Пример #1
0
    def run_radial_simul(self, my_front_reconstruction, my_front_advancement,
                         my_vertex_or_path, my_param):
        # setting up the verbosity level of the log at console
        # setup_logging_to_console(verbosity_level='error')

        outputfolder = "./Temp_Data/" + my_vertex_or_path + "_radial_" + my_front_advancement + "_" + my_front_reconstruction
        self.remove(outputfolder)

        # creating mesh
        Mesh = CartesianMesh(my_param['Lx'], my_param['Ly'], my_param['Nx'],
                             my_param['Ny'])

        # solid properties
        nu = my_param['nu']  # Poisson's ratio
        youngs_mod = my_param['youngs_mod']  # Young's modulus
        Eprime = youngs_mod / (1 - nu**2)  # plain strain modulus
        K_Ic = my_param['K_Ic']  # fracture toughness
        Cl = my_param['Cl']  # Carter's leak off coefficient

        # material properties
        Solid = MaterialProperties(Mesh, Eprime, K_Ic, Carters_coef=Cl)

        # injection parameters
        Q0 = my_param['Q0']  # injection rate
        Injection = InjectionProperties(Q0, Mesh)

        # fluid properties
        Fluid = FluidProperties(viscosity=my_param['viscosity'])

        # simulation properties
        simulProp = SimulationProperties()
        simulProp.finalTime = my_param[
            'finalTime']  # the time at which the simulation stops
        simulProp.set_tipAsymptote(
            my_vertex_or_path
        )  # tip asymptote is evaluated with the viscosity dominated assumption
        simulProp.frontAdvancing = my_front_advancement  # to set explicit front tracking
        simulProp.plotFigure = False
        simulProp.set_solTimeSeries(np.asarray([2, 200, 5000, 30000, 100000]))
        simulProp.saveTSJump, simulProp.plotTSJump = 5, 5  # save and plot after every five time steps
        simulProp.set_outputFolder(outputfolder)
        simulProp.projMethod = my_front_reconstruction
        simulProp.log2file = False

        # initialization parameters
        Fr_geometry = Geometry('radial', radius=my_param['initialR'])
        init_param = InitializationParameters(Fr_geometry,
                                              regime=my_vertex_or_path)

        # creating fracture object
        Fr = Fracture(Mesh, init_param, Solid, Fluid, Injection, simulProp)

        # create a Controller
        controller = Controller(Fr, Solid, Fluid, Injection, simulProp)

        # run the simulation
        exitcode = controller.run()
        return exitcode, outputfolder
Пример #2
0
Eprime = youngs_mod / (1 - nu**2)  # plain strain modulus
K_Ic = 1e7  # fracture toughness

Solid = MaterialProperties(Mesh, Eprime, K_Ic, minimum_width=1e-9)

# injection parameters
Q0 = 0.001  # injection rate
Injection = InjectionProperties(Q0, Mesh)

# fluid properties
viscosity = 1.1e-3
Fluid = FluidProperties(viscosity=viscosity)

# simulation properties
simulProp = SimulationProperties()
simulProp.finalTime = 50  # the time at which the simulation stops
simulProp.set_outputFolder("./Data/star")  # the address of the output folder
simulProp.plotTSJump = 4

# initializing fracture
from fracture_initialization import get_radial_survey_cells
initRad = np.pi
surv_cells, _, inner_cells = get_radial_survey_cells(Mesh, initRad)
surv_cells_dist = np.cos(Mesh.CenterCoor[surv_cells, 0]) + 2.5 - abs(
    Mesh.CenterCoor[surv_cells, 1])
Fr_geometry = Geometry(shape='level set',
                       survey_cells=surv_cells,
                       tip_distances=surv_cells_dist,
                       inner_cells=inner_cells)

from elasticity import load_isotropic_elasticity_matrix
Solid = MaterialProperties(Mesh,
                           Eprime,
                           K1c_func=My_KIc_func,
                           minimum_width=1e-8)

# injection parameters
Q0 = 0.05  # injection rate
Injection = InjectionProperties(Q0, Mesh, source_coordinates=[0.1, 0.])

# fluid properties
Fluid = FluidProperties(viscosity=1.1e-3)

# simulation properties
simulProp = SimulationProperties()
simulProp.finalTime = 0.0003  # the time at which the simulation stops
myfolder = "./Data/toughness_jump_3p6"
simulProp.set_outputFolder(
    myfolder)  # the disk address where the files are saved
simulProp.projMethod = 'LS_continousfront'
simulProp.frontAdvancing = 'implicit'
simulProp.useBlockToeplizCompression = True
simulProp.saveToDisk = False
simulProp.bckColor = 'K1c'
simulProp.saveFluidVelAsVector = True

# To decide what you will see when you print:
#simulProp.plotVar = ['ffvf','regime']
#simulProp.plotVar = ['footprint','regime']
#simulProp.plotVar = ['footprint']
Пример #4
0
Solid = MaterialProperties(Mesh,
                           Eprime,
                           toughness=2.5e6,
                           confining_stress_func=sigmaO_func,
                           minimum_width=1e-5)

# injection parameters
Q0 = np.asarray([[0.0, 50], [50, 0]])  # injection rate
Injection = InjectionProperties(Q0, Mesh, source_coordinates=[0, -1000])

# fluid properties
Fluid = FluidProperties(viscosity=50, density=2650)

# simulation properties
simulProp = SimulationProperties()
simulProp.finalTime = 56000000000
#simulProp.frontAdvancing = 'implicit'  # the time at which the simulation stops
simulProp.set_outputFolder(
    "./Data/neutral_buoyancy")  # the disk address where the files are saved
simulProp.gravity = True  # set up the gravity flag
simulProp.tolFractFront = 3e-3  # increase the tolerance for fracture front iteration
simulProp.plotTSJump = 5  # plot every fourth time step
simulProp.saveTSJump = 2  # save every second time step
simulProp.maxSolverItrs = 500  # increase the Picard iteration limit for the elastohydrodynamic solver
#simulProp.tmStpPrefactor = np.asarray([[0, 80000], [0.3, 0.1]]) # set up the time step prefactor
#simulProp.timeStepLimit = 500             # time step limit
simulProp.plotVar = ['w']  # plot fracture width and fracture front velocity
#simulProp.blockFigure = True
#simulProp.saveToDisk = False

# initializing a static fracture