IMAGE_DIR = '/home/administrator/data/chgu/hard_frames' class InferenceConfig(coco.CocoConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU # GPU_COUNT = 0 for CPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 config = InferenceConfig() config.display() # Create model object. model = modellib.MaskRCNN(model_dir=MODEL_DIR, config=config) if config.GPU_COUNT: model = model.cuda() # Load weights trained on MS-COCO model.load_state_dict(torch.load(COCO_MODEL_PATH)) # COCO Class names # Index of the class in the list is its ID. For example, to get ID of # the teddy bear class, use: class_names.index('teddy bear') class_names = [ 'BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
config = CocoConfig() else: class InferenceConfig(CocoConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 DETECTION_MIN_CONFIDENCE = 0 config = InferenceConfig() config.display() # Create model if args.command == "train": model = modellib.MaskRCNN(config=config, model_dir=args.logs) else: model = modellib.MaskRCNN(config=config, model_dir=args.logs) if config.GPU_COUNT: model = model.cuda() # Select weights file to load if args.model: if args.model.lower() == "coco": model_path = COCO_MODEL_PATH elif args.model.lower() == "last": # Find last trained weights model_path = model.find_last()[1] elif args.model.lower() == "imagenet": # Start from ImageNet trained weights model_path = config.IMAGENET_MODEL_PATH