVALUE:
            focm_z_shift_m = PASSVALUE['focm_z_shift_m']
        if 'use_hlc_dm_patterns' in PASSVALUE:
            use_hlc_dm_patterns = PASSVALUE['use_hlc_dm_patterns']
        if 'use_dm1' in PASSVALUE: use_dm1 = PASSVALUE['use_dm1']
        if 'dm1_m' in PASSVALUE: dm1_m = PASSVALUE['dm1_m']
        if 'dm1_xc_act' in PASSVALUE: dm1_xc_act = PASSVALUE['dm1_xc_act']
        if 'dm1_yc_act' in PASSVALUE: dm1_yc_act = PASSVALUE['dm1_yc_act']
        if 'dm1_xtilt_deg' in PASSVALUE:
            dm1_xtilt_deg = PASSVALUE['dm1_xtilt_deg']
        if 'dm1_ytilt_deg' in PASSVALUE:
            dm1_ytilt_deg = PASSVALUE['dm1_ytilt_deg']
        if 'dm1_ztilt_deg' in PASSVALUE:
            dm1_ztilt_deg = PASSVALUE['dm1_ztilt_deg']
        if 'use_dm2' in PASSVALUE: use_dm2 = PASSVALUE['use_dm2']
        if 'dm2_m' in PASSVALUE: dm2_m = PASSVALUE['dm2_m']
        if 'dm2_xc_act' in PASSVALUE: dm2_xc_act = PASSVALUE['dm2_xc_act']
        if 'dm2_yc_act' in PASSVALUE: dm2_yc_act = PASSVALUE['dm2_yc_act']
        if 'dm2_xtilt_deg' in PASSVALUE:
            dm2_xtilt_deg = PASSVALUE['dm2_xtilt_deg']
        if 'dm2_ytilt_deg' in PASSVALUE:
            dm2_ytilt_deg = PASSVALUE['dm2_ytilt_deg']
        if 'dm2_ztilt_deg' in PASSVALUE:
            dm2_ztilt_deg = PASSVALUE['dm2_ztilt_deg']
        if 'use_pupil_mask' in PASSVALUE:
            use_pupil_mask = PASSVALUE['use_pupil_mask']
        if 'mask_x_shift_pupdiam' in PASSVALUE:
            mask_x_shift_pupdiam = PASSVALUE['mask_x_shift_pupdiam']
        if 'mask_y_shift_pupdiam' in PASSVALUE:
            mask_y_shift_pupdiam = PASSVALUE['mask_y_shift_pupdiam']
        if 'mask_x_shift_m' in PASSVALUE:
            mask_x_shift_m = PASSVALUE['mask_x_shift_m']
        if 'mask_y_shift_m' in PASSVALUE:
            mask_y_shift_m = PASSVALUE['mask_y_shift_m']
        if 'fpm_x_offset' in PASSVALUE:
            fpm_x_offset = PASSVALUE['fpm_x_offset']
        if 'fpm_y_offset' in PASSVALUE:
            fpm_y_offset = PASSVALUE['fpm_y_offset']
        if 'fpm_x_offset_m' in PASSVALUE:
            fpm_x_offset_m = PASSVALUE['fpm_x_offset_m']
        if 'fpm_y_offset_m' in PASSVALUE:
            fpm_y_offset_m = PASSVALUE['fpm_y_offset_m']
        if 'fpm_z_shift_m' in PASSVALUE:
            fpm_z_shift_m = PASSVALUE['fpm_z_shift_m']
        if 'pinhole_diam_m' in PASSVALUE:
            pinhole_diam_m = PASSVALUE['pinhole_diam_m']
        if 'end_at_fpm_exit_pupil' in PASSVALUE:
            end_at_fpm_exit_pupil = PASSVALUE['end_at_fpm_exit_pupil']
        if 'output_field_rootname' in PASSVALUE:
            output_field_rootname = PASSVALUE['output_field_rootname']
        if 'use_lyot_stop' in PASSVALUE:
            use_lyot_stop = PASSVALUE['use_lyot_stop']
        if 'lyot_x_shift_pupdiam' in PASSVALUE:
            lyot_x_shift_pupdiam = PASSVALUE['lyot_x_shift_pupdiam']
        if 'lyot_y_shift_pupdiam' in PASSVALUE:
            lyot_y_shift_pupdiam = PASSVALUE['lyot_y_shift_pupdiam']
        if 'lyot_x_shift_m' in PASSVALUE:
            lyot_x_shift_m = PASSVALUE['lyot_x_shift_m']
        if 'lyot_y_shift_m' in PASSVALUE:
            lyot_y_shift_m = PASSVALUE['lyot_y_shift_m']
        if 'use_field_stop' in PASSVALUE:
            use_field_stop = PASSVALUE['use_field_stop']
        if 'field_stop_x_offset' in PASSVALUE:
            field_stop_x_offset = PASSVALUE['field_stop_x_offset']
        if 'field_stop_y_offset' in PASSVALUE:
            field_stop_y_offset = PASSVALUE['field_stop_y_offset']
        if 'field_stop_x_offset_m' in PASSVALUE:
            field_stop_x_offset_m = PASSVALUE['field_stop_x_offset_m']
        if 'field_stop_y_offset_m' in PASSVALUE:
            field_stop_y_offset_m = PASSVALUE['field_stop_y_offset_m']
        if 'use_pupil_lens' in PASSVALUE:
            use_pupil_lens = PASSVALUE['use_pupil_lens']
        if 'use_defocus_lens' in PASSVALUE:
            use_defocus_lens = PASSVALUE['use_defocus_lens']
        if 'defocus' in PASSVALUE: defocus = PASSVALUE['defocus']
        if 'output_dim' in PASSVALUE: output_dim = PASSVALUE['output_dim']
        if 'final_sampling_m' in PASSVALUE:
            final_sampling_m = PASSVALUE['final_sampling_m']
        if 'final_sampling_lam0' in PASSVALUE:
            final_sampling_lam0 = PASSVALUE['final_sampling_lam0']

    diam = 2.3633372
    fl_pri = 2.83459423440 * 1.0013
    d_pri_sec = 2.285150515460035
    d_focus_sec = d_pri_sec - fl_pri
    fl_sec = -0.653933011 * 1.0004095
    d_sec_focus = 3.580188916677103
    diam_sec = 0.58166
    d_sec_fold1 = 2.993753476654728
    d_fold1_focus = 0.586435440022375
    diam_fold1 = 0.09
    d_fold1_m3 = 1.680935841598811
    fl_m3 = 0.430216463069001
    d_focus_m3 = 1.094500401576436
    d_m3_pupil = 0.469156807701977
    d_m3_focus = 0.708841602661368
    diam_m3 = 0.2
    d_m3_m4 = 0.943514749358944
    fl_m4 = 0.116239114833590
    d_focus_m4 = 0.234673014520402
    d_m4_pupil = 0.474357941656967
    d_m4_focus = 0.230324117970585
    diam_m4 = 0.07
    d_m4_m5 = 0.429145636743193
    d_m5_focus = 0.198821518772608
    fl_m5 = 0.198821518772608
    d_m5_pupil = 0.716529242882632
    diam_m5 = 0.07
    d_m5_fold2 = 0.351125431220770
    diam_fold2 = 0.06
    d_fold2_fsm = 0.365403811661862
    d_fsm_oap1 = 0.354826767220001
    fl_oap1 = 0.503331895563883
    diam_oap1 = 0.06
    d_oap1_focm = 0.768005607094041
    d_focm_oap2 = 0.314483210543378
    fl_oap2 = 0.579156922073536
    diam_oap2 = 0.06
    d_oap2_dm1 = 0.775775726154228
    d_dm1_dm2 = 1.0
    d_dm2_oap3 = 0.394833855161549
    fl_oap3 = 1.217276467668519
    diam_oap3 = 0.06
    d_oap3_fold3 = 0.505329955078121
    diam_fold3 = 0.06
    d_fold3_oap4 = 1.158897671642761
    fl_oap4 = 0.446951159052363
    diam_oap4 = 0.06
    d_oap4_pupilmask = 0.423013568764728
    d_pupilmask_oap5 = 0.408810648253099
    fl_oap5 = 0.548189351937178
    diam_oap5 = 0.06
    d_oap5_fpm = 0.548189083164429
    d_fpm_oap6 = 0.548189083164429
    fl_oap6 = 0.548189083164429
    diam_oap6 = 0.06
    d_oap6_lyotstop = 0.687567667550736
    d_lyotstop_oap7 = 0.401748843470518
    fl_oap7 = 0.708251083480054
    diam_oap7 = 0.06
    d_oap7_fieldstop = 0.708251083480054
    d_fieldstop_oap8 = 0.210985967281651
    fl_oap8 = 0.210985967281651
    diam_oap8 = 0.06
    d_oap8_pupil = 0.238185804200797
    d_oap8_filter = 0.368452268225530
    diam_filter = 0.01
    d_filter_lens = 0.170799548215162
    fl_lens = 0.246017378417573 + 0.050001306014153
    diam_lens = 0.01
    d_lens_fold4 = 0.246017378417573
    diam_fold4 = 0.02
    d_fold4_image = 0.050001578514650
    fl_pupillens = 0.149260576823040

    n = n_default  # start off with less padding

    wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n)
    pupil = proper.prop_fits_read(pupil_file)
    proper.prop_multiply(wavefront, trim(pupil, n))
    pupil = 0
    if polaxis != 0: polmap(wavefront, polfile, pupil_diam_pix, polaxis)
    proper.prop_define_entrance(wavefront)
    proper.prop_lens(wavefront, fl_pri)
    if source_x_offset != 0 or source_y_offset != 0:
        # compute tilted wavefront to offset source by xoffset,yoffset lambda0_m/D
        xtilt_lam = -source_x_offset * lambda0_m / lambda_m
        ytilt_lam = -source_y_offset * lambda0_m / lambda_m
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        proper.prop_multiply(
            wavefront,
            np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y)))
        x = 0
        y = 0
    if zindex[0] != 0: proper.prop_zernikes(wavefront, zindex, zval_m)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_PRIMARY_phase_error_V1.0.fits',
                             WAVEFRONT=True)
        proper.prop_errormap(
            wavefront,
            map_dir +
            'wfirst_phaseb_GROUND_TO_ORBIT_4.2X_phase_error_V1.0.fits',
            WAVEFRONT=True)

    proper.prop_propagate(wavefront, d_pri_sec, 'secondary')
    proper.prop_lens(wavefront, fl_sec)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_SECONDARY_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_sec / 2.0)

    proper.prop_propagate(wavefront, d_sec_fold1, 'FOLD_1')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD1_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold1 / 2.0)

    proper.prop_propagate(wavefront, d_fold1_m3, 'M3')
    proper.prop_lens(wavefront, fl_m3)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_M3_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_m3 / 2.0)

    proper.prop_propagate(wavefront, d_m3_m4, 'M4')
    proper.prop_lens(wavefront, fl_m4)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_M4_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_m4 / 2.0)

    proper.prop_propagate(wavefront, d_m4_m5, 'M5')
    proper.prop_lens(wavefront, fl_m5)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_M5_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_m5 / 2.0)

    proper.prop_propagate(wavefront, d_m5_fold2, 'FOLD_2')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD2_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold2 / 2.0)

    proper.prop_propagate(wavefront, d_fold2_fsm, 'FSM')
    if end_at_fsm == 1:
        (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True)
        wavefront = trim(wavefront, n)
        return wavefront, sampling_m
    if cgi_x_shift_pupdiam != 0 or cgi_y_shift_pupdiam != 0 or cgi_x_shift_m != 0 or cgi_y_shift_m != 0:  # bulk coronagraph pupil shear
        # FFT the field, apply a tilt, FFT back
        if cgi_x_shift_pupdiam != 0 or cgi_y_shift_pupdiam != 0:
            # offsets are normalized to pupil diameter
            xt = -cgi_x_shift_pupdiam * pupil_diam_pix * float(
                pupil_diam_pix) / n
            yt = -cgi_y_shift_pupdiam * pupil_diam_pix * float(
                pupil_diam_pix) / n
        else:
            # offsets are meters
            d_m = proper.prop_get_sampling(wavefront)
            xt = -cgi_x_shift_m / d_m * float(pupil_diam_pix) / n
            yt = -cgi_y_shift_m / d_m * float(pupil_diam_pix) / n
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        tilt = complex(0, 1) * np.pi * (x * xt + y * yt)
        x = 0
        y = 0
        wavefront0 = proper.prop_get_wavefront(wavefront)
        wavefront0 = ffts(wavefront0, -1)
        wavefront0 *= np.exp(tilt)
        wavefront0 = ffts(wavefront0, 1)
        tilt = 0
        wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
        wavefront0 = 0
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FSM_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fsm / 2.0)
    if (fsm_x_offset != 0.0 or fsm_y_offset != 0.0):
        # compute tilted wavefront to offset source by fsm_x_offset,fsm_y_offset lambda0_m/D
        xtilt_lam = fsm_x_offset * lambda0_m / lambda_m
        ytilt_lam = fsm_y_offset * lambda0_m / lambda_m
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        proper.prop_multiply(
            wavefront,
            np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y)))
        x = 0
        y = 0

    proper.prop_propagate(wavefront, d_fsm_oap1, 'OAP1')
    proper.prop_lens(wavefront, fl_oap1)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP1_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap1 / 2.0)

    proper.prop_propagate(wavefront, d_oap1_focm + focm_z_shift_m, 'FOCM')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOCM_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_focm / 2.0)

    proper.prop_propagate(wavefront, d_focm_oap2 + focm_z_shift_m, 'OAP2')
    proper.prop_lens(wavefront, fl_oap2)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP2_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap2 / 2.0)

    proper.prop_propagate(wavefront, d_oap2_dm1, 'DM1')
    if use_dm1 != 0:
        proper.prop_dm(wavefront,
                       dm1_m,
                       dm1_xc_act,
                       dm1_yc_act,
                       dm_sampling_m,
                       XTILT=dm1_xtilt_deg,
                       YTILT=dm1_ytilt_deg,
                       ZTILT=dm1_ztilt_deg)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_DM1_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if is_hlc == True and use_hlc_dm_patterns == 1:
        dm1wfe = proper.prop_fits_read(prefix + 'dm1wfe.fits')
        proper.prop_add_phase(wavefront, trim(dm1wfe, n))
        dm1wfe = 0

    proper.prop_propagate(wavefront, d_dm1_dm2, 'DM2')
    if use_dm2 == 1:
        proper.prop_dm(wavefront,
                       dm2_m,
                       dm2_xc_act,
                       dm2_yc_act,
                       dm_sampling_m,
                       XTILT=dm2_xtilt_deg,
                       YTILT=dm2_ytilt_deg,
                       ZTILT=dm2_ztilt_deg)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_DM2_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if is_hlc == True:
        if use_hlc_dm_patterns == 1:
            dm2wfe = proper.prop_fits_read(prefix + 'dm2wfe.fits')
            proper.prop_add_phase(wavefront, trim(dm2wfe, n))
            dm2wfe = 0
        dm2mask = proper.prop_fits_read(prefix + 'dm2mask.fits')
        proper.prop_multiply(wavefront, trim(dm2mask, n))
        dm2mask = 0

    proper.prop_propagate(wavefront, d_dm2_oap3, 'OAP3')
    proper.prop_lens(wavefront, fl_oap3)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP3_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap3 / 2.0)

    proper.prop_propagate(wavefront, d_oap3_fold3, 'FOLD_3')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD3_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold3 / 2.0)

    proper.prop_propagate(wavefront, d_fold3_oap4, 'OAP4')
    proper.prop_lens(wavefront, fl_oap4)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP4_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap4 / 2.0)

    proper.prop_propagate(wavefront, d_oap4_pupilmask,
                          'PUPIL_MASK')  # flat/reflective shaped pupil
    if is_spc == True and use_pupil_mask != 0:
        pupil_mask = proper.prop_fits_read(pupil_mask_file)
        pupil_mask = trim(pupil_mask, n)
        if mask_x_shift_pupdiam != 0 or mask_y_shift_pupdiam != 0 or mask_x_shift_m != 0 or mask_y_shift_m != 0:
            # shift SP mask by FFTing it, applying tilt, and FFTing back
            if mask_x_shift_pupdiam != 0 or mask_y_shift_pupdiam != 0:
                # offsets are normalized to pupil diameter
                xt = -mask_x_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
                yt = -mask_y_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
            else:
                d_m = proper.prop_get_sampling(wavefront)
                xt = -mask_x_shift_m / d_m * float(pupil_diam_pix) / n
                yt = -mask_y_shift_m / d_m * float(pupil_diam_pix) / n
            x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0),
                        (n, 1))
            y = np.transpose(x)
            tilt = complex(0, 1) * np.pi * (x * xt + y * yt)
            x = 0
            y = 0
            pupil_mask = ffts(pupil_mask, -1)
            pupil_mask *= np.exp(tilt)
            pupil_mask = ffts(pupil_mask, 1)
            pupil_mask = pupil_mask.real
            tilt = 0
        proper.prop_multiply(wavefront, pupil_mask)
        pupil_mask = 0
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_PUPILMASK_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    # while at a pupil, use more padding to provide 2x better sampling at FPM
    diam = 2 * proper.prop_get_beamradius(wavefront)
    (wavefront, dx) = proper.prop_end(wavefront, NOABS=True)
    n = n_to_fpm
    wavefront0 = trim(wavefront, n)
    wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n)
    wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
    wavefront0 = 0

    proper.prop_propagate(wavefront, d_pupilmask_oap5, 'OAP5')
    proper.prop_lens(wavefront, fl_oap5)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP5_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap5 / 2.0)

    proper.prop_propagate(wavefront,
                          d_oap5_fpm + fpm_z_shift_m,
                          'FPM',
                          TO_PLANE=True)
    if use_fpm == 1:
        if fpm_x_offset != 0 or fpm_y_offset != 0 or fpm_x_offset_m != 0 or fpm_y_offset_m != 0:
            # To shift FPM, FFT field to pupil, apply tilt, FFT back to focus,
            # apply FPM, FFT to pupil, take out tilt, FFT back to focus
            if fpm_x_offset != 0 or fpm_y_offset != 0:
                # shifts are specified in lambda0/D
                x_offset_lamD = fpm_x_offset * lambda0_m / lambda_m
                y_offset_lamD = fpm_y_offset * lambda0_m / lambda_m
            else:
                d_m = proper.prop_get_sampling(wavefront)
                x_offset_lamD = fpm_x_offset_m / d_m * float(
                    pupil_diam_pix) / n
                y_offset_lamD = fpm_y_offset_m / d_m * float(
                    pupil_diam_pix) / n
            x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0),
                        (n, 1))
            y = np.transpose(x)
            tilt = complex(0,
                           1) * np.pi * (x * x_offset_lamD + y * y_offset_lamD)
            x = 0
            y = 0
            wavefront0 = proper.prop_get_wavefront(wavefront)
            wavefront0 = ffts(wavefront0, -1)
            wavefront0 *= np.exp(tilt)
            wavefront0 = ffts(wavefront0, 1)
            wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
            wavefront0 = 0
        if is_hlc == True:
            occ_r = proper.prop_fits_read(occulter_file_r)
            occ_i = proper.prop_fits_read(occulter_file_i)
            occ = np.array(occ_r + 1j * occ_i, dtype=np.complex128)
            proper.prop_multiply(wavefront, trim(occ, n))
            occ_r = 0
            occ_i = 0
            occ = 0
        elif is_spc == True:
            # super-sample FPM
            wavefront0 = proper.prop_get_wavefront(wavefront)
            wavefront0 = ffts(wavefront0, 1)  # to virtual pupil
            wavefront0 = trim(wavefront0, n_mft)
            fpm = proper.prop_fits_read(fpm_file)
            nfpm = fpm.shape[1]
            fpm_sampling_lam = fpm_sampling * fpm_sampling_lambda_m / lambda_m
            wavefront0 = mft2(wavefront0, fpm_sampling_lam, pupil_diam_pix,
                              nfpm, -1)  # MFT to highly-sampled focal plane
            wavefront0 *= fpm
            fpm = 0
            wavefront0 = mft2(wavefront0, fpm_sampling_lam, pupil_diam_pix, n,
                              +1)  # MFT to virtual pupil
            wavefront0 = ffts(wavefront0,
                              -1)  # back to normally-sampled focal plane
            wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
            wavefront0 = 0
        if fpm_x_offset != 0 or fpm_y_offset != 0 or fpm_x_offset_m != 0 or fpm_y_offset_m != 0:
            wavefront0 = proper.prop_get_wavefront(wavefront)
            wavefront0 = ffts(wavefront0, -1)
            wavefront0 *= np.exp(-tilt)
            wavefront0 = ffts(wavefront0, 1)
            wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
            wavefront0 = 0
            tilt = 0
    if pinhole_diam_m != 0:
        # "pinhole_diam_m" is pinhole diameter in meters
        dx_m = proper.prop_get_sampling(wavefront)
        dx_pinhole_diam_m = pinhole_diam_m / 101.0  # 101 samples across pinhole
        n_out = 105
        m_per_lamD = dx_m * n / float(
            pupil_diam_pix)  # current focal plane sampling in lambda_m/D
        dx_pinhole_lamD = dx_pinhole_diam_m / m_per_lamD  # pinhole sampling in lambda_m/D
        n_in = int(round(pupil_diam_pix * 1.2))
        wavefront0 = proper.prop_get_wavefront(wavefront)
        wavefront0 = ffts(wavefront0, +1)  # to virtual pupil
        wavefront0 = trim(wavefront0, n_in)
        m = dx_pinhole_lamD * n_in * float(n_out) / pupil_diam_pix
        wavefront0 = mft2(wavefront0, dx_pinhole_lamD, pupil_diam_pix, n_out,
                          -1)  # MFT to highly-sampled focal plane
        p = (radius(n_out) * dx_pinhole_diam_m) <= (pinhole_diam_m / 2.0)
        p = p.astype(np.int)
        wavefront0 *= p
        p = 0
        wavefront0 = mft2(wavefront0, dx_pinhole_lamD, pupil_diam_pix, n,
                          +1)  # MFT back to virtual pupil
        wavefront0 = ffts(wavefront0,
                          -1)  # back to normally-sampled focal plane
        wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
        wavefront0 = 0

    proper.prop_propagate(wavefront, d_fpm_oap6 - fpm_z_shift_m, 'OAP6')
    proper.prop_lens(wavefront, fl_oap6)
    if use_errors != 0 and end_at_fpm_exit_pupil == 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP6_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap6 / 2.0)

    proper.prop_propagate(wavefront, d_oap6_lyotstop, 'LYOT_STOP')
    # while at a pupil, switch back to less padding
    diam = 2 * proper.prop_get_beamradius(wavefront)
    (wavefront, dx) = proper.prop_end(wavefront, NOABS=True)
    n = n_from_lyotstop
    wavefront = trim(wavefront, n)
    if output_field_rootname != '':
        lams = format(lambda_m * 1e6, "6.4f")
        pols = format(int(round(polaxis)))
        hdu = pyfits.PrimaryHDU()
        hdu.data = np.real(wavefront)
        hdu.writeto(output_field_rootname + '_' + lams + 'um_' + pols +
                    '_real.fits',
                    overwrite=True)
        hdu = pyfits.PrimaryHDU()
        hdu.data = np.imag(wavefront)
        hdu.writeto(output_field_rootname + '_' + lams + 'um_' + pols +
                    '_imag.fits',
                    overwrite=True)
    if end_at_fpm_exit_pupil == 1:
        return wavefront, dx
    wavefront0 = wavefront.copy()
    wavefront = 0
    wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n)
    wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
    wavefront0 = 0

    if use_lyot_stop != 0:
        lyot = proper.prop_fits_read(lyot_stop_file)
        lyot = trim(lyot, n)
        if lyot_x_shift_pupdiam != 0 or lyot_y_shift_pupdiam != 0 or lyot_x_shift_m != 0 or lyot_y_shift_m != 0:
            # apply shift to lyot stop by FFTing the stop, applying a tilt, and FFTing back
            if lyot_x_shift_pupdiam != 0 or lyot_y_shift_pupdiam != 0:
                # offsets are normalized to pupil diameter
                xt = -lyot_x_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
                yt = -lyot_y_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
            else:
                d_m = proper.prop_get_sampling(wavefront)
                xt = -lyot_x_shift_m / d_m * float(pupil_diam_pix) / n
                yt = -lyot_y_shift_m / d_m * float(pupil_diam_pix) / n
            x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0),
                        (n, 1))
            y = np.transpose(x)
            tilt = complex(0, 1) * np.pi * (x * xt + y * yt)
            x = 0
            y = 0
            lyot = ffts(lyot, -1)
            lyot *= np.exp(tilt)
            lyot = ffts(lyot, 1)
            lyot = lyot.real
            tilt = 0
        proper.prop_multiply(wavefront, lyot)
        lyot = 0
    if use_pupil_lens != 0 or pinhole_diam_m != 0:
        proper.prop_circular_aperture(wavefront, 1.1, NORM=True)

    proper.prop_propagate(wavefront, d_lyotstop_oap7, 'OAP7')
    proper.prop_lens(wavefront, fl_oap7)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP7_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap7 / 2.0)

    proper.prop_propagate(wavefront, d_oap7_fieldstop, 'FIELD_STOP')
    if use_field_stop != 0 and (cor_type == 'hlc' or cor_type == 'hlc_erkin'):
        sampling_lamD = float(
            pupil_diam_pix) / n  # sampling at focus in lambda_m/D
        stop_radius = field_stop_radius_lam0 / sampling_lamD * (
            lambda0_m / lambda_m) * proper.prop_get_sampling(wavefront)
        if field_stop_x_offset != 0 or field_stop_y_offset != 0:
            # convert offsets in lambda0/D to meters
            x_offset_lamD = field_stop_x_offset * lambda0_m / lambda_m
            y_offset_lamD = field_stop_y_offset * lambda0_m / lambda_m
            pupil_ratio = float(pupil_diam_pix) / n
            field_stop_x_offset_m = x_offset_lamD / pupil_ratio * proper.prop_get_sampling(
                wavefront)
            field_stop_y_offset_m = y_offset_lamD / pupil_ratio * proper.prop_get_sampling(
                wavefront)
        proper.prop_circular_aperture(wavefront, stop_radius,
                                      -field_stop_x_offset_m,
                                      -field_stop_y_offset_m)

    proper.prop_propagate(wavefront, d_fieldstop_oap8, 'OAP8')
    proper.prop_lens(wavefront, fl_oap8)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP8_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap8 / 2.0)

    proper.prop_propagate(wavefront, d_oap8_filter, 'filter')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FILTER_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_filter / 2.0)

    proper.prop_propagate(wavefront, d_filter_lens, 'LENS')
    if use_pupil_lens == 0 and use_defocus_lens == 0 and defocus == 0:
        # use imaging lens to create normal focus
        proper.prop_lens(wavefront, fl_lens)
        if use_errors != 0:
            proper.prop_errormap(wavefront,
                                 map_dir +
                                 'wfirst_phaseb_LENS_phase_error_V1.0.fits',
                                 WAVEFRONT=True)
    elif use_pupil_lens != 0:
        # use pupil imaging lens
        proper.prop_lens(wavefront, fl_pupillens)
        if use_errors != 0:
            proper.prop_errormap(
                wavefront,
                map_dir + 'wfirst_phaseb_PUPILLENS_phase_error_V1.0.fits',
                WAVEFRONT=True)
    else:
        # table is waves P-V @ 575 nm
        z4_pv_waves = np.array([
            -9.0545, -8.5543, -8.3550, -8.0300, -7.54500, -7.03350, -6.03300,
            -5.03300, -4.02000, -2.51980, 0.00000000, 3.028000, 4.95000,
            6.353600, 8.030000, 10.10500, 12.06000, 14.06000, 20.26000,
            28.34000, 40.77500, 56.65700
        ])
        fl_defocus_lens = np.array([
            5.09118, 1.89323, 1.54206, 1.21198, 0.914799, 0.743569, 0.567599,
            0.470213, 0.406973, 0.350755, 0.29601868, 0.260092, 0.24516,
            0.236606, 0.228181, 0.219748, 0.213278, 0.207816, 0.195536,
            0.185600, 0.176629, 0.169984
        ])
        # subtract ad-hoc function to make z4 vs f_length more accurately spline interpolatible
        f = fl_defocus_lens / 0.005
        f0 = 59.203738
        z4t = z4_pv_waves - (0.005 * (f0 - f - 40)) / f**2 / 0.575e-6
        if use_defocus_lens != 0:
            # use one of 4 defocusing lenses
            defocus = np.array([18.0, 9.0, -4.0, -8.0])  # waves P-V @ 575 nm
            f = interp1d(z4_pv_waves, z4t, kind='cubic')
            z4x = f(defocus)
            f = interp1d(z4t, fl_defocus_lens, kind='cubic')
            lens_fl = f(z4x)
            proper.prop_lens(wavefront, lens_fl[use_defocus_lens - 1])
            if use_errors != 0:
                proper.prop_errormap(wavefront,
                                     map_dir + 'wfirst_phaseb_DEFOCUSLENS' +
                                     str(use_defocus_lens) +
                                     '_phase_error_V1.0.fits',
                                     WAVEFRONT=True)
            defocus = defocus[use_defocus_lens - 1]
        else:
            # specify amount of defocus (P-V waves @ 575 nm)
            f = interp1d(z4_pv_waves, z4t, kind='cubic')
            z4x = f(defocus)
            f = interp1d(z4t, fl_defocus_lens, kind='cubic')
            lens_fl = f(z4x)
            proper.prop_lens(wavefront, lens_fl)
            if use_errors != 0:
                proper.prop_errormap(
                    wavefront,
                    map_dir +
                    'wfirst_phaseb_DEFOCUSLENS1_phase_error_V1.0.fits',
                    WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_lens / 2.0)

    proper.prop_propagate(wavefront, d_lens_fold4, 'FOLD_4')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD4_phase_error_V1.1.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold4 / 2.0)

    if defocus != 0 or use_defocus_lens != 0:
        if np.abs(defocus) <= 4:
            proper.prop_propagate(wavefront,
                                  d_fold4_image,
                                  'IMAGE',
                                  TO_PLANE=True)
        else:
            proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE')
    else:
        proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE')

    (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True)

    if final_sampling_lam0 != 0 or final_sampling_m != 0:
        if final_sampling_m != 0:
            mag = sampling_m / final_sampling_m
            sampling_m = final_sampling_m
        else:
            mag = (float(pupil_diam_pix) /
                   n) / final_sampling_lam0 * (lambda_m / lambda0_m)
            sampling_m = sampling_m / mag
        wavefront = proper.prop_magnify(wavefront,
                                        mag,
                                        output_dim,
                                        AMP_CONSERVE=True)
    else:
        wavefront = trim(wavefront, output_dim)

    return wavefront, sampling_m
Пример #16
0
def lyotstop(wf, conf, RAVC):
    input_dir = conf['INPUT_DIR']
    diam = conf['DIAM']
    npupil = conf['NPUPIL']
    spiders_angle = conf['SPIDERS_ANGLE']
    r_obstr = conf['R_OBSTR']
    Debug = conf['DEBUG']
    Debug_print = conf['DEBUG_PRINT']
    LS_amplitude_apodizer_file = conf['AMP_APODIZER']
    LS_misalignment = np.array(conf['LS_MIS_ALIGN'])
    if conf['PHASE_APODIZER_FILE'] == 0:
        LS_phase_apodizer_file = 0
    else:
        LS_phase_apodizer_file = fits.getdata(input_dir + '/' +
                                              conf['PHASE_APODIZER_FILE'])
    LS = conf['LYOT_STOP']
    LS_parameters = np.array(conf['LS_PARA'])
    n = proper.prop_get_gridsize(wf)
    if (RAVC == True):  # define the inner radius of the Lyot Stop
        t1_opt = 1. - 1. / 4 * (
            r_obstr**2 + r_obstr * (math.sqrt(r_obstr**2 + 8.))
        )  # define the apodizer transmission [Mawet2013]
        R1_opt = (r_obstr / math.sqrt(1. - t1_opt)
                  )  # define teh apodizer radius [Mawet2013]
        r_LS = R1_opt + LS_parameters[
            1]  # when a Ring apodizer is present, the inner LS has to have at least the value of the apodizer radius
    else:
        r_LS = r_obstr + LS_parameters[
            1]  # when no apodizer, the LS has to have at least the radius of the pupil central obstruction
    if LS == True:  # apply the LS
        if (Debug_print == True):
            print("LS parameters: ", LS_parameters)
        proper.prop_circular_aperture(wf,
                                      LS_parameters[0],
                                      LS_misalignment[0],
                                      LS_misalignment[1],
                                      NORM=True)
        proper.prop_circular_obscuration(wf,
                                         r_LS,
                                         LS_misalignment[0],
                                         LS_misalignment[1],
                                         NORM=True)
        if (LS_parameters[2] != 0):
            for iter in range(0, len(spiders_angle)):
                if (Debug_print == True):
                    print("LS_misalignment: ", LS_misalignment)
                proper.prop_rectangular_obscuration(
                    wf,
                    LS_parameters[2],
                    2 * diam,
                    LS_misalignment[0],
                    LS_misalignment[1],
                    ROTATION=spiders_angle[iter])  # define the spiders
        if (Debug == True):
            out_dir = str('./output_files/')
            fits.writeto(
                out_dir + '_Lyot_stop.fits',
                proper.prop_get_amplitude(wf)[int(n / 2) -
                                              int(npupil / 2 + 50):int(n / 2) +
                                              int(npupil / 2 + 50),
                                              int(n / 2) -
                                              int(npupil / 2 + 50):int(n / 2) +
                                              int(npupil / 2 + 50)],
                overwrite=True)

    if (isinstance(LS_phase_apodizer_file, (list, tuple, np.ndarray)) == True):
        xc_pixels = int(LS_misalignment[3] * npupil)
        yc_pixels = int(LS_misalignment[4] * npupil)
        apodizer_pixels = (LS_phase_apodizer_file.shape)[0]  ## fits file size
        scaling_factor = float(npupil) / float(
            apodizer_pixels
        )  ## scaling factor between the fits file size and the pupil size of the simulation

        #        scaling_factor = float(npupil)/float(pupil_pixels) ## scaling factor between the fits file size and the pupil size of the simulation
        if (Debug_print == True):
            print("scaling_factor: ", scaling_factor)
        apodizer_scale = cv2.resize(
            LS_phase_apodizer_file.astype(np.float32), (0, 0),
            fx=scaling_factor,
            fy=scaling_factor,
            interpolation=cv2.INTER_LINEAR
        )  # scale the pupil to the pupil size of the simualtions
        if (Debug_print == True):
            print("apodizer_resample", apodizer_scale.shape)
        apodizer_large = np.zeros(
            (n, n))  # define an array of n-0s, where to insert the pupuil
        if (Debug_print == True):
            print("npupil: ", npupil)
        apodizer_large[
            int(n / 2) + 1 - int(npupil / 2) - 1 + xc_pixels:int(n / 2) + 1 +
            int(npupil / 2) + xc_pixels,
            int(n / 2) + 1 - int(npupil / 2) - 1 + yc_pixels:int(n / 2) + 1 +
            int(npupil / 2) +
            yc_pixels] = apodizer_scale  # insert the scaled pupil into the 0s grid
        phase_multiply = np.array(np.zeros((n, n)),
                                  dtype=complex)  # create a complex array
        phase_multiply.imag = apodizer_large  # define the imaginary part of the complex array as the atm screen
        apodizer = np.exp(phase_multiply)
        proper.prop_multiply(wf, apodizer)
        if (Debug == True):
            fits.writeto('LS_apodizer.fits',
                         proper.prop_get_phase(wf),
                         overwrite=True)

    if (isinstance(LS_amplitude_apodizer_file,
                   (list, tuple, np.ndarray)) == True):
        print('4th')
        xc_pixels = int(LS_misalignment[0] * npupil)
        yc_pixels = int(LS_misalignment[1] * npupil)
        apodizer_pixels = (
            LS_amplitude_apodizer_file.shape)[0]  ## fits file size
        scaling_factor = float(npupil) / float(
            pupil_pixels
        )  ## scaling factor between the fits file size and the pupil size of the simulation
        if (Debug_print == True):
            print("scaling_factor: ", scaling_factor)
            apodizer_scale = cv2.resize(
                amplitude_apodizer_file.astype(np.float32), (0, 0),
                fx=scaling_factor,
                fy=scaling_factor,
                interpolation=cv2.INTER_LINEAR
            )  # scale the pupil to the pupil size of the simualtions
        if (Debug_print == True):
            print("apodizer_resample", apodizer_scale.shape)
        apodizer_large = np.zeros(
            (n, n))  # define an array of n-0s, where to insert the pupuil
        if (Debug_print == True):
            print("grid_size: ", n)
            print("npupil: ", npupil)
        apodizer_large[
            int(n / 2) + 1 - int(npupil / 2) - 1 + xc_pixels:int(n / 2) + 1 +
            int(npupil / 2) + xc_pixels,
            int(n / 2) + 1 - int(npupil / 2) - 1 + yc_pixels:int(n / 2) + 1 +
            int(npupil / 2) +
            yc_pixels] = apodizer_scale  # insert the scaled pupil into the 0s grid
        apodizer = apodizer_large
        proper.prop_multiply(wf, apodizer)
        if (Debug == True):
            fits.writeto('LS_apodizer.fits',
                         proper.prop_get_amplitude(wf),
                         overwrite=True)

    return wf
Пример #17
0
    def lyotstop(self, wf, RAVC=None, APP=None, get_pupil='no', dnpup=50):
        """Add a Lyot stop, or an APP."""

        # load parameters
        npupil = 1  #conf['NPUPIL']
        pad = int((210 - npupil) / 2)

        # get LS misalignments
        LS_misalignment = (np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) *
                           npupil).astype(int)
        dx_amp, dy_amp, dz_amp = LS_misalignment[0:3]
        dx_phase, dy_phase, dz_phase = LS_misalignment[3:6]

        # case 1: Lyot stop (no APP)
        if APP is not True:

            # Lyot stop parameters: R_out, dR_in, spi_width
            # outer radius (absolute %), inner radius (relative %), spider width (m)
            (R_out, dR_in, spi_width) = [0.98, 0.03, 0]

            # Lyot stop inner radius at least as large as obstruction radius
            R_in = 0.15

            # case of a ring apodizer
            if RAVC is True:
                # define the apodizer transmission and apodizer radius [Mawet2013]
                # apodizer radius at least as large as obstruction radius
                T_ravc = 1 - (R_in**2 + R_in * np.sqrt(R_in**2 + 8)) / 4
                R_in /= np.sqrt(1 - T_ravc)

            # oversize Lyot stop inner radius
            R_in += dR_in

            # create Lyot stop
            proper.prop_circular_aperture(wf, R_out, dx_amp, dy_amp, NORM=True)
            if R_in > 0:
                proper.prop_circular_obscuration(wf,
                                                 R_in,
                                                 dx_amp,
                                                 dy_amp,
                                                 NORM=True)
            if spi_width > 0:
                for angle in [10]:
                    proper.prop_rectangular_obscuration(wf,
                                                        0.05 * 8,
                                                        8 * 1.3,
                                                        ROTATION=20)
                    proper.prop_rectangular_obscuration(wf,
                                                        8 * 1.3,
                                                        0.05 * 8,
                                                        ROTATION=20)
                    # proper.prop_rectangular_obscuration(wf, spi_width, 2 * 8, \
                    #                                     dx_amp, dy_amp, ROTATION=angle)

        # case 2: APP (no Lyot stop)
        else:
            # get amplitude and phase files
            APP_amp_file = os.path.join(conf['INPUT_DIR'],
                                        conf['APP_AMP_FILE'])
            APP_phase_file = os.path.join(conf['INPUT_DIR'],
                                          conf['APP_PHASE_FILE'])
            # get amplitude and phase data
            APP_amp = getdata(APP_amp_file) if os.path.isfile(APP_amp_file) \
                else np.ones((npupil, npupil))
            APP_phase = getdata(APP_phase_file) if os.path.isfile(APP_phase_file) \
                else np.zeros((npupil, npupil))
            # resize to npupil
            APP_amp = resize(APP_amp, (npupil, npupil),
                             preserve_range=True,
                             mode='reflect')
            APP_phase = resize(APP_phase, (npupil, npupil),
                               preserve_range=True,
                               mode='reflect')
            # pad with zeros to match PROPER gridsize
            APP_amp = np.pad(APP_amp, [(pad + 1 + dx_amp, pad - dx_amp), \
                                       (pad + 1 + dy_amp, pad - dy_amp)], mode='constant')
            APP_phase = np.pad(APP_phase, [(pad + 1 + dx_phase, pad - dx_phase), \
                                           (pad + 1 + dy_phase, pad - dy_phase)], mode='constant')
            # multiply the loaded APP
            proper.prop_multiply(wf, APP_amp * np.exp(1j * APP_phase))

        # get the pupil amplitude or phase for output
        if get_pupil.lower() in 'amplitude':
            return wf, proper.prop_get_amplitude(wf)[pad + 1 - dnpup:-pad +
                                                     dnpup, pad + 1 -
                                                     dnpup:-pad + dnpup]
        elif get_pupil.lower() in 'phase':
            return wf, proper.prop_get_phase(wf)[pad + 1 - dnpup:-pad + dnpup,
                                                 pad + 1 - dnpup:-pad + dnpup]
        else:
            return wf
Пример #18
0
    def occulter(self, wf):

        n = int(proper.prop_get_gridsize(wf))
        ofst = 0  # no offset
        ramp_sign = 1  # sign of charge is positive
        ramp_oversamp = 11.  # vortex is oversampled for a better discretization

        # f_lens = tp.f_lens #conf['F_LENS']
        # diam = tp.diam#conf['DIAM']
        charge = 2  #conf['CHARGE']
        pixelsize = 5  #conf['PIXEL_SCALE']
        Debug_print = False  #conf['DEBUG_PRINT']

        coron_temp = os.path.join(iop.testdir, 'coron_maps/')
        if not os.path.exists(coron_temp):
            os.mkdir(coron_temp)

        if charge != 0:
            wavelength = proper.prop_get_wavelength(wf)
            gridsize = proper.prop_get_gridsize(wf)
            beam_ratio = pixelsize * 4.85e-9 / (wavelength / tp.entrance_d)
            # dprint((wavelength,gridsize,beam_ratio))
            calib = str(charge) + str('_') + str(int(
                beam_ratio * 100)) + str('_') + str(gridsize)
            my_file = str(coron_temp + 'zz_perf_' + calib + '_r.fits')

            if (os.path.isfile(my_file) == True):
                if (Debug_print == True):
                    print("Charge ", charge)
                vvc = self.readfield(
                    coron_temp,
                    'zz_vvc_' + calib)  # read the theoretical vortex field
                vvc = proper.prop_shift_center(vvc)
                scale_psf = wf._wfarr[0, 0]
                psf_num = self.readfield(coron_temp, 'zz_psf_' +
                                         calib)  # read the pre-vortex field
                psf0 = psf_num[0, 0]
                psf_num = psf_num / psf0 * scale_psf
                perf_num = self.readfield(
                    coron_temp,
                    'zz_perf_' + calib)  # read the perfect-result vortex field
                perf_num = perf_num / psf0 * scale_psf
                wf._wfarr = (
                    wf._wfarr - psf_num
                ) * vvc + perf_num  # the wavefront takes into account the real pupil with the perfect-result vortex field

            else:  # CAL==1: # create the vortex for a perfectly circular pupil
                if (Debug_print == True):
                    dprint(f"Vortex Charge= {charge}")

                f_lens = 200.0 * tp.entrance_d
                wf1 = proper.prop_begin(tp.entrance_d, wavelength, gridsize,
                                        beam_ratio)
                proper.prop_circular_aperture(wf1, tp.entrance_d / 2)
                proper.prop_define_entrance(wf1)
                proper.prop_propagate(wf1, f_lens,
                                      'inizio')  # propagate wavefront
                proper.prop_lens(
                    wf1, f_lens,
                    'focusing lens vortex')  # propagate through a lens
                proper.prop_propagate(wf1, f_lens, 'VC')  # propagate wavefront

                self.writefield(coron_temp, 'zz_psf_' + calib,
                                wf1.wfarr)  # write the pre-vortex field
                nramp = int(n * ramp_oversamp)  # oversamp
                # create the vortex by creating a matrix (theta) representing the ramp (created by atan 2 gradually varying matrix, x and y)
                y1 = np.ones((nramp, ), dtype=np.int)
                y2 = np.arange(0, nramp,
                               1.) - (nramp / 2) - int(ramp_oversamp) / 2
                y = np.outer(y2, y1)
                x = np.transpose(y)
                theta = np.arctan2(y, x)
                x = 0
                y = 0
                vvc_tmp = np.exp(1j * (ofst + ramp_sign * charge * theta))
                theta = 0
                vvc_real_resampled = cv2.resize(
                    vvc_tmp.real, (0, 0),
                    fx=1 / ramp_oversamp,
                    fy=1 / ramp_oversamp,
                    interpolation=cv2.INTER_LINEAR
                )  # scale the pupil to the pupil size of the simualtions
                vvc_imag_resampled = cv2.resize(
                    vvc_tmp.imag, (0, 0),
                    fx=1 / ramp_oversamp,
                    fy=1 / ramp_oversamp,
                    interpolation=cv2.INTER_LINEAR
                )  # scale the pupil to the pupil size of the simualtions
                vvc = np.array(vvc_real_resampled, dtype=complex)
                vvc.imag = vvc_imag_resampled
                vvcphase = np.arctan2(vvc.imag,
                                      vvc.real)  # create the vortex phase
                vvc_complex = np.array(np.zeros((n, n)), dtype=complex)
                vvc_complex.imag = vvcphase
                vvc = np.exp(vvc_complex)
                vvc_tmp = 0.
                self.writefield(coron_temp, 'zz_vvc_' + calib,
                                vvc)  # write the theoretical vortex field

                proper.prop_multiply(wf1, vvc)
                proper.prop_propagate(wf1, f_lens, 'OAP2')
                proper.prop_lens(wf1, f_lens)
                proper.prop_propagate(wf1, f_lens, 'forward to Lyot Stop')
                proper.prop_circular_obscuration(
                    wf1, 1.,
                    NORM=True)  # null the amplitude iside the Lyot Stop
                proper.prop_propagate(wf1, -f_lens)  # back-propagation
                proper.prop_lens(wf1, -f_lens)
                proper.prop_propagate(wf1, -f_lens)
                self.writefield(
                    coron_temp, 'zz_perf_' + calib,
                    wf1.wfarr)  # write the perfect-result vortex field

                vvc = self.readfield(coron_temp, 'zz_vvc_' + calib)
                vvc = proper.prop_shift_center(vvc)
                scale_psf = wf._wfarr[0, 0]
                psf_num = self.readfield(coron_temp, 'zz_psf_' +
                                         calib)  # read the pre-vortex field
                psf0 = psf_num[0, 0]
                psf_num = psf_num / psf0 * scale_psf
                perf_num = self.readfield(
                    coron_temp,
                    'zz_perf_' + calib)  # read the perfect-result vortex field
                perf_num = perf_num / psf0 * scale_psf
                wf._wfarr = (
                    wf._wfarr - psf_num
                ) * vvc + perf_num  # the wavefront takes into account the real pupil with the perfect-result vortex field

        return wf
Пример #19
0
def pupil(diam,
          gridsize,
          spiders_width,
          spiders_angle,
          pixelsize,
          r_obstr,
          wavelength,
          pupil_file,
          missing_segments_number=0,
          Debug='False',
          Debug_print='False',
          prefix='test'):

    beam_ratio = pixelsize * 4.85e-9 / (wavelength / diam)
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)
    n = int(gridsize)
    npupil = np.ceil(
        gridsize * beam_ratio
    )  # compute the pupil size --> has to be ODD (proper puts the center in the up right pixel next to the grid center)
    if npupil % 2 == 0:
        npupil = npupil + 1

    if (Debug_print == True):
        print("npupil: ", npupil)
        print("lambda: ", wavelength)

    if (missing_segments_number == 0):
        if (isinstance(pupil_file, (list, tuple, np.ndarray)) == True):
            pupil = pupil_file
            pupil_pixels = (pupil.shape)[0]  ## fits file size
            scaling_factor = float(npupil) / float(
                pupil_pixels
            )  ## scaling factor between the fits file size and the pupil size of the simulation
            if (Debug_print == True):
                print("scaling_factor: ", scaling_factor)
            pupil_scale = cv2.resize(
                pupil.astype(np.float32), (0, 0),
                fx=scaling_factor,
                fy=scaling_factor,
                interpolation=cv2.INTER_LINEAR
            )  # scale the pupil to the pupil size of the simualtions
            if (Debug_print == True):
                print("pupil_resample", pupil_scale.shape)
            pupil_large = np.zeros(
                (n, n))  # define an array of n-0s, where to insert the pupuil
            if (Debug_print == True):
                print("n: ", n)
                print("npupil: ", npupil)
            pupil_large[
                int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
                int(npupil / 2),
                int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
                int(npupil / 2
                    )] = pupil_scale  # insert the scaled pupil into the 0s grid

        proper.prop_circular_aperture(
            wfo, diam / 2)  # create a wavefront with a circular pupil

        if (isinstance(pupil_file, (list, tuple, np.ndarray)) == True):
            proper.prop_multiply(wfo, pupil_large)  # multiply the saved pupil
        else:
            proper.prop_circular_obscuration(
                wfo, r_obstr, NORM=True
            )  # create a wavefront with a circular central obscuration
        if (spiders_width != 0):
            for iter in range(0, len(spiders_angle)):
                proper.prop_rectangular_obscuration(
                    wfo, spiders_width, 2 * diam,
                    ROTATION=spiders_angle[iter])  # define the spiders
    else:
        if (missing_segments_number == 1):
            pupil = fits.getdata(
                input_dir +
                '/ELT_2048_37m_11m_5mas_nospiders_1missing_cut.fits')
        if (missing_segments_number == 2):
            pupil = fits.getdata(
                input_dir +
                '/ELT_2048_37m_11m_5mas_nospiders_2missing_cut.fits')
        if (missing_segments_number == 4):
            pupil = fits.getdata(
                input_dir +
                '/ELT_2048_37m_11m_5mas_nospiders_4missing_cut.fits')
        if (missing_segments_number == 7):
            pupil = fits.getdata(
                input_dir +
                '/ELT_2048_37m_11m_5mas_nospiders_7missing_1_cut.fits')

        pupil_pixels = (pupil.shape)[0]  ## fits file size
        scaling_factor = float(npupil) / float(
            pupil_pixels
        )  ## scaling factor between the fits file size and the pupil size of the simulation
        if (Debug_print == True):
            print("scaling_factor: ", scaling_factor)
        pupil_scale = cv2.resize(
            pupil.astype(np.float32), (0, 0),
            fx=scaling_factor,
            fy=scaling_factor,
            interpolation=cv2.INTER_LINEAR
        )  # scale the pupil to the pupil size of the simualtions
        if (Debug_print == True):
            print("pupil_resample", pupil_scale.shape)
        pupil_large = np.zeros(
            (n, n))  # define an array of n-0s, where to insert the pupuil
        if (Debug_print == True):
            print("n: ", n)
            print("npupil: ", npupil)
        pupil_large[
            int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
            int(npupil / 2),
            int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
            int(npupil /
                2)] = pupil_scale  # insert the scaled pupil into the 0s grid

        proper.prop_multiply(wfo, pupil_large)  # multiply the saved pupil
        if (spiders_width != 0):
            for iter in range(0, len(spiders_angle)):
                proper.prop_rectangular_obscuration(
                    wfo, spiders_width, 2 * diam,
                    ROTATION=spiders_angle[iter])  # define the spiders

    if (Debug == True):
        fits.writeto(
            out_dir + prefix + '_intial_pupil.fits',
            proper.prop_get_amplitude(wfo)[int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50),
                                           int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50)],
            overwrite=True)

    proper.prop_define_entrance(wfo)  #define the entrance wavefront
    wfo.wfarr *= 1. / np.amax(wfo._wfarr)  # max(amplitude)=1
    return (npupil, wfo)
Пример #20
0
def pupil(wfo, CAL, npupil, diam, r_obstr, spiders_width, spiders_angle,
          pupil_file, missing_segments_number, Debug, Debug_print):

    n = int(proper.prop_get_gridsize(wfo))

    if (missing_segments_number == 0):
        if (isinstance(pupil_file, (list, tuple, np.ndarray)) == True):
            pupil = pupil_file
            pupil_pixels = (pupil.shape)[0]  ## fits file size
            scaling_factor = float(npupil) / float(
                pupil_pixels
            )  ## scaling factor between the fits file size and the pupil size of the simulation
            if (Debug_print == True):
                print("scaling_factor: ", scaling_factor)
            pupil_scale = cv2.resize(
                pupil.astype(np.float32), (0, 0),
                fx=scaling_factor,
                fy=scaling_factor,
                interpolation=cv2.INTER_LINEAR
            )  # scale the pupil to the pupil size of the simualtions
            if (Debug_print == True):
                print("pupil_resample", pupil_scale.shape)
            pupil_large = np.zeros(
                (n, n))  # define an array of n-0s, where to insert the pupuil
            if (Debug_print == True):
                print("n: ", n)
                print("npupil: ", npupil)
            pupil_large[
                int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
                int(npupil / 2),
                int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
                int(npupil / 2
                    )] = pupil_scale  # insert the scaled pupil into the 0s grid

        proper.prop_circular_aperture(
            wfo, diam / 2)  # create a wavefront with a circular pupil

        if CAL == 0:  # CAL=1 is for the back-propagation
            if (isinstance(pupil_file, (list, tuple, np.ndarray)) == True):
                proper.prop_multiply(wfo,
                                     pupil_large)  # multiply the saved pupil
            else:
                proper.prop_circular_obscuration(
                    wfo, r_obstr, NORM=True
                )  # create a wavefront with a circular central obscuration
            if (spiders_width != 0):
                for iter in range(0, len(spiders_angle)):
                    proper.prop_rectangular_obscuration(
                        wfo,
                        spiders_width,
                        2 * diam,
                        ROTATION=spiders_angle[iter])  # define the spiders

    else:
        PACKAGE_PATH = os.path.abspath(os.path.join(__file__, os.pardir))
        if (missing_segments_number == 1):
            pupil = fits.getdata(
                PACKAGE_PATH +
                '/ELT_2048_37m_11m_5mas_nospiders_1missing_cut.fits')
        if (missing_segments_number == 2):
            pupil = fits.getdata(
                PACKAGE_PATH +
                '/ELT_2048_37m_11m_5mas_nospiders_2missing_cut.fits')
        if (missing_segments_number == 4):
            pupil = fits.getdata(
                PACKAGE_PATH +
                '/ELT_2048_37m_11m_5mas_nospiders_4missing_cut.fits')
        if (missing_segments_number == 7):
            pupil = fits.getdata(
                PACKAGE_PATH +
                '/ELT_2048_37m_11m_5mas_nospiders_7missing_1_cut.fits')

        pupil_pixels = (pupil.shape)[0]  ## fits file size
        scaling_factor = float(npupil) / float(
            pupil_pixels
        )  ## scaling factor between the fits file size and the pupil size of the simulation
        if (Debug_print == True):
            print("scaling_factor: ", scaling_factor)
        pupil_scale = cv2.resize(
            pupil.astype(np.float32), (0, 0),
            fx=scaling_factor,
            fy=scaling_factor,
            interpolation=cv2.INTER_LINEAR
        )  # scale the pupil to the pupil size of the simualtions
        if (Debug_print == True):
            print("pupil_resample", pupil_scale.shape)
        pupil_large = np.zeros(
            (n, n))  # define an array of n-0s, where to insert the pupuil
        if (Debug_print == True):
            print("n: ", n)
            print("npupil: ", npupil)
        pupil_large[
            int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
            int(npupil / 2),
            int(n / 2) + 1 - int(npupil / 2) - 1:int(n / 2) + 1 +
            int(npupil /
                2)] = pupil_scale  # insert the scaled pupil into the 0s grid

        if CAL == 0:  # CAL=1 is for the back-propagation
            proper.prop_multiply(wfo, pupil_large)  # multiply the saved pupil
            if (spiders_width != 0):
                for iter in range(0, len(spiders_angle)):
                    proper.prop_rectangular_obscuration(
                        wfo,
                        spiders_width,
                        2 * diam,
                        ROTATION=spiders_angle[iter])  # define the spiders

    return
Пример #21
0
def vortex_init(vortex_calib='',
                dir_temp='',
                diam_ext=37,
                lam=3.8,
                ngrid=1024,
                beam_ratio=0.26,
                focal=660,
                vc_charge=2,
                verbose=False,
                **conf):
    '''
    
    Creates/writes vortex back-propagation fitsfiles, or loads them if files 
    already exist.
    The following parameters will be added to conf: 
        vortex_calib, psf_num, perf_num, vvc
    
    Returns: conf (updated and sorted)

    '''

    # update conf with local variables (remove unnecessary)
    conf.update(locals())
    [conf.pop(key) for key in ['conf', 'verbose'] if key in conf]

    # check if back-propagation params already loaded for this calib
    calib = 'vortex_%s_%s_%3.4f' % (vc_charge, ngrid, beam_ratio)
    if vortex_calib == calib:
        return conf

    else:
        # check for existing file
        filename = os.path.join(dir_temp, '%s.fits' % calib)
        if os.path.isfile(filename):
            if verbose is True:
                print('   loading vortex back-propagation params')
            data = fits.getdata(os.path.join(dir_temp, filename))
            # read the pre-vortex field
            psf_num = data[0] + 1j * data[1]
            # read the theoretical vortex field
            vvc = data[2] + 1j * data[3]
            # read the perfect-result vortex field
            perf_num = data[4] + 1j * data[5]

        # create files
        else:
            if verbose is True:
                print("   writing vortex back-propagation params")
            # create circular pupil
            wf_tmp = proper.prop_begin(diam_ext, lam, ngrid, beam_ratio)
            proper.prop_circular_aperture(wf_tmp, 1, NORM=True)
            # propagate to vortex
            lens(wf_tmp, focal)
            # pre-vortex field
            psf_num = deepcopy(wf_tmp.wfarr)
            # vortex phase ramp is oversampled for a better discretization
            ramp_oversamp = 11.
            nramp = int(ngrid * ramp_oversamp)
            start = -nramp / 2 - int(ramp_oversamp) / 2 + 0.5
            end = nramp / 2 - int(ramp_oversamp) / 2 + 0.5
            Vp = np.arange(start, end, 1.)
            # Pancharatnam Phase = arg<Vref,Vp> (horizontal input polarization)
            Vref = np.ones(Vp.shape)
            prod = np.outer(Vref, Vp)
            phiPan = np.angle(prod + 1j * prod.T)
            # vortex phase ramp exp(ilphi)
            ofst = 0
            ramp_sign = 1
            vvc_tmp = np.exp(1j * (ramp_sign * vc_charge * phiPan + ofst))
            vvc = np.array(impro.resize_img(vvc_tmp.real, ngrid),
                           dtype=complex)
            vvc.imag = impro.resize_img(vvc_tmp.imag, ngrid)
            phase_ramp = np.angle(vvc)
            # theoretical vortex field
            vvc_complex = np.array(np.zeros((ngrid, ngrid)), dtype=complex)
            vvc_complex.imag = phase_ramp
            vvc = np.exp(vvc_complex)
            # apply vortex
            proper.prop_multiply(wf_tmp, vvc)
            # null the amplitude inside the Lyot Stop, and back propagate
            lens(wf_tmp, focal)
            proper.prop_circular_obscuration(wf_tmp, 1., NORM=True)
            lens(wf_tmp, -focal)
            # perfect-result vortex field
            perf_num = deepcopy(wf_tmp.wfarr)
            # write all fields
            data = np.dstack((psf_num.real.T, psf_num.imag.T, vvc.real.T, vvc.imag.T,\
                perf_num.real.T, perf_num.imag.T)).T
            fits.writeto(os.path.join(dir_temp, filename),
                         np.float32(data),
                         overwrite=True)

        # shift the phase ramp
        vvc = proper.prop_shift_center(vvc)
        # add vortex back-propagation parameters at the end of conf
        conf = {k: v for k, v in sorted(conf.items())}
        conf.update(vortex_calib=calib,
                    psf_num=psf_num,
                    vvc=vvc,
                    perf_num=perf_num)

        if verbose is True:
            print('   vc_charge=%s, ngrid=%s, beam_ratio=%3.4f'%\
                (vc_charge, ngrid, beam_ratio))

        return conf
Пример #22
0
def falco_gen_pupil_WFIRSTcycle6_LS(Nbeam,
                                    Dbeam,
                                    ID,
                                    OD,
                                    strut_width,
                                    centering,
                                    rot180deg=False):
    strut_width = strut_width * Dbeam  # now in meters
    dx = Dbeam / Nbeam

    clock_deg = 0
    magfacD = 1
    xshift = 0
    yshift = 0
    pad_strut = 0
    Dmask = Dbeam  # % width of the beam (so can have zero padding if LS is undersized) (meters)
    diam = Dmask  # width of the mask (meters)
    # minimum even number of points across to fully contain the actual aperture (if interpixel centered)
    NapAcross = Dmask / dx

    wf = _init_proper(Dmask, dx, centering)

    # 0 shift for pixel-centered pupil, or -dx shift for inter-pixel centering
    if centering == "interpixel":
        cshift = -dx / 2
    elif rot180deg:
        cshift = -dx
    else:
        cshift = 0

    # DATA FROM THE VISIO FILE
    D0 = 8  # inches, pupil diameter in Visio file
    x0 = -26  # inches, pupil center in x in Visio file
    y0 = 20.25  # inches, pupil center in y in Visio file
    Dconv = diam / D0  # conversion factor from inches and Visio units to meters

    # PRIMARY MIRROR (OUTER DIAMETER)
    ra_OD = (Dbeam * OD / 2) * magfacD
    cx_OD = cshift + xshift
    cy_OD = cshift + yshift
    proper.prop_circular_aperture(wf, ra_OD, cx_OD, cy_OD)

    # SECONDARY MIRROR (INNER DIAMETER)
    ra_ID = (Dbeam * ID / 2) * magfacD
    cx_ID = cshift + xshift
    cy_ID = cshift + yshift
    proper.prop_circular_obscuration(wf, ra_ID, cx_ID, cy_ID)

    sx_s = magfacD * (3.6 * (diam / D0) + pad_strut)
    sy_s = magfacD * (strut_width + pad_strut)
    clock_rot = np.array(
        [[np.cos(np.radians(clock_deg)), -np.sin(np.radians(clock_deg))],
         [np.sin(np.radians(clock_deg)),
          np.cos(np.radians(clock_deg))]])

    def _get_strut_cxy(x, y):
        cx_s = (x - x0) * Dconv
        cy_s = (y - y0) * Dconv
        cxy = magfacD * clock_rot.dot([cx_s, cy_s]) + cshift
        return cxy + [xshift, yshift]

    # STRUT 1
    rot_s1 = 77.56 + clock_deg  # degrees
    cx_s1, cy_s1 = _get_strut_cxy(-24.8566, 22.2242)
    proper.prop_rectangular_obscuration(wf,
                                        sx_s,
                                        sy_s,
                                        cx_s1,
                                        cy_s1,
                                        ROTATION=rot_s1)

    # STRUT 2
    rot_s2 = -17.56 + clock_deg  # degrees
    cx_s2, cy_s2 = _get_strut_cxy(-23.7187, 20.2742)
    proper.prop_rectangular_obscuration(wf,
                                        sx_s,
                                        sy_s,
                                        cx_s2,
                                        cy_s2,
                                        ROTATION=rot_s2)

    # STRUT 3
    rot_s3 = -42.44 + clock_deg  # degrees
    cx_s3, cy_s3 = _get_strut_cxy(-24.8566, 18.2758)
    proper.prop_rectangular_obscuration(wf,
                                        sx_s,
                                        sy_s,
                                        cx_s3,
                                        cy_s3,
                                        ROTATION=rot_s3)

    # STRUT 4
    rot_s4 = 42.44 + clock_deg  # degrees
    cx_s4, cy_s4 = _get_strut_cxy(-27.1434, 18.2758)
    proper.prop_rectangular_obscuration(wf,
                                        sx_s,
                                        sy_s,
                                        cx_s4,
                                        cy_s4,
                                        ROTATION=rot_s4)

    # STRUT 5
    rot_s5 = 17.56 + clock_deg  # degrees
    cx_s5, cy_s5 = _get_strut_cxy(-28.2813, 20.2742)
    proper.prop_rectangular_obscuration(wf,
                                        sx_s,
                                        sy_s,
                                        cx_s5,
                                        cy_s5,
                                        ROTATION=rot_s5)

    # STRUT 6
    rot_s6 = 102.44 + clock_deg  # degrees
    cx_s6, cy_s6 = _get_strut_cxy(-27.1434, 22.2242)
    proper.prop_rectangular_obscuration(wf,
                                        sx_s,
                                        sy_s,
                                        cx_s6,
                                        cy_s6,
                                        ROTATION=rot_s6)

    mask = np.fft.ifftshift(np.abs(wf.wfarr))

    if rot180deg:
        mask = np.rot90(mask, 2)

    return mask
Пример #23
0
def dummy_telescope(lmda, grid_size, kwargs):
    """
    propagates instantaneous complex E-field thru Subaru from the DM through SCExAO

    uses PyPROPER3 to generate the complex E-field at the pupil plane, then propagates it through SCExAO 50x50 DM,
        then coronagraph, to the focal plane
    :returns spectral cube at instantaneous time in the focal_plane()
    """
    # print("Propagating Broadband Wavefront Through Subaru")

    # Initialize the Wavefront in Proper
    wfo = proper.prop_begin(entrance_d, lmda, grid_size, beam_ratio)

    # Defines aperture (baffle-before primary)
    proper.prop_circular_aperture(wfo, entrance_d / 2)
    proper.prop_define_entrance(wfo)  # normalizes abs intensity

    # SCExAO Reimaging 1
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo, fl_SxOAPG * 2)  # move to second pupil

    ########################################
    # Import/Apply Actual DM Map
    # #######################################
    plot_flag = False
    if kwargs['verbose'] and kwargs['ix'] == 0:
        plot_flag = True
    dm_map = kwargs['map']
    # flat = proper.prop_zernikes(wfo, [2, 3], np.array([5, 1]))  # zernike[2,3] = x,y tilt
    # adding a tilt for shits and giggles
    # proper.prop_propagate(wfo, fl_SxOAPG)  # from tweeter-DM to OAP2
    errormap(wfo,
             dm_map,
             SAMPLING=dm_pitch,
             MIRROR_SURFACE=True,
             MICRONS=True,
             BR=beam_ratio,
             PLOT=plot_flag)  # WAVEFRONT=True
    # errormap(wfo, dm_map, SAMPLING=dm_pitch, AMPLITUDE=True, BR=beam_ratio, PLOT=plot_flag)  # WAVEFRONT=True
    # proper.prop_circular_aperture(wfo, entrance_d/2)

    if kwargs['verbose'] and kwargs['ix'] == 0:
        fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
        ax1, ax2 = subplot.flatten()
        fig.suptitle('SCExAO Model WFO after errormap',
                     fontweight='bold',
                     fontsize=14)
        # ax.imshow(dm_map, interpolation='none')
        ax1.imshow(np.abs(proper.prop_shift_center(wfo.wfarr))**2,
                   interpolation='none')
        ax1.set_title('Amplitude')
        ax2.imshow(np.angle(proper.prop_shift_center(wfo.wfarr)),
                   interpolation='none',
                   vmin=-2 * np.pi,
                   vmax=2 * np.pi)  # , cmap='hsv'
        ax2.set_title('Phase')
    # ------------------------------------------------
    # proper.prop_propagate(wfo, fl_SxOAPG)  # from tweeter-DM to OAP2

    # SCExAO Reimaging 2
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo,
                          fl_SxOAPG)  # focus at exit of DM telescope system
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo,
                          fl_SxOAPG)  # focus at exit of DM telescope system
    # ########################################
    # # Focal Plane
    # # #######################################
    # Check Sampling in focal plane
    # shifts wfo from Fourier Space (origin==lower left corner) to object space (origin==center)
    # proper.prop_shift_center(wfo.wfarr)
    # wf, samp = proper.prop_end(wfo, NoAbs=True)
    wf = proper.prop_shift_center(wfo.wfarr)
    samp = proper.prop_get_sampling(wfo)
    # smp_asec = proper.prop_get_sampling_arcsec(wfo)

    if kwargs['verbose'] and kwargs['ix'] == 0:
        fig, ax = plt.subplots(nrows=1, ncols=1)
        fig.suptitle('SCExAO Model Focal Plane',
                     fontweight='bold',
                     fontsize=14)
        ax.imshow(
            np.abs(wf)**2,
            interpolation='none',
            norm=LogNorm(
                vmin=1e-7,
                vmax=1e-2))  # np.abs(proper.prop_shift_center(wfo.wfarr))**2
    #
    # if kwargs['verbose'] and kwargs['ix']==0:
    #     print(f"\n\tFocal Plane\n"
    #           f"sampling at focal plane is {smp_asec * 1e3:.4f} mas\n"
    #           f"\tfull FOV is {smp_asec * grid_size * 1e3:.2f} mas")
    #     s_rad = proper.prop_get_sampling_radians(wfo)
    #     print(f"sampling at focal plane is {s_rad * 1e6:.6f} urad")

    # print(f"Finished simulation")

    return wf, samp
Пример #24
0
def simple_telescope(wavelength, gridsize):

    # Define entrance aperture diameter and other quantities
    d_objective = 5.0  # objective diameter in meters
    fl_objective = 20.0 * d_objective  # objective focal length in meters
    fl_eyepiece = 0.021  # eyepiece focal length
    fl_eye = 0.022  # human eye focal length
    beam_ratio = 0.3  # initial beam width/grid width

    # Define the wavefront
    wfo = proper.prop_begin(d_objective, wavelength, gridsize, beam_ratio)

    # print d_objective, wavelength, gridsize, beam_ratio
    # Define a circular aperture
    proper.prop_circular_aperture(wfo, d_objective / 2)

    # proper.prop_propagate(wfo, fl_objective)
    # proper.prop_propagate(wfo, fl_objective)
    # proper.prop_propagate(wfo, fl_objective)

    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()

    # Define entrance
    proper.prop_define_entrance(wfo)
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()

    # proper.prop_propagate(wfo, fl_objective+fl_eyepiece, "eyepiece")
    # # plt.imshow(proper.prop_get_amplitude(wfo))
    # # plt.show()
    #
    # proper.prop_propagate(wfo, fl_objective+fl_eyepiece, "eyepiece")
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()
    #
    # proper.prop_propagate(wfo, fl_objective+fl_eyepiece, "eyepiece")
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()

    # Define a lens
    proper.prop_lens(wfo, fl_objective, "objective")
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()
    # Propagate the wavefront
    proper.prop_propagate(wfo, fl_objective + fl_eyepiece, "eyepiece")
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()
    # Define another lens
    proper.prop_lens(wfo, fl_eyepiece, "eyepiece")
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()
    exit_pupil_distance = fl_eyepiece / (1 - fl_eyepiece /
                                         (fl_objective + fl_eyepiece))
    proper.prop_propagate(wfo, exit_pupil_distance, "exit pupil at eye lens")
    # quicklook_wf(wfo)
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()
    proper.prop_lens(wfo, fl_eye, "eye")
    proper.prop_propagate(wfo, fl_eye, "retina")
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()
    quicklook_wf(wfo)
    phase_map = proper.prop_get_phase(wfo)
    amp_map = proper.prop_get_amplitude(wfo)
    # quicklook_im(phase_map)

    amp_map[80:100, 80:100] = 0
    quicklook_im(amp_map, logAmp=True)

    import numpy as np
    wfo.wfarr = proper.prop_shift_center(amp_map * np.cos(phase_map) +
                                         1j * amp_map * np.sin(phase_map))
    # quicklook_wf(wf_array[iw,0])
    proper.prop_propagate(wfo, fl_eye, "retina")
    proper.prop_lens(wfo, fl_eye, "eye")
    quicklook_wf(wfo)

    # End
    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
Пример #25
0
def run_system(empty_lamda, grid_size, PASSVALUE):  #'dm_disp':0
    passpara = PASSVALUE['params']
    ap.__dict__ = passpara[0].__dict__
    tp.__dict__ = passpara[1].__dict__
    iop.__dict__ = passpara[2].__dict__
    # params.ap = passpara[0]
    # params.tp = passpara[1]
    #
    # ap = params.ap
    # tp = params.tp

    # print 'line 23', tp.occulter_type
    # print 'propagating frame:', PASSVALUE['iter']
    wsamples = np.linspace(tp.band[0], tp.band[1], tp.nwsamp) / 1e9
    # print wsamples
    datacube = []
    # print proper.prop_get_sampling(wfp), proper.prop_get_nyquistsampling(wfp), proper.prop_get_fratio(wfp)
    # global phase_map, Imaps
    # Imaps = np.zeros((4,tp.grid_size,tp.grid_size))
    # phase_map = np.zeros((tp.grid_size, tp.grid_size))
    # wavefronts = np.empty((len(wsamples),1+len(ap.contrast)), dtype=object)
    for iw, w in enumerate(wsamples):
        # Define the wavefront
        beam_ratio = tp.beam_ratio * tp.band[0] / w * 1e-9
        wfp = proper.prop_begin(tp.diam, w, tp.grid_size, beam_ratio)

        wfs = [wfp]
        names = ['primary']
        if ap.companion:
            for id in range(len(ap.contrast)):
                wfc = proper.prop_begin(tp.diam, w, tp.grid_size, beam_ratio)
                wfs.append(wfc)
                names.append('companion_%i' % id)

        # proper.prop_circular_aperture(wfo, tp.diam / 2)
        # for iw, wf in enumerate([wfo, wfc]):
        wframes = np.zeros((tp.grid_size, tp.grid_size))
        for iwf, wf in zip(names, wfs):
            # wavefronts[iw,iwf] = wf
            proper.prop_circular_aperture(wf, tp.diam / 2)
            # quicklook_wf(wf, show=True)
            if tp.use_atmos:
                tdm.add_atmos(wf,
                              tp.f_lens,
                              w,
                              atmos_map=PASSVALUE['atmos_map'])

            if tp.rot_rate:
                tdm.rotate_atmos(wf, PASSVALUE['atmos_map'])

            # quicklook_wf(wf, show=True)
            # if tp.use_spiders:
            #     tdm.add_spiders(wf, tp.diam)

            if tp.use_hex:
                tdm.add_hex(wf)

            proper.prop_define_entrance(wf)  # normalizes the intensity

            if iwf[:9] == 'companion':
                tdm.offset_companion(wf, int(iwf[10:]), PASSVALUE['atmos_map'])
                # quicklook_wf(wf, show=True)
            if tp.use_apod:
                tdm.do_apod(wf, tp.grid_size, tp.beam_ratio, tp.apod_gaus)

            # quicklook_wf(wf, show=True)
            # obj_map = tdm.wfs_measurement(wfo)#, obj_map, tp.wfs_scale)
            proper.prop_propagate(wf, tp.f_lens)

            if tp.aber_params['CPA']:
                tdm.add_aber(wf,
                             tp.f_lens,
                             tp.aber_params,
                             tp.aber_vals,
                             PASSVALUE['iter'],
                             Loc='CPA')

            # if tp.CPA_type == 'test':
            #     tdm.add_single_speck(wf, PASSVALUE['iter'] )
            # if tp.CPA_type == 'Static':
            #     tdm.add_static(wf, tp.f_lens, loc = 'CPA')
            # if tp.CPA_type == 'Amp':
            #     tdm.add_static(wf, tp.f_lens, loc = 'CPA', type='Amp')
            # if tp.CPA_type == 'Quasi':
            #     tdm.add_quasi(wf, tp.f_lens, PASSVALUE['iter'])

            # rawImageIO.save_wf(wf, iop.datadir+'/beforeAO.pkl')
            # quicklook_wf(wf)
            # quicklook_im(obj_map, logAmp=False)

            proper.prop_propagate(wf, tp.f_lens)
            if tp.quick_ao:
                if iwf == 'primary':  # and PASSVALUE['iter'] == 0:
                    # quicklook_wf(wf, show=True)
                    r0 = float(PASSVALUE['atmos_map'][-10:-5])
                    # dprint((r0, 'r0'))
                    CPA_map = tdm.quick_wfs(wf, PASSVALUE['iter'],
                                            r0=r0)  # , obj_map, tp.wfs_scale)
                # dprint('quick_ao')
                # quicklook_wf(wf, show=True)
                if tp.use_ao:
                    tdm.quick_ao(wf, iwf, tp.f_lens, beam_ratio,
                                 PASSVALUE['iter'], CPA_map)
                # dprint('quick_ao')
                # quicklook_wf(wf, show=True)
            else:
                if tp.use_ao:
                    tdm.adaptive_optics(wf, iwf, iw, tp.f_lens, beam_ratio,
                                        PASSVALUE['iter'])

                if iwf == 'primary':  # and PASSVALUE['iter'] == 0:
                    # quicklook_wf(wf, show=True)
                    r0 = float(PASSVALUE['atmos_map'][-10:-5])
                    # dprint((r0, 'r0'))
                    # if iw == np.ceil(tp.nwsamp/2):
                    tdm.wfs_measurement(wf, PASSVALUE['iter'], iw,
                                        r0=r0)  #, obj_map, tp.wfs_scale)

            proper.prop_propagate(wf, tp.f_lens)

            # rawImageIO.save_wf(wf, iop.datadir+'/loopAO_8act.pkl')
            # if iwf == 'primary':
            #     quicklook_wf(wf, show=True)

            # if tp.active_modulate:
            #     tdm.modulate(wf, w, PASSVALUE['iter'])

            # if iwf == 'primary':
            #     quicklook_wf(wf, show=True)

            if tp.aber_params['NCPA']:
                tdm.add_aber(wf,
                             tp.f_lens,
                             tp.aber_params,
                             tp.aber_vals,
                             PASSVALUE['iter'],
                             Loc='NCPA')

            # if tp.NCPA_type == 'Static':
            #     tdm.add_static(wf, tp.f_lens, loc = 'NCPA')
            # if tp.NCPA_type == 'Wave':
            #     tdm.add_IFS_ab(wf, tp.f_lens, w)
            # if tp.NCPA_type == 'Quasi':
            #     tdm.add_quasi(wf, tp.f_lens, PASSVALUE['iter'])

            # quicklook_wf(wf, show=True)

            # if iwf == 'primary':
            #     NCPA_phasemap = proper.prop_get_phase(wf)
            #     quicklook_im(NCPA_phasemap, logAmp=False, show=False, colormap="jet", vmin=-3.14, vmax=3.14)
            # if iwf == 'primary':
            #     global obj_map
            #     r0 = float(PASSVALUE['atmos_map'][-10:-5])
            #     obj_map = tdm.wfs_measurement(wf, r0 = r0)#, obj_map, tp.wfs_scale)
            #     # quicklook_im(obj_map, logAmp=False)

            proper.prop_propagate(wf, tp.f_lens)

            # spiders are introduced here for now since the phase unwrapping seems to ignore them and hence so does the DM
            # Check out http://scikit-image.org/docs/dev/auto_examples/filters/plot_phase_unwrap.html for masking argument
            if tp.use_spiders:
                tdm.add_spiders(wf, tp.diam)

            tdm.prop_mid_optics(wf, tp.f_lens)

            # if iwf == 'primary':
            # if PASSVALUE['iter']>ap.numframes-2 or PASSVALUE['iter']==0:
            #     quicklook_wf(wf, show=True)
            # print proper.prop_get_sampling(wfp), proper.prop_get_sampling_arcsec(wfp), 'here'
            if tp.satelite_speck and iwf == 'primary':
                tdm.add_speckles(wf)

            # tp.variable = proper.prop_get_phase(wfo)[20,20]
            # print 'speck phase', tp.variable

            # import cPickle as pickle
            # dprint('just saved')
            # with open(iop.phase_ideal, 'wb') as handle:
            #     pickle.dump(proper.prop_get_phase(wf), handle, protocol=pickle.HIGHEST_PROTOCOL)
            # exit()

            if tp.active_null and iwf == 'primary':
                FPWFS.active_null(wf, PASSVALUE['iter'], w)
            # if tp.speckle_kill and iwf == 'primary':
            #     tdm.speckle_killer(wf)
            # tdm.speck_kill(wf)

            # iwf == 'primary':
            #     parent_bright = aper_phot(proper.prop_get_amplitude(wf),0,8)

            # if iwf == 'primary' and iop.saveIQ:
            #     save_pix_IQ(wf)
            #     complex_map = proper.prop_shift_center(wf.wfarr)
            #     complex_pix = complex_map[64, 64]
            #     print complex_pix
            #     if np.real(complex_pix) < 0.2:
            #         quicklook_IQ(wf)
            #
            # if iwf == 'primary':
            # #     print np.sum(proper.prop_get_amplitude(wf)), 'before', aper_phot(proper.prop_get_amplitude(wf),0,4)
            #     quicklook_wf(wf, show=True, logAmp=True)
            # if iwf == 'primary':
            #     quicklook_wf(wf, show=True)

            # if tp.active_modulate and PASSVALUE['iter'] >=8:
            #     coronagraph(wf, tp.f_lens, tp.occulter_type, tp.occult_loc, tp.diam)
            # if not tp.active_modulate:
            coronagraph(wf, tp.f_lens, tp.occulter_type, tp.occult_loc,
                        tp.diam)
            # dprint(proper.prop_get_sampling_arcsec(wf))
            # exit()
            #     tp.occult_factor = aper_phot(proper.prop_get_amplitude(wf),0,8)/parent_bright
            #     if PASSVALUE['iter'] % 10 == 0:
            #         with open(iop.logfile, 'a') as the_file:
            #               the_file.write('\n', tp.occult_factor)

            # quicklook_wf(wf, show=True)
            if tp.occulter_type != 'None' and iwf == 'primary':  #kludge for now until more sophisticated coronapraph has been installed
                wf.wfarr *= 0.1
            #     # print np.sum(proper.prop_get_amplitude(wf)), 'after', aper_phot(proper.prop_get_amplitude(wf), 0, 4)
            # quicklook_wf(wf, show=True)
            # print proper.prop_get_sampling(wfp), proper.prop_get_sampling_arcsec(wfp), 'here'
            # if iwf == 'primary':
            #     quicklook_wf(wf, show=True)
            if tp.use_zern_ab:
                tdm.add_zern_ab(wf, tp.f_lens)

            (wframe, sampling) = proper.prop_end(wf)
            # dprint((np.sum(wframe), 'sum'))
            # wframe = proper.prop_get_amplitude(wf)

            # planet = np.roll(np.roll(wframe, 20, 1), 20, 0) * 0.1  # [92,92]
            # if ap.companion:
            #     from scipy.ndimage.interpolation import shift
            #     companion = shift(wframe, shift=  np.array(ap.comp_loc[::-1])- np.array([tp.grid_size/2,tp.grid_size/2])) * ap.contrast
            #     # planet = np.roll(wframe, 15, 0) * 0.1  # [92,92]
            #
            #     wframe = (wframe + companion)

            # quicklook_im(wframe, logAmp=True)
            # '''test conserve=True on prop_magnify!'''

            # wframe = proper.prop_magnify(wframe, (w*1e9)/tp.band[0])
            # wframe = tdm.scale_wframe(wframe, w, iwf)
            # print np.shape(wframe)
            quicklook_im(wframe)
            # quicklook_im(wframe)

            # mid = int(len(wframe)/2)
            # wframe = wframe[mid - tp.grid_size/2 : mid +tp.grid_size/2, mid - tp.grid_size/2 : mid +tp.grid_size/2]
            # if max(mp.array_size) < tp.grid_size:
            #     # Photons seeded outside the array cannot have pixel phase uncertainty applied to them. Instead make both grids match in size
            #     wframe = rawImageIO.resize_image(wframe, newsize=(max(mp.array_size),max(mp.array_size)))
            # dprint(np.sum(wframe))
            # dprint(iwf)
            # if iwf == 'companion_0':
            wframes += wframe
            # if sp.show_wframe:
        # quicklook_im(wframes, logAmp=True, show=True)
        datacube.append(wframes)

    datacube = np.array(datacube)
    datacube = np.abs(datacube)
    # #normalize
    # datacube = np.transpose(np.transpose(datacube) / np.sum(datacube, axis=(1, 2)))/float(tp.nwsamp)

    # print 'Some pixels have negative values, possibly because of some Gaussian uncertainy you introduced. Taking abs for now.'

    # view_datacube(datacube)
    # # End

    # print type(wfo[0,0]), type(wfo)
    # #     proper.prop_savestate(wfo)
    # # else:
    # #     wfo = proper.prop_state(wfo)
    return (datacube, sampling)
Пример #26
0
def toliman_prescription_simple(wavelength, gridsize):
    # Values from Eduardo's RC Toliman system
    diam = 0.3  # telescope diameter in meters
    fl_pri = 0.5 * 1.143451  # primary focal length (m)
    # BN 20180208
    d_pri_sec = 0.549337630333726  # primary to secondary separation (m)
    #    d_pri_sec = 0.559337630333726            # primary to secondary separation (m)
    fl_sec = -0.5 * 0.0467579189727913  # secondary focal length (m)
    d_sec_to_focus = 0.528110658881  # nominal distance from secondary to focus (from eqn)
    #    d_sec_to_focus = 0.589999999989853       # nominal distance from secondary to focus
    beam_ratio = 0.2  # initial beam width/grid width

    m2_rad = 0.059  # Secondary half-diameter (m)
    m2_strut_width = 0.01  # Width of struts supporting M2 (m)
    m2_supports = 5

    # Define the wavefront
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)

    # Input aperture
    proper.prop_circular_aperture(wfo, diam / 2)
    # NOTE: could prop_propagate() here if some baffling included
    # Secondary and structs obscuration
    proper.prop_circular_obscuration(wfo,
                                     m2_rad)  # secondary mirror obscuration
    # Spider struts/vanes, arranged evenly radiating out from secondary
    strut_length = diam / 2 - m2_rad
    strut_step = 360 / m2_supports
    strut_centre = m2_rad + strut_length / 2
    for i in range(0, m2_supports):
        angle = i * strut_step
        radians = math.radians(angle)
        xoff = math.cos(radians) * strut_centre
        yoff = math.sin(radians) * strut_centre
        proper.prop_rectangular_obscuration(wfo,
                                            m2_strut_width,
                                            strut_length,
                                            xoff,
                                            yoff,
                                            ROTATION=angle + 90)

    # Define entrance
    proper.prop_define_entrance(wfo)

    # Primary mirror (treat as quadratic lens)
    proper.prop_lens(wfo, fl_pri, "primary")

    # Propagate the wavefront
    proper.prop_propagate(wfo, d_pri_sec, "secondary")

    # Secondary mirror (another quadratic lens)
    proper.prop_lens(wfo, fl_sec, "secondary")

    # NOTE: hole through primary?

    # Focus
    # BN 20180208 - Need TO_PLANE=True if you want an intermediate plane
    proper.prop_propagate(wfo, d_sec_to_focus, "focus", TO_PLANE=True)
    #    proper.prop_propagate(wfo, d_sec_to_focus, "focus", TO_PLANE = False)

    # End
    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
Пример #27
0
def prescription_quad(wavelength, gridsize, PASSVALUE={}):
    # Assign parameters from PASSVALUE struct or use defaults
    diam = PASSVALUE.get('diam', 0.3)  # telescope diameter in meters
    m1_fl = PASSVALUE.get('m1_fl', 0.5717255)  # primary focal length (m)
    beam_ratio = PASSVALUE.get('beam_ratio',
                               0.2)  # initial beam width/grid width
    tilt_x = PASSVALUE.get('tilt_x', 0.)  # Tilt angle along x (arc seconds)
    tilt_y = PASSVALUE.get('tilt_y', 0.)  # Tilt angle along y (arc seconds)
    noabs = PASSVALUE.get('noabs', False)  # Output complex amplitude?
    m1_hole_rad = PASSVALUE.get('m1_hole_rad', None)  # Inner hole diameter
    use_caching = PASSVALUE.get('use_caching',
                                False)  # Use cached files if available?
    get_wf = PASSVALUE.get('get_wf', False)  # Return wavefront
    """
    Prescription for a single quad lens system        
    """

    if 'phase_func' in PASSVALUE:
        print('DEPRECATED setting "phase_func": use "opd_func" instead')
        if 'opd_func' not in PASSVALUE:
            PASSVALUE['opd_func'] = PASSVALUE['phase_func']
    elif 'opd_func' not in PASSVALUE:
        print("no phase function")
    if 'phase_func_sec' in PASSVALUE:
        print(
            'DEPRECATED setting "phase_func_sec": use "opd_func_sec" instead')
        if 'opd_func_sec' not in PASSVALUE:
            PASSVALUE['opd_func_sec'] = PASSVALUE['phase_func_sec']

    # Define the wavefront
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)

    # Point off-axis
    prop_tilt(wfo, tilt_x, tilt_y)

    ###
    # Change to build ciruclar aperture??
    # Input aperture
    proper.prop_circular_aperture(wfo, diam / 2.)
    ###

    # Define entrance
    proper.prop_define_entrance(wfo)

    proper.prop_lens(wfo, m1_fl, "primary")

    if 'opd_func' in PASSVALUE:
        opd1_func = PASSVALUE['opd_func']

        def build_m1_opd():
            return gen_opdmap(opd1_func, proper.prop_get_gridsize(wfo),
                              proper.prop_get_sampling(wfo))

        wfo.wfarr *= build_phase_map(
            wfo,
            load_cacheable_grid(opd1_func.__name__, wfo, build_m1_opd,
                                use_caching))

    if get_wf:
        wf = proper.prop_get_wavefront(wfo)
        print('Got wavefront')

    if m1_hole_rad is not None:
        proper.prop_circular_obscuration(wfo, m1_hole_rad)

    #if get_wf:
    #   wf = proper.prop_get_wavefront(wfo)
    #  print('Got wavefront')

    # Focus
    proper.prop_propagate(wfo, m1_fl, "focus", TO_PLANE=True)

    # End
    (wfo, sampling) = proper.prop_end(wfo)
    if get_wf:
        return (wfo, wf, sampling)
    else:
        return (wfo, sampling)
Пример #28
0
def vortex(wfo, charge, f_lens, diam, pixelsize, Debug_print=False):

    n = int(proper.prop_get_gridsize(wfo))
    ofst = 0  # no offset
    ramp_sign = 1  #sign of charge is positive
    ramp_oversamp = 11.  # vortex is oversampled for a better discretization

    if charge != 0:
        wavelength = proper.prop_get_wavelength(wfo)
        gridsize = proper.prop_get_gridsize(wfo)
        beam_ratio = pixelsize * 4.85e-9 / (wavelength / diam)
        calib = str(charge) + str('_') + str(int(
            beam_ratio * 100)) + str('_') + str(gridsize)
        my_file = str(tmp_dir + 'zz_perf_' + calib + '_r.fits')

        proper.prop_propagate(wfo, f_lens, 'inizio')  # propagate wavefront
        proper.prop_lens(wfo, f_lens,
                         'focusing lens vortex')  # propagate through a lens
        proper.prop_propagate(wfo, f_lens, 'VC')  # propagate wavefront

        if (os.path.isfile(my_file) == True):
            if (Debug_print == True):
                print("Charge ", charge)
            vvc = readfield(tmp_dir, 'zz_vvc_' +
                            calib)  # read the theoretical vortex field
            vvc = proper.prop_shift_center(vvc)
            scale_psf = wfo._wfarr[0, 0]
            psf_num = readfield(tmp_dir,
                                'zz_psf_' + calib)  # read the pre-vortex field
            psf0 = psf_num[0, 0]
            psf_num = psf_num / psf0 * scale_psf
            perf_num = readfield(tmp_dir, 'zz_perf_' +
                                 calib)  # read the perfect-result vortex field
            perf_num = perf_num / psf0 * scale_psf
            wfo._wfarr = (
                wfo._wfarr - psf_num
            ) * vvc + perf_num  # the wavefront takes into account the real pupil with the perfect-result vortex field

        else:  # CAL==1: # create the vortex for a perfectly circular pupil
            if (Debug_print == True):
                print("Charge ", charge)

            wfo1 = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)
            proper.prop_circular_aperture(wfo1, diam / 2)
            proper.prop_define_entrance(wfo1)
            proper.prop_propagate(wfo1, f_lens,
                                  'inizio')  # propagate wavefront
            proper.prop_lens(
                wfo1, f_lens,
                'focusing lens vortex')  # propagate through a lens
            proper.prop_propagate(wfo1, f_lens, 'VC')  # propagate wavefront

            writefield(tmp_dir, 'zz_psf_' + calib,
                       wfo1.wfarr)  # write the pre-vortex field
            nramp = int(n * ramp_oversamp)  #oversamp
            # create the vortex by creating a matrix (theta) representing the ramp (created by atan 2 gradually varying matrix, x and y)
            y1 = np.ones((nramp, ), dtype=np.int)
            y2 = np.arange(0, nramp, 1.) - (nramp / 2) - int(ramp_oversamp) / 2
            y = np.outer(y2, y1)
            x = np.transpose(y)
            theta = np.arctan2(y, x)
            x = 0
            y = 0
            vvc_tmp = np.exp(1j * (ofst + ramp_sign * charge * theta))
            theta = 0
            vvc_real_resampled = cv2.resize(
                vvc_tmp.real, (0, 0),
                fx=1 / ramp_oversamp,
                fy=1 / ramp_oversamp,
                interpolation=cv2.INTER_LINEAR
            )  # scale the pupil to the pupil size of the simualtions
            vvc_imag_resampled = cv2.resize(
                vvc_tmp.imag, (0, 0),
                fx=1 / ramp_oversamp,
                fy=1 / ramp_oversamp,
                interpolation=cv2.INTER_LINEAR
            )  # scale the pupil to the pupil size of the simualtions
            vvc = np.array(vvc_real_resampled, dtype=complex)
            vvc.imag = vvc_imag_resampled
            vvcphase = np.arctan2(vvc.imag,
                                  vvc.real)  # create the vortex phase
            vvc_complex = np.array(np.zeros((n, n)), dtype=complex)
            vvc_complex.imag = vvcphase
            vvc = np.exp(vvc_complex)
            vvc_tmp = 0.
            writefield(tmp_dir, 'zz_vvc_' + calib,
                       vvc)  # write the theoretical vortex field

            proper.prop_multiply(wfo1, vvc)
            proper.prop_propagate(wfo1, f_lens, 'OAP2')
            proper.prop_lens(wfo1, f_lens)
            proper.prop_propagate(wfo1, f_lens, 'forward to Lyot Stop')
            proper.prop_circular_obscuration(
                wfo1, 1., NORM=True)  # null the amplitude iside the Lyot Stop
            proper.prop_propagate(wfo1, -f_lens)  # back-propagation
            proper.prop_lens(wfo1, -f_lens)
            proper.prop_propagate(wfo1, -f_lens)
            writefield(tmp_dir, 'zz_perf_' + calib,
                       wfo1.wfarr)  # write the perfect-result vortex field

            vvc = readfield(tmp_dir, 'zz_vvc_' + calib)
            vvc = proper.prop_shift_center(vvc)
            scale_psf = wfo._wfarr[0, 0]
            psf_num = readfield(tmp_dir,
                                'zz_psf_' + calib)  # read the pre-vortex field
            psf0 = psf_num[0, 0]
            psf_num = psf_num / psf0 * scale_psf
            perf_num = readfield(tmp_dir, 'zz_perf_' +
                                 calib)  # read the perfect-result vortex field
            perf_num = perf_num / psf0 * scale_psf
            wfo._wfarr = (
                wfo._wfarr - psf_num
            ) * vvc + perf_num  # the wavefront takes into account the real pupil with the perfect-result vortex field

        proper.prop_propagate(wfo, f_lens, "propagate to pupil reimaging lens")
        proper.prop_lens(wfo, f_lens, "apply pupil reimaging lens")
        proper.prop_propagate(wfo, f_lens, "lyot stop")

    return wfo
Пример #29
0
def create_pupil(nhr=2**10,
                 npupil=285,
                 pupil_img_size=40,
                 diam_ext=37,
                 diam_int=11,
                 spi_width=0.5,
                 spi_angles=[0, 60, 120],
                 seg_width=0,
                 seg_gap=0,
                 seg_rms=0,
                 seg_ny=[
                     10, 13, 16, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
                     30, 31, 30, 31, 30, 31, 30, 31, 30, 29, 28, 27, 26, 25,
                     24, 23, 22, 19, 16, 13, 10
                 ],
                 seg_missing=[],
                 seed=123456,
                 **conf):
    ''' Create a pupil.
    
    Args:
        nhr: int
            high resolution grid
        npupil: int
            number of pixels of the pupil
        pupil_img_size: float
            pupil image (for PROPER) in m
        diam_ext: float
            outer circular aperture in m
        diam_int: float
            central obscuration in m
        spi_width: float
            spider width in m
        spi_angles: list of float
            spider angles in deg
        seg_width: float
            segment width in m
        seg_gap: float
            gap between segments in m
        seg_rms: float
            rms of the reflectivity of all segments
        seg_ny: list of int
            number of hexagonal segments per column (from left to right)
        seg_missing: list of tupples
            coordinates of missing segments
    
    '''

    # create a high res pupil with PROPER of even size (nhr)
    nhr_size = pupil_img_size * nhr / (nhr - 1)
    wf_tmp = proper.prop_begin(nhr_size, 1, nhr, diam_ext / nhr_size)
    if diam_ext > 0:
        proper.prop_circular_aperture(wf_tmp, 1, NORM=True)
    if diam_int > 0:
        proper.prop_circular_obscuration(wf_tmp,
                                         diam_int / diam_ext,
                                         NORM=True)
    if spi_width > 0:
        for angle in spi_angles:
            proper.prop_rectangular_obscuration(wf_tmp, spi_width/nhr_size, 2, \
                ROTATION=angle, NORM=True)
    pup = proper.prop_get_amplitude(wf_tmp)
    # crop the pupil to odd size (nhr-1), and resize to npupil
    pup = pup[1:, 1:]
    pup = resize_img(pup, npupil)
    # add segments
    if seg_width > 0:
        segments = np.zeros((nhr, nhr))
        # sampling in meters/pixel
        sampling = pupil_img_size / nhr
        # dist between center of two segments, side by side
        seg_d = seg_width * np.cos(np.pi / 6) + seg_gap
        # segment radius
        seg_r = seg_width / 2
        # segment radial distance wrt x and y axis
        seg_ny = np.array(seg_ny)
        seg_nx = len(seg_ny)
        seg_rx = np.arange(seg_nx) - (seg_nx - 1) / 2
        seg_ry = (seg_ny - 1) / 2
        # loop through segments
        np.random.seed(seed)
        for i in range(seg_nx):
            seg_x = seg_rx[i] * seg_d * np.cos(np.pi / 6)
            seg_y = -seg_ry[i] * seg_d
            for j in range(1, seg_ny[i] + 1):
                # removes secondary and if any missing segment is present
                if (np.sqrt(seg_x**2 + seg_y**2) <= 4.01*seg_d) \
                        or ((seg_rx[i], j) in seg_missing):
                    seg_y += seg_d
                else:
                    # creates one hexagonal segment at x, y position in meters
                    segment = create_hexagon(nhr, seg_r, seg_y, seg_x,
                                             sampling)
                    # multiply by segment reflectivity and add to segments
                    seg_refl = np.random.normal(1, seg_rms)
                    segments += segment * seg_refl
                    seg_y += seg_d
        # need to transpose, due to the orientation of hexagons in create_hexagon
        segments = segments.T
        # resize to npupil, and add to pupil
        segments = resize_img(segments, npupil)
        pup *= segments

    return pup
Пример #30
0
def lyotstop(wf, diam, r_obstr, npupil, RAVC, LS, LS_parameters, spiders_angle, LS_phase_apodizer_file, LS_amplitude_apodizer_file, LS_misalignment, path, Debug_print, Debug):

    if (RAVC==True): # define the inner radius of the Lyot Stop
        t1_opt = 1. - 1./4*(r_obstr**2 + r_obstr*(math.sqrt(r_obstr**2 + 8.))) # define the apodizer transmission [Mawet2013]
        R1_opt = (r_obstr/math.sqrt(1. - t1_opt)) # define teh apodizer radius [Mawet2013]
        r_LS = R1_opt + LS_parameters[1] # when a Ring apodizer is present, the inner LS has to have at least the value of the apodizer radius
    else:
        r_LS = r_obstr + LS_parameters[1] # when no apodizer, the LS has to have at least the radius of the pupil central obstruction
    if LS==True: # apply the LS
        if (Debug_print==True):
            print("LS parameters: ", LS_parameters)
        proper.prop_circular_aperture(wf, LS_parameters[0], LS_misalignment[0], LS_misalignment[1], NORM=True)
        proper.prop_circular_obscuration(wf, r_LS, LS_misalignment[0], LS_misalignment[1], NORM=True)
        if (LS_parameters[2]!=0):
            for iter in range(0,len(spiders_angle)):
                if (Debug_print==True):
                    print("LS_misalignment: ", LS_misalignment)
                proper.prop_rectangular_obscuration(wf, LS_parameters[2], 2*diam,LS_misalignment[0], LS_misalignment[1], ROTATION=spiders_angle[iter]) # define the spiders

    
    if (isinstance(LS_phase_apodizer_file, (list, tuple, np.ndarray)) == True):
        xc_pixels = int(LS_misalignment[3]*npupil)
        yc_pixels = int(LS_misalignment[4]*npupil)
        apodizer_pixels = (LS_phase_apodizer_file.shape)[0]## fits file size
        scaling_factor = float(npupil)/float(pupil_pixels) ## scaling factor between the fits file size and the pupil size of the simulation
        if (Debug_print==True):
            print ("scaling_factor: ", scaling_factor)
        apodizer_scale = cv2.resize(phase_apodizer_file.astype(np.float32), (0,0), fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_LINEAR) # scale the pupil to the pupil size of the simualtions
        if (Debug_print==True):
            print ("apodizer_resample", apodizer_scale.shape)
        apodizer_large = np.zeros((n,n)) # define an array of n-0s, where to insert the pupuil
        if (Debug_print==True):
            print("n: ", n)
            print("npupil: ", npupil)
        apodizer_large[int(n/2)+1-int(npupil/2)-1 + xc_pixels:int(n/2)+1+int(npupil/2)+ xc_pixels,int(n/2)+1-int(npupil/2)-1+ yc_pixels:int(n/2)+1+int(npupil/2)+ yc_pixels] =apodizer_scale # insert the scaled pupil into the 0s grid
        phase_multiply = np.array(np.zeros((n,n)), dtype=complex) # create a complex array
        phase_multiply.imag = apodizer_large # define the imaginary part of the complex array as the atm screen
        apodizer = np.exp(phase_multiply)
        proper.prop_multiply(wf, apodizer)
        if (Debug == True):
            fits.writeto(path + 'LS_apodizer.fits', proper.prop_get_phase(wf), overwrite=True)

    
    
    if (isinstance(LS_amplitude_apodizer_file, (list, tuple, np.ndarray)) == True):
        xc_pixels = int(LS_misalignment[0]*npupil)
        yc_pixels = int(LS_misalignment[1]*npupil)
        apodizer_pixels = (LS_amplitude_apodizer_file.shape)[0]## fits file size
        scaling_factor = float(npupil)/float(pupil_pixels) ## scaling factor between the fits file size and the pupil size of the simulation
        if (Debug_print==True):
            print ("scaling_factor: ", scaling_factor)
            apodizer_scale = cv2.resize(amplitude_apodizer_file.astype(np.float32), (0,0), fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_LINEAR) # scale the pupil to the pupil size of the simualtions
        if (Debug_print==True):
            print ("apodizer_resample", apodizer_scale.shape)
        apodizer_large = np.zeros((n,n)) # define an array of n-0s, where to insert the pupuil
        if (Debug_print==True):
            print("n: ", n)
            print("npupil: ", npupil)
        apodizer_large[int(n/2)+1-int(npupil/2)-1 + xc_pixels:int(n/2)+1+int(npupil/2)+ xc_pixels,int(n/2)+1-int(npupil/2)-1+ yc_pixels:int(n/2)+1+int(npupil/2)+ yc_pixels] =apodizer_scale # insert the scaled pupil into the 0s grid
        apodizer = apodizer_large
        proper.prop_multiply(wf, apodizer)
        if (Debug == True):
            fits.writeto(path + 'LS_apodizer.fits', proper.prop_get_amplitude(wf), overwrite=True)





    return