Пример #1
0
class PI(np.ndarray):
    """
    A class representing a point of intersection (PI) of an alignment.

    Parameters
    ----------
    x, y, z : float
        The x, y, and z coordinates.
    radius : float
        The radius of the horizontal curve. Use zero if a curve does not
        exist.
    """
    # Custom properties
    x = propy.index_property(0)
    y = propy.index_property(1)
    z = propy.index_property(2)

    def __new__(cls, x, y, z=0, radius=0):
        obj = np.array([x, y, z], dtype='float').view(cls)
        obj.radius = radius
        return obj

    def __array_finalize__(self, obj):
        if obj is None: return
        self.radius = getattr(obj, 'radius', 0)

    __repr__ = propy.repr_method('x', 'y', 'z', 'radius')
Пример #2
0
class LoadCase(object):
    """
    A class representing a structural load case.

    Parameters
    ----------
    name : str
        The name of the load case.
    node_loads : list
        A list of :class:`.NodeLoad` to apply with the load case.
    elem_loads : list
        A list of :class:`.ElementLoad` to apply with the load case.
    """
    # Custom properties
    name = propy.str_property('name')

    def __init__(self, name, node_loads=[], elem_loads=[]):
        self.name = name
        self.node_loads = node_loads
        self.elem_loads = elem_loads

    __repr__ = propy.repr_method('name', 'node_loads', 'elem_loads')

    def set_nodes(self, ndict):
        """
        Sets the node references for all node loads assigned to the load case.

        Parameters
        ----------
        ndict : dict
            A dictionary mapping node names to node objects.
        """
        for n in self.node_loads:
            n.set_node(ndict)

    def set_elements(self, edict):
        """
        Sets the element references for all element loads assigned to the load
        case.

        Parameters
        ----------
        edict : dict
            A dictionary mapping element names to element objects.
        """
        for e in self.elem_loads:
            e.set_element(edict)
Пример #3
0
class Material(object):
    """
    A class representing an engineered material.

    Parameters
    ----------
    name : str
        The name of the material.
    elasticity : float
        The modulus of elasticity.
    rigidity : float
        The modulus of rigidity.
    """
    # Custom properties
    name = propy.str_property('name')

    def __init__(self, name, elasticity, rigidity=0):
        self.name = name
        self.elasticity = elasticity
        self.rigidity = rigidity

    __repr__ = propy.repr_method('name', 'elasticity', 'rigidity')
Пример #4
0
class ElementGroup(object):
    """
    A class representing a group of element properties.

    Parameters
    ----------
    name : str
        The name of the group.
    section : :class:`.CrossSection`
        The group cross section.
    material : :class:`.Material`
        The group material.
    """
    # Custom properties
    name = propy.str_property('name')

    def __init__(self, name, section, material):
        self.name = name
        self.section = section
        self.material = material

    __repr__ = propy.repr_method('name', 'section', 'material')
Пример #5
0
class SurveyPoint(np.ndarray):
    """
    A class representing a survey point.

    Parameters
    ----------
    x, y, z : float
        The x, y, and z coordinates.
    """
    # Custom properties
    x = propy.index_property(0)
    y = propy.index_property(1)
    z = propy.index_property(2)

    def __new__(cls, x, y, z, **kwargs):
        obj = np.array([x, y, z], dtype='float').view(cls)
        obj.meta = dict(**kwargs)
        return obj

    def __array_finalize__(self, obj):
        if obj is None: return
        self.meta = getattr(obj, 'meta', {})

    __repr__ = propy.repr_method('x', 'y', 'z', 'meta')
Пример #6
0
class Alignment(object):
    """
    A class representing a survey alignment.

    Parameters
    ----------
    name : str
        Name of alignment.
    pis : list
        A list of :class:`.PI`.
    stakes : list
        A list of :class:`.SurveyStake`.
    grid : float
        The grid size used for spatial hash generation.
    view_offset : float
        The offset beyond which points will be ignored when generating station
        coordinates from global coordinates.
    view_margin : float
        The station margin at the beginning and end of the alignment. Beyond
        this threshold, generated station coordinates from global coordinates
        will be ignored.

    Examples
    --------
    .. plot:: ../examples/survey/alignment_ex1.py
        :include-source:
    """
    BISC_TOL = 1e-4  # Bisector station tolerance

    # Custom properties
    name = propy.str_property('name')

    def __init__(self,
                 name,
                 pis=[],
                 stakes=[],
                 grid=10,
                 view_offset=15,
                 view_margin=15):
        self.name = name
        self.pis = pis
        self.stakes = stakes
        self.grid = grid
        self.view_offset = view_offset
        self.view_margin = view_margin

    __repr__ = propy.repr_method('name', 'grid', 'view_offset', 'view_margin',
                                 'pis', 'stakes')

    def set_stake_xy(self):
        """
        Sets the xy coordinates for all station stakes assigned to the
        alignment.
        """
        obj = []
        p = []

        for x in self.stakes:
            if x._type == 'station':
                obj.append(x)
                p.append((x.station, x.offset, x.rotation))

        p = np.array(p)
        c, s = np.cos(p[:, 2]), np.sin(p[:, 2])
        c, s = np.column_stack([c, -s]), np.column_stack([s, c])

        b = self.coordinates(p[:, 0])
        p = self.coordinates(p[:, :2])
        p -= b

        c = np.einsum('ij,ij->i', p, c)
        s = np.einsum('ij,ij->i', p, s)
        p = np.column_stack([c, s])
        p += b

        for a, b in zip(obj, p):
            a[:2] = b

    def pi_coordinates(self):
        """
        Returns an array of PI coordinates of shape (N, 3).
        """
        if not self.pis:
            return np.zeros((0, 3), dtype='float')
        return np.array(self.pis, dtype='float')

    def pi_radii(self):
        """
        Returns an array of PI horizontal curve radii of shape (N,).
        """
        return np.array([x.radius for x in self.pis], dtype='float')

    def azimuths(self):
        """
        Returns an array of alignment azimuths in the shape (N,). Each element
        of the array corresponds to a PI index and represents the azimuth of
        the alignment ahead of that PI.
        """
        if not self.pis:
            return np.zeros(0, dtype='float')

        elif len(self.pis) == 1:
            return np.zeros(1, dtype='float')

        x = self.pi_coordinates()
        dx = x[1:, :2] - x[:-1, :2]
        az = np.arctan2(dx[:, 0], dx[:, 1])
        az = np.append(az, az[-1])

        return np.asarray(az, dtype='float')

    def deflection_angles(self):
        """
        Returns an array of PI deflection angles in the shape (N,). The angle
        is negative for turns to the left and positive for turns to the right.
        """
        if not self.pis:
            return np.zeros(0, dtype='float')

        elif len(self.pis) == 1:
            return np.zeros(1, dtype='float')

        az = self.azimuths()
        da = az[1:] - az[:-1]
        i = (np.abs(da) > np.pi)
        da[i] -= 2 * np.pi * np.sign(da[i])
        da = np.insert(da, 0, 0)

        return np.asarray(da, dtype='float')

    def tangent_ordinates(self):
        """
        Returns an array of tangent ordinates corresponding to each PI
        in the shape (N,). This value is the horizontal distance between
        the PI and PC and PI and PT.
        """
        r = self.pi_radii()
        da = self.deflection_angles()
        return r * np.abs(np.tan(da / 2))

    def curve_lengths(self):
        """
        Returns an array of horizontal curve lengths corresponding to each PI
        in teh shape (N,). This value is the station distance between the
        PC and PT.
        """
        r = self.pi_radii()
        da = self.deflection_angles()
        return r * np.abs(da)

    def middle_ordinates(self):
        """
        Returns an array of middle ordinate distances corresponding to each PI
        in the shape (N,). This value is the horizontal distance between the
        MPC and midpoint of the chord line between the PC and PT.
        """
        r = self.pi_radii()
        da = np.abs(self.deflection_angles())
        return r * (1 - np.cos(da / 2))

    def external_ordinates(self):
        """
        Returns an array of external ordinates corresponding to each PI
        in the shape (N,). This is the horizontal distance between the
        MPC and PI.
        """
        r = self.pi_radii()
        da = self.deflection_angles()
        return r * np.abs(np.tan(da / 2) * np.tan(da / 4))

    def chord_distances(self):
        """
        Returns an array of chord distances corresponding to each PI
        in teh shape (N,). This is the straight line horizontal distance
        between the PC and PT.
        """
        r = self.pi_radii()
        da = np.abs(self.deflection_angles())
        return 2 * r * np.sin(da / 2)

    def pt_coordinates(self):
        """
        Returns an array of (x, y) coordinates for the Point of Tangents (PT)
        in the shape (N, 2).
        """
        if not self.pis:
            return np.zeros((0, 3), dtype='float')

        pi = self.pi_coordinates()
        az = self.azimuths()
        t = self.tangent_ordinates()
        t = np.expand_dims(t, 1)
        uv = np.column_stack([np.sin(az), np.cos(az)])
        pt = pi[:, :2] + t * uv

        return np.asarray(pt, dtype='float')

    def pc_coordinates(self):
        """
        Returns an array of (x, y) coordinates for the Point of Curves (PC)
        in the shape (N, 2).
        """
        if not self.pis:
            return np.zeros((0, 3), dtype='float')

        pi = self.pi_coordinates()
        az = self.azimuths()
        da = self.deflection_angles()
        t = self.tangent_ordinates()
        t = np.expand_dims(t, 1)
        az -= da
        uv = np.column_stack([np.sin(az), np.cos(az)])
        pc = pi[:, :2] - t * uv

        return np.asarray(pc, dtype='float')

    def mpc_coordinates(self):
        """
        Returns an array of (x, y) coordinates for the Midpoint of Curves (MPC)
        in the shape (N, 2).
        """
        if not self.pis:
            return np.zeros((0, 3), dtype='float')

        pi = self.pi_coordinates()
        az = self.azimuths()
        da = self.deflection_angles()
        e = self.external_ordinates()
        az += (np.pi - da) / 2
        da = np.expand_dims(da, 1)
        e = np.expand_dims(e, 1)
        uv = np.column_stack([np.sin(az), np.cos(az)])
        mpc = pi[:, :2] + np.sign(da) * e * uv

        return np.asarray(mpc, dtype='float')

    def rp_coordinates(self):
        """
        Returns an array of (x, y) coordinates for the Radius Points (RP)
        in the shape (N, 2).
        """
        if not self.pis:
            return np.zeros((0, 3), dtype='float')

        pi = self.pi_coordinates()
        az = self.azimuths()
        da = self.deflection_angles()
        e = self.external_ordinates()
        e = np.expand_dims(e, 1)
        r = self.pi_radii()
        r = np.expand_dims(r, 1)
        az += (np.pi - da) / 2
        uv = np.column_stack([np.sin(az), np.cos(az)])
        da = np.expand_dims(da, 1)
        rp = pi[:, :2] + np.sign(da) * (e + r) * uv

        return np.asarray(rp, dtype='float')

    def pt_stations(self):
        """
        Returns an array of (x, y) coordinates for the Point of Tangents (PT)
        in the shape (N, 2).
        """
        if not self.pis:
            return np.zeros(0, dtype='float')

        x = self.pi_coordinates()
        tan = self.tangent_ordinates()
        dist = np.linalg.norm(x[:-1, :2] - x[1:, :2], axis=1)
        dist = np.insert(dist, 0, 0)
        dist += self.curve_lengths() - tan
        sta = np.cumsum(dist)
        sta[1:] -= np.cumsum(tan[:-1])

        return np.asarray(sta, dtype='float')

    def pc_stations(self):
        """
        Returns an array of stations for the Point of Curves (PC) in the
        shape (N,).
        """
        if not self.pis:
            return np.zeros(0, dtype='float')

        sta = self.pt_stations() - self.curve_lengths()
        return np.asarray(sta, dtype='float')

    def mpc_stations(self):
        """
        Returns an array of stations for the Midpoint of Curves (MPC)
        in the shape (N,).
        """
        return 0.5 * (self.pt_stations() + self.pc_stations())

    def poc_transforms(self):
        """
        Returns the POC transforms in the shape (N, 2, 2). These transforms
        project (x, y) global coordinates to (offset, station) station
        coordinates relative to the PI angle bisector.
        """
        az = self.azimuths()
        da = self.deflection_angles()
        l = az - da / 2
        t = l + np.pi / 2
        t = np.column_stack([np.sin(t), np.cos(t), np.sin(l), np.cos(l)])

        return t.reshape(t.shape[0], 2, 2)

    def pot_transforms(self):
        """
        Returns the POT transforms in the shape (N, 2, 2). These transforms
        project (x, y) global coordinates to (offset, station) station
        coordinates relative to the tangent line between PI's.
        """
        l = self.azimuths()
        t = l + np.pi / 2
        t = np.column_stack([np.sin(t), np.cos(t), np.sin(l), np.cos(l)])
        return t.reshape(t.shape[0], 2, 2)

    def segment_indices(self, stations):
        """
        Determines the segment type and PI indices corresponding to the
        specified stations. Returns an array of shape (N, 2). The first column
        of the array contains 1 if the station is located along an alignment
        tangent or 2 if the station is located on a horizontal curve or
        alignment bisector. The second column contains the index corresponding
        to the PI where the point is located.

        Parameters
        ----------
        stations : array
            An array of stations of shape (N,).
        """
        sta = np.asarray(stations)
        pc_sta = self.pc_stations()
        pt_sta = self.pt_stations()
        s = SpatialHash(np.expand_dims(sta, 1), self.grid)

        # Set values beyond alignment limits
        r = np.zeros((sta.shape[0], 2), dtype='int')
        r[sta < 0] = 1, 0
        r[sta > pt_sta[-1]] = 1, pt_sta.shape[0] - 1

        # POT segments
        ah = np.expand_dims(pc_sta[1:], 1)
        bk = np.expand_dims(pt_sta[:-1], 1)

        for i, (a, b) in enumerate(zip(ah, bk)):
            f = s.query_range(b, a, 0)
            r[f] = 1, i

        # POC segments
        f = (self.curve_lengths() == 0)
        pc_sta[f] -= Alignment.BISC_TOL
        pt_sta[f] += Alignment.BISC_TOL

        ah = np.expand_dims(pt_sta[1:-1], 1)
        bk = np.expand_dims(pc_sta[1:-1], 1)

        for i, (a, b) in enumerate(zip(ah, bk)):
            f = s.query_range(b, a, 0)
            r[f] = 2, i + 1

        return r

    def _pot_coordinates(self, result, seg, sta_coords):
        """
        Assigns the POT coordinates for :meth:`.coordinates`.

        Parameters
        ----------
        result : array
            The array to which the results will be added.
        seg : array
            The segment indices array.
        sta_coords : array
            An array of station coordinates of shape (N, 2).
        """
        f = (seg[:, 0] == 1)

        if not f.any():
            return

        sta = np.expand_dims(sta_coords[f, 0], 1)
        off = np.expand_dims(sta_coords[f, 1], 1)

        i = seg[f, 1]
        t = self.pot_transforms()[i]
        tx, ty = t[:, 0], t[:, 1]
        pt_coord = self.pt_coordinates()[i]
        pt_sta = np.expand_dims(self.pt_stations()[i], 1)

        result[f] = tx * off + ty * (sta - pt_sta) + pt_coord

    def _poc_bisc_coordinates(self, result, seg, sta_coords):
        """
        Assigns the POC bisector coordinates for :meth:`.coordinates`.

        Parameters
        ----------
        result : array
            The array to which the results will be added.
        seg : array
            The segment indices array.
        sta_coords : array
            An array of station coordinates of shape (N, 2).
        """
        f = (seg[:, 0] == 2) & (self.curve_lengths() == 0)[seg[:, 1]]

        if not f.any():
            return

        off = np.expand_dims(sta_coords[f, 1], 1)

        i = seg[f, 1]
        tx = self.poc_transforms()[i, 0]
        rp_coord = self.rp_coordinates()[i]

        result[f] = tx * off + rp_coord

    def _poc_curve_coordinates(self, result, seg, sta_coords):
        """
        Assigns the POC curve coordinates for :meth:`.coordinates`.

        Parameters
        ----------
        result : array
            The array to which the results will be added.
        seg : array
            The segment indices array.
        sta_coords : array
            An array of station coordinates of shape (N, 2).
        """
        l = self.curve_lengths()
        f = (seg[:, 0] == 2) & (l != 0)[seg[:, 1]]

        if not f.any():
            return

        sta = sta_coords[f, 0]
        off = sta_coords[f, 1]

        i = seg[f, 1]
        tx = self.poc_transforms()[i, 0]
        mpc_sta = self.mpc_stations()[i]
        rp_coord = self.rp_coordinates()[i]
        da = self.deflection_angles()[i]
        r = np.expand_dims(self.pi_radii()[i], 1)

        beta = da * (mpc_sta - sta) / l[i]
        c, s = np.cos(beta), np.sin(beta)
        c, s = np.column_stack([c, -s]), np.column_stack([s, c])

        c = np.einsum('ij,ij->i', tx, c)
        s = np.einsum('ij,ij->i', tx, s)

        tx = np.column_stack([c, s])
        da = np.sign(np.expand_dims(da, 1))
        off = np.expand_dims(off, 1)

        result[f] = tx * (off - da * r) + rp_coord

    def coordinates(self, sta_coords):
        """
        Returns the (x, y) or (x, y, z) global coordinates corresponding
        to the input station coordinates. Result is in the shape of (N, 2)
        of (N, 3).

        Parameters
        ----------
        sta_coords : array
            An array of (station), (station, offset), or (station, offset, z)
            coordinates of the shape (N,), (N, 2) or (N, 3).
        """
        sta_coords = np.asarray(sta_coords)

        # If shape is (N,), add zero offsets
        if len(sta_coords.shape) == 1:
            sta_coords = np.column_stack(
                [sta_coords, np.zeros(sta_coords.shape[0])])

        result = np.zeros((sta_coords.shape[0], 2), dtype='float')
        seg = self.segment_indices(sta_coords[:, 0])

        self._pot_coordinates(result, seg, sta_coords)
        self._poc_bisc_coordinates(result, seg, sta_coords)
        self._poc_curve_coordinates(result, seg, sta_coords)

        # Add z coordinate to result if available
        if sta_coords.shape[1] == 3:
            result = np.column_stack([result, sta_coords[:, 2]])

        return np.asarray(result, dtype='float')

    def _pot_station_coordinates(self, result, spatial_hash, coords):
        """
        Adds the POT station coordinates within the view.

        Parameters
        ----------
        result : dict
            The dictionary to which the results will be added.
        spatial_hash : array
            The spatial hash.
        coords : array
            An array of coordinates of shape (N, 2) or (N, 3).
        """
        t = self.pot_transforms()
        pt_sta = self.pt_stations()
        pt_coord = self.pt_coordinates()

        bk = self.pt_coordinates()[:-1]
        ah = self.pc_coordinates()[1:]

        if t.shape[0] > 0:
            bk[0] -= self.view_margin * t[0, 1]
            ah[-1] += self.view_margin * t[-1, 1]

        for i, (a, b) in enumerate(zip(ah, bk)):
            f = spatial_hash.query_range(b, a, self.view_offset)

            if f.shape[0] == 0:
                continue

            delta = coords[f, :2] - pt_coord[i]
            sta = np.dot(delta, t[i, 1]) + pt_sta[i]
            off = np.dot(delta, t[i, 0])

            if coords.shape[1] == 3:
                p = np.column_stack([sta, off, coords[f, 2]])
            else:
                p = np.column_stack([sta, off])

            for n, m in enumerate(f):
                if m not in result:
                    result[m] = []
                result[m].append(p[n])

    def _poc_station_coordinates(self, result, spatial_hash, coords):
        """
        Adds the POC station coordinates within the view.

        Parameters
        ----------
        result : dict
            The dictionary to which the results will be added.
        spatial_hash : array
            The spatial hash.
        coords : array
            An array of coordinates of shape (N, 2) or (N, 3).
        """
        l = self.curve_lengths()
        t = self.poc_transforms()
        da = self.deflection_angles()
        pc_sta = self.pc_stations()
        pt_sta = self.pt_stations()
        rp_coord = self.rp_coordinates()
        pt_coord = self.pt_coordinates()

        for i in range(1, len(self.pis) - 1):
            r = self.pis[i].radius
            ro = r + self.view_offset
            ri = max(r - self.view_offset, 0)
            f = spatial_hash.query_point(rp_coord[i], ro, ri)

            if f.shape[0] == 0:
                continue

            if l[i] == 0:
                # Angle bisector
                delta = coords[f, :2] - pt_coord[i]
                sta = np.dot(delta, t[i, 1]) + pt_sta[i]
                off = np.dot(delta, t[i, 0])

                g = ((np.abs(off) <= self.view_offset)
                     & (sta >= pt_sta[i] - Alignment.BISC_TOL)
                     & (sta <= pt_sta[i] + Alignment.BISC_TOL))
            else:
                # Horizontal curve
                delta = pt_coord[i] - rp_coord[i]
                delta = np.arctan2(delta[0], delta[1])
                p = coords[f, :2] - rp_coord[i]
                delta -= np.arctan2(p[:, 0], p[:, 1])

                sta = pt_sta[i] - (l[i] / da[i]) * delta
                off = np.sign(da[i]) * (r - np.linalg.norm(p, axis=1))

                g = (sta >= pc_sta[i]) & (sta <= pt_sta[i])

            if coords.shape[1] == 3:
                p = np.column_stack([sta, off, coords[f, 2]])[g]
            else:
                p = np.column_stack([sta, off])[g]

            for n, m in enumerate(f[g]):
                if m not in result:
                    result[m] = []
                result[m].append(p[n])

    def station_coordinates(self, coordinates):
        """
        Finds the (station, offset) or (station, offset, z) coordinates
        for the input global coordinates. Returns a dictionary of point
        indices with arrays of shape (N, 2) or (N, 3). If a point index
        is not in the dictionary, then no points are located along
        the alignment within the view threshold.

        Parameters
        ----------
        coordinates : array
            An array of (x, y) or (x, y, z) global coordinates in the shape
            (N, 2) or (N, 3).
        """
        coordinates = np.asarray(coordinates)
        s = SpatialHash(coordinates[:, :2], self.grid)
        result = {}

        self._pot_station_coordinates(result, s, coordinates)
        self._poc_station_coordinates(result, s, coordinates)

        for k, x in result.items():
            result[k] = np.array(x, dtype='float')

        return result

    def plot_plan(self, ax=None, step=1, symbols={}):
        """
        Plots a the plan view for the alignment.

        Parameters
        ----------
        ax : :class:`matplotlib.axes.Axes`
            The axex to which to add the plot. If None, a new figure and axes
            will be created.
        step : float
            The step interval to use for plotting points along horizontal
            curves.
        symbols : dict
            A dictionary of symbols to use for the plot. The following keys
            are used:

                * `pi`: PI point symbol, default is 'r.'
                * `rp`: RP point symbol, default is 'c.'
                * `pc`: PC point symbol, default is 'b.'
                * `pt`: PT point symbol, default is 'b.'
                * `alignment`: Alignment lines, default is 'b-'
                * `stakes`: Stake symbols, default is 'rx'

        Examples
        --------
        .. plot:: ../examples/survey/alignment_ex1.py
            :include-source:
        """
        if ax is None:
            x = self.pi_coordinates()[:, :2]
            mx = x.max(axis=0)
            c = 0.5 * (mx + x.min(axis=0))
            r = 1.1 * (np.max(mx - c) + self.view_offset + self.view_margin)
            xlim, ylim = np.column_stack([c - r, c + r])

            fig = plt.figure()
            ax = fig.add_subplot(111,
                                 title=self.name,
                                 xlim=xlim,
                                 ylim=ylim,
                                 xlabel='X',
                                 ylabel='Y',
                                 aspect='equal')
            ax.grid('major', alpha=0.2)

        sym = dict(pi='r.',
                   rp='c.',
                   pc='b.',
                   pt='b.',
                   alignment='b-',
                   stakes='rx')
        sym.update(symbols)

        pt = self.pt_coordinates()
        pc = self.pc_coordinates()

        if sym['alignment'] is not None:
            for a, b in zip(pt[:-1], pc[1:]):
                x = np.array([a, b])
                ax.plot(x[:, 0], x[:, 1], sym['alignment'])

            for a, b in zip(self.pt_stations(), self.pc_stations()):
                if a != b:
                    n = int(np.ceil((a - b) / step))
                    sta = np.linspace(b, a, n)
                    x = self.coordinates(sta)
                    ax.plot(x[:, 0], x[:, 1], sym['alignment'])

        if sym['pi'] is not None:
            x = self.pi_coordinates()
            ax.plot(x[:, 0], x[:, 1], sym['pi'])

        if sym['rp'] is not None:
            x = self.rp_coordinates()
            ax.plot(x[:, 0], x[:, 1], sym['rp'])

        if sym['pt'] is not None:
            ax.plot(pt[:, 0], pt[:, 1], sym['pt'])

        if sym['pc'] is not None:
            ax.plot(pc[:, 0], pc[:, 1], sym['pc'])

        if sym['stakes'] is not None and len(self.stakes) > 0:
            self.set_stake_xy()
            x = np.array(self.stakes)
            ax.plot(x[:, 0], x[:, 1], sym['stakes'])

        return ax
Пример #7
0
class TIN(object):
    """
    A class for creating triangulated irregular networks (TIN) models for
    3D surfaces. Includes methods for performing elevation and distance queries.

    Parameters
    ----------
    name : str
        The name of the model.
    points : array
        An array of points of shape (N, 3).
    breaklines : list
        A list of arrays of points representing breakline polylines.
    max_edge : float
        The maximum edge length beyond which simplices will not be included
        in the triangulation. If None, no simplices will be removed.
    step : float
        The setup interval for generated points along breaklines.
    grid : float
        The grid spacing used for the created spatial hash.

    Examples
    --------
    The following example creates a TIN model in the shape of a pyramid
    then performs distances queries to its surface:

    .. plot:: ../examples/survey/tin_ex1.py
        :include-source:
    """
    def __init__(self,
                 name,
                 points=[],
                 breaklines=[],
                 max_edge=None,
                 step=0.1,
                 grid=10):
        self.name = name
        self.breaklines = breaklines
        self.max_edge = max_edge
        self.step = step
        self._create_triangulation(points, grid)

    __repr__ = propy.repr_method('name')

    def _create_triangulation(self, points, grid):
        """
        Creates the Delaunay trianguation and spatial hash.

        Parameters
        ----------
        points : array
            An array of points of shape (N, 3).
        grid : float
            The spatial hash grid spacing.
        """
        points = np.asarray(points)
        b = self.breakpoints()

        if b.shape[0] > 0:
            if points.shape[0] > 0:
                points = points[points[:, 2].argsort()[::-1]]
                points = np.concatenate([b, points])
            else:
                points = b

        self.points = points
        self.tri = Delaunay(points[:, :2])
        self.hash = SpatialHash(points[:, :2], grid)
        self._remove_simplices()

    def _remove_simplices(self):
        """
        Removes all simplices with any edge greater than the max edge.
        """
        if self.max_edge is not None:
            p = self.tri.points
            s = self.tri.simplices

            a, b, c = p[s[:, 0]], p[s[:, 1]], p[s[:, 2]]

            f = ((np.linalg.norm(a - b) <= self.max_edge)
                 & (np.linalg.norm(b - c) <= self.max_edge)
                 & (np.linalg.norm(a - c) <= self.max_edge))

            self.tri.simplices = s[f]

    def breakpoints(self):
        """
        Returns an array of breakpoints for the assigned breaklines. The
        breakpoints are sorted by z coordinate from greatest to least.
        """
        points = [np.zeros((0, 3), dtype='float')]

        for line in self.breaklines:
            line = np.asarray(line)

            for i, (a, b) in enumerate(zip(line[:-1], line[1:])):
                m = a - b
                n = int(np.ceil(np.linalg.norm(m) / self.step))
                if n < 2: n = 2 if i == 0 else 1
                x = np.expand_dims(np.linspace(0, 1, n), 1)
                y = m * x + b
                points.append(y)

        points = np.concatenate(points)
        points = points[points[:, 2].argsort()[::-1]]

        return points

    def find_simplices(self, points):
        """
        Finds the simplices which contain the (x, y) point. Returns the simplex
        index if a single point is input or an array of simplex indices if
        multiple points are input. If the returned simplex index is -1, then
        the (x, y) point is not contained within any simplices.

        Parameters
        ----------
        points : array
            An array of points of shape (2,), (3,), (N, 2) or (N, 3).
        """
        points = np.asarray(points)

        if len(points.shape) == 1:
            points = points[:2]
        else:
            points = points[:, :2]

        return self.tri.find_simplex(points)

    def _simplex_indices(self, indexes):
        """
        Returns the simplex indices that include the input point indices.

        Parameters
        ----------
        indexes : list
            A list of point indices for which connected simplices will be
            returned.
        """
        indexes = set(indexes)
        a = []

        for i, x in enumerate(self.tri.simplices):
            for j in x:
                if j in indexes:
                    a.append(i)

        a = np.unique(a).astype('int')
        return a

    def query_simplices(self, point, radius):
        """
        Returns the indices of all simplices that have a corner within the
        specified radius of the input point.

        Parameters
        ----------
        point : array
            A point of shape (2,) or (3,).
        radius : float
            The xy-plane radius used for the query.
        """
        point = np.asarray(point)
        i = self.hash.query_point(point[:2], radius)
        return self._simplex_indices(i)

    def normal(self, simplex):
        """
        Returns the normal vector for the specified simplex. The returned
        normal vector is also a unit vector.

        Parameters
        ----------
        simplex : int
            The index of the simplex.
        """
        p = self.points
        s = self.tri.simplices[simplex]
        a, b, c = p[s[0]], p[s[1]], p[s[2]]
        n = np.cross(b - a, c - a)
        return n / np.linalg.norm(n)

    def elevation(self, point):
        """
        Returns the elevation of the TIN surface at the input point. Returns
        NaN if the TIN surface does not exist at that point.

        Parameters
        ----------
        point : array
            A point for which the elevation will be calculated. The point
            must be of shape (2,) or (3,).
        """
        point = np.asarray(point)
        s = self.find_simplices(point)

        if s == -1:
            return np.nan

        p = self.points
        n = self.normal(s)
        s = self.tri.simplices[s]

        if n[2] != 0:
            # Plane elevation
            a = p[s[0]]
            a = np.dot(n, a)
            b = np.dot(n[:2], point[:2])
            return (a - b) / n[2]

        # Vertical plane. Use max edge elevation
        zs = []
        a, b, c = p[s[0]], p[s[1]], p[s[2]]

        for v, w in ((a, b), (a, c), (b, c)):
            dv = np.linalg.norm(point[:2] - v[:2])
            dvw = np.linalg.norm(w[:2] - v[:2])
            z = (w[2] - v[2]) * dv / dvw + v[2]
            zs.append(z)

        return max(zs)

    def barycentric_coords(self, point, simplex):
        """
        Returns the local barycentric coordinates for the input point.
        If any of the coordinates are less than 0, then the projection
        of the point onto the plane of the triangle is outside of the triangle.

        Parameters
        ----------
        point : array
            A point for which barycentric coordinates will be calculated.
            The point must be of shape (3,).
        simplex : int
            The index of the simplex.
        """
        point = np.asarray(point)

        p = self.points
        n = self.normal(simplex)
        s = self.tri.simplices[simplex]

        a, b, c = p[s[0]], p[s[1]], p[s[2]]

        u = b - a
        u = u / np.linalg.norm(u)
        v = np.cross(u, n)

        x1, y1 = np.dot(a, u), np.dot(a, v)
        x2, y2 = np.dot(b, u), np.dot(b, v)
        x3, y3 = np.dot(c, u), np.dot(c, v)

        det = (y2 - y3) * (x1 - x3) + (x3 - x2) * (y1 - y3)
        x1, y1, x2, y2 = y2 - y3, x3 - x2, y3 - y1, x1 - x3

        x, y = np.dot(point, u), np.dot(point, v)
        l1 = (x1 * (x - x3) + y1 * (y - y3)) / det
        l2 = (x2 * (x - x3) + y2 * (y - y3)) / det
        l3 = 1 - l1 - l2

        return np.array([l1, l2, l3])

    def query_distances(self, point, radius):
        """
        Finds the closest distances to all simplices within the specified
        xy-plane radius.

        Parameters
        ----------
        point : array
            An array of shape (3,).
        radius : float
            The radius within the xy-plane in which simplices will be queried.

        Returns
        -------
        distances : array
            An array of distances to simplices of shape (N,).
        tin_points : array
            An array of closest simplex points of shape (N, 3).
        """
        point = np.asarray(point)
        simplices = self.query_simplices(point, radius)

        p = self.points
        s = self.tri.simplices[simplices]
        bary = [self.barycentric_coords(point, x) for x in simplices]
        bary = np.min(bary, axis=1)

        tin = np.zeros((simplices.shape[0], 3), dtype='float')
        dist = np.zeros(simplices.shape[0], dtype='float')

        for i, x in enumerate(bary):
            if x >= 0:
                # Plane distance
                n = self.normal(simplices[i])
                d = np.dot(p[s[i, 0]] - point, n)
                tin[i] = d * n + point
                dist[i] = abs(d)
                continue

            # Edge distance
            a, b, c = p[s[i]]
            dist[i] = float('inf')

            for v, w in ((a, b), (b, c), (a, c)):
                u = w - v
                m = np.linalg.norm(u)
                u = u / m
                proj = np.dot(point - v, u)

                if proj <= 0:
                    r = v
                elif proj >= m:
                    r = w
                else:
                    r = proj * u + v

                d = np.linalg.norm(r - point)

                if d < dist[i]:
                    tin[i], dist[i] = r, d

        f = dist.argsort()
        return dist[f], tin[f]

    def plot_surface_3d(self, ax=None, cmap='terrain'):
        """
        Plots a the rendered TIN surface in 3D

        Parameters
        ----------
        ax : :class:`matplotlib.axes.Axes`
            The axes to which the plot will be added. If None, a new figure
            and axes will be created.
        cmap : str
            The name of the color map to use.

        Examples
        --------
        .. plot:: ../examples/survey/tin_ex1.py
            :include-source:
        """
        if ax is None:
            mx = self.points.max(axis=0)
            c = 0.5 * (mx + self.points.min(axis=0))
            r = 1.1 * np.max(mx - c)
            xlim, ylim, zlim = np.column_stack([c - r, c + r])

            fig = plt.figure()
            ax = fig.add_subplot(111,
                                 title=self.name,
                                 projection='3d',
                                 xlim=xlim,
                                 ylim=ylim,
                                 zlim=zlim,
                                 aspect='equal')

        x = self.points
        ax.plot_trisurf(x[:, 0],
                        x[:, 1],
                        x[:, 2],
                        triangles=self.tri.simplices,
                        cmap=cmap)

        return ax

    def plot_surface_2d(self, ax=None):
        """
        Plots a the triangulation in 2D.

        Parameters
        ----------
        ax : :class:`matplotlib.axes.Axes`
            The axes to which the plot will be added. If None, a new figure
            and axes will be created.

        Examples
        --------
        .. plot:: ../examples/survey/tin_ex3.py
            :include-source:
        """
        if ax is None:
            mx = self.points[:, :2].max(axis=0)
            c = 0.5 * (mx + self.points[:, :2].min(axis=0))
            r = 1.1 * np.max(mx - c)
            xlim, ylim = np.column_stack([c - r, c + r])

            fig = plt.figure()
            ax = fig.add_subplot(111,
                                 title=self.name,
                                 xlim=xlim,
                                 ylim=ylim,
                                 aspect='equal')

        x = self.points
        ax.triplot(x[:, 0], x[:, 1], triangles=self.tri.simplices)

        return ax

    def plot_contour_2d(self, ax=None, cmap='terrain'):
        """
        Plots a the rendered TIN surface in 3D

        Parameters
        ----------
        ax : :class:`matplotlib.axes.Axes`
            The axes to which the plot will be added. If None, a new figure
            and axes will be created.
        cmap : str
            The name of the color map to use.

        Examples
        --------
        .. plot:: ../examples/survey/tin_ex2.py
            :include-source:
        """
        if ax is None:
            mx = self.points[:, :2].max(axis=0)
            c = 0.5 * (mx + self.points[:, :2].min(axis=0))
            r = 1.1 * np.max(mx - c)
            xlim, ylim = np.column_stack([c - r, c + r])

            fig = plt.figure()
            ax = fig.add_subplot(111,
                                 title=self.name,
                                 xlim=xlim,
                                 ylim=ylim,
                                 aspect='equal')

        x = self.points
        contourf = ax.tricontourf(x[:, 0], x[:, 1], x[:, 2], cmap=cmap)
        contour = ax.tricontour(x[:, 0], x[:, 1], x[:, 2], colors='black')

        ax.clabel(contour, inline=True, fontsize=6)
        fig.colorbar(contourf)

        return ax
Пример #8
0
class Element(object):
    """
    A class representing a structural element.

    Parameters
    ----------
    name : str
        A unique name for the element.
    inode, jnode : str
        The names of the nodes at the i and j ends of the element.
    group : :class:`.ElementGroup`
        The group assigned to the element.
    symmetry : {None, 'x', 'y', 'xy'}
        The symmetry of the element.
    roll : float
        The counter clockwise angle of roll about the length axis.
    imx_free, imy_free, imz_free : bool
        The rotational fixities at the i-node about the local x, y, and z axes.
    jmx_free, jmy_free, jmz_free : bool
        The rotational fixities at the j-node about the local x, y, and z axes.
    """
    SYMMETRIES = (None, 'x', 'y', 'xy')

    TRANSFORMS = {
        'x': {'p': 'x', 'x': 'p', 'y': 'xy', 'xy': 'y'},
        'y': {'p': 'y', 'x': 'xy', 'y': 'p', 'xy': 'x'},
    }

    # Custom properties
    name = propy.str_property('name')
    inode = propy.str_property('inode_name')
    jnode = propy.str_property('jnode_name')
    symmetry = propy.enum_property('symmetry', set(SYMMETRIES))

    imx_free = propy.bool_property('imx_free')
    imy_free = propy.bool_property('imy_free')
    imz_free = propy.bool_property('imz_free')

    jmx_free = propy.bool_property('jmx_free')
    jmy_free = propy.bool_property('jmy_free')
    jmz_free = propy.bool_property('jmz_free')

    inode_ref = propy.weakref_property('inode_ref')
    jnode_ref = propy.weakref_property('jnode_ref')

    def __init__(self, name, inode, jnode, group,
                 symmetry=None, roll=0, unstr_length=None,
                 imx_free=False, imy_free=False, imz_free=False,
                 jmx_free=False, jmy_free=False, jmz_free=False):
        self.name = name
        self.inode = inode
        self.jnode = jnode
        self.group = group
        self.symmetry = symmetry
        self.roll = roll
        self.unstr_length = unstr_length

        self.imx_free = imx_free
        self.imy_free = imy_free
        self.imz_free = imz_free

        self.jmx_free = jmx_free
        self.jmy_free = jmy_free
        self.jmz_free = jmz_free

        self.inode_ref = None
        self.jnode_ref = None

    __repr__ = propy.repr_method(
        'name', 'inode', 'jnode', 'group', 'symmetry', 'roll',
        'imx_free', 'imy_free', 'imz_free', 'jmx_free', 'jmy_free', 'jmz_free'
    )

    def __str__(self):
        return self.name

    def copy(self):
        """Returns a copy of the element."""
        return copy.copy(self)

    def i_free(self):
        """Sets the i end rotational fixities to free. Returns the element."""
        self.imx_free = self.imy_free = self.imz_free = True
        return self

    def j_free(self):
        """Sets the j end rotational fixities to free. Returns the element."""
        self.jmx_free = self.jmy_free = self.jmz_free = True
        return self

    def free(self):
        """Sets the end rotational fixities to free. Returns the element."""
        return self.i_free().j_free()

    def mx_free(self):
        """Sets the x rotational fixities to free. Returns the element."""
        self.imx_free = self.jmx_free = True
        return self

    def my_free(self):
        """Sets the y rotational fixities to free. Returns the element."""
        self.imy_free = self.jmy_free = True
        return self

    def mz_free(self):
        """Sets the z rotational fixities to free. Returns the element."""
        self.imz_free = self.jmz_free = True
        return self

    def set_nodes(self, ndict):
        """
        Sets the node references for the element.

        Parameters
        ----------
        ndict : dict
            A dictionary that maps node names to :class:`.Node` objects.
        """
        self.inode_ref = ndict[self.inode]
        self.jnode_ref = ndict[self.jnode]

    def get_nodes(self):
        """Returns the i and j node objects."""
        if self.inode_ref is None or self.jnode_ref is None:
            raise ValueError('Node references have not been set.')
        return self.inode_ref, self.jnode_ref

    def get_unstr_length(self):
        """
        If the unstressed length of the element is None, returns the initial
        distance between the nodes. If the unstressed length is a string,
        converts the string to a float and adds it to the initial distance
        between the nodes. Otherwise, returns the assigned unstressed length.
        """
        if self.unstr_length is None:
            return self.length()

        elif isinstance(self.unstr_length, str):
            return self.length() + float(self.unstr_length)

        return self.unstr_length

    def length(self, di=(0, 0, 0), dj=(0, 0, 0)):
        """
        Returns the length of the element between nodes.

        Parameters
        ----------
        di, dj : array
            The deflections at the i and j ends of the element.
        """
        xi, xj = self.get_nodes()
        di, dj = np.asarray(di), np.asarray(dj)
        delta = (xj - xi) + (dj - di)
        return np.linalg.norm(delta)

    def sym_elements(self):
        """Returns the symmetric elements for the element."""
        def trans(name, *sym):
            t = Element.TRANSFORMS
            n = name.split('_')

            for x in sym:
                n[-1] = t[x][n[-1]]

            return '_'.join(n)

        def primary():
            e = self.copy()
            e.name = '{}_p'.format(self.name)
            return e

        def x_sym():
            e = self.copy()
            e.name = '{}_x'.format(self.name)
            e.inode = trans(self.inode, 'x')
            e.jnode = trans(self.jnode, 'x')
            return e

        def y_sym():
            e = self.copy()
            e.name = '{}_y'.format(self.name)
            e.inode = trans(self.inode, 'y')
            e.jnode = trans(self.jnode, 'y')
            return e

        def xy_sym():
            e = self.copy()
            e.name = '{}_xy'.format(self.name)
            e.inode = trans(self.inode, 'x', 'y')
            e.jnode = trans(self.jnode, 'x', 'y')
            return e

        if self.symmetry is None:
            return primary(),

        elif self.symmetry == 'x':
            return primary(), x_sym()

        elif self.symmetry == 'y':
            return primary(), y_sym()

        elif self.symmetry == 'xy':
            return primary(), x_sym(), y_sym(), xy_sym()

    def rotation_matrix(self, di=(0, 0, 0), dj=(0, 0, 0)):
        """
        Returns the rotation matrix for the element.

        Parameters
        ----------
        di, dj : array
            The deflections at the i and j ends of the element.
        """
        xi, xj = self.get_nodes()
        di, dj = np.asarray(di), np.asarray(dj)
        dx, dy, dz = (xj - xi) + (dj - di)
        return rotation_matrix(dx, dy, dz, self.roll)

    def transformation_matrix(self, di=(0, 0, 0), dj=(0, 0, 0)):
        """
        Returns the transformation matrix for the element.

        Parameters
        ----------
        di, dj : array
            The deflections at the i and j ends of the element.
        """
        xi, xj = self.get_nodes()
        di, dj = np.asarray(di), np.asarray(dj)
        dx, dy, dz = (xj - xi) + (dj - di)
        return transformation_matrix(dx, dy, dz, self.roll)

    def local_stiffness(self, di=(0, 0, 0), dj=(0, 0, 0)):
        """
        Returns the local stiffness for the element.

        Parameters
        ----------
        di, dj : array
            The deflections at the i and j ends of the element.
        """
        group = self.group
        sect = group.section
        mat = group.material

        return local_stiffness(
            l=self.length(di, dj),
            lu=self.get_unstr_length(),
            a=sect.area,
            ix=sect.inertia_x,
            iy=sect.inertia_y,
            j=sect.inertia_j,
            e=mat.elasticity,
            g=mat.rigidity,
            imx_free=self.imx_free,
            imy_free=self.imy_free,
            imz_free=self.imz_free,
            jmx_free=self.jmx_free,
            jmy_free=self.jmy_free,
            jmz_free=self.jmz_free
        )

    def global_stiffness(self, di=(0, 0, 0), dj=(0, 0, 0)):
        """
        Returns the global stiffness matrix for the element.

        Parameters
        ----------
        di, dj : array
            The deflections at the i and j ends of the element.
        """
        di, dj = np.asarray(di), np.asarray(dj)
        t = self.transformation_matrix(di, dj)
        k = self.local_stiffness(di, dj)
        return t.T.dot(k).dot(t)
Пример #9
0
class Node(np.ndarray):
    """
    A class representing a structural node.

    Parameters
    ----------
    name : str
        A unique name for the node.
    x, y, z : float
        The x, y, and z coordinates of the node.
    symmetry : {None, 'x', 'y', 'xy'}
        The symmetry of the node.
    fx_free, fy_free, fz_free : bool
        The force fixities of the node in the x, y, and z directions.
    mx_free, my_free, mz_free : bool
        The moment fixities of the node about the x, y, and z axes.
    """
    SYMMETRIES = (None, 'x', 'y', 'xy')

    # Custom properties
    name = propy.str_property('name')
    x = propy.index_property(0)
    y = propy.index_property(1)
    z = propy.index_property(2)
    symmetry = propy.enum_property('symmetry', set(SYMMETRIES))

    fx_free = propy.bool_property('fx_free')
    fy_free = propy.bool_property('fy_free')
    fz_free = propy.bool_property('fz_free')

    mx_free = propy.bool_property('mx_free')
    my_free = propy.bool_property('my_free')
    mz_free = propy.bool_property('mz_free')

    def __new__(cls,
                name,
                x=0,
                y=0,
                z=0,
                symmetry=None,
                fx_free=True,
                fy_free=True,
                fz_free=True,
                mx_free=True,
                my_free=True,
                mz_free=True):
        obj = np.array([x, y, z], dtype='float').view(cls)

        obj.name = name
        obj.symmetry = symmetry

        obj.fx_free = fx_free
        obj.fy_free = fy_free
        obj.fz_free = fz_free

        obj.mx_free = mx_free
        obj.my_free = my_free
        obj.mz_free = mz_free

        return obj

    def __array_finalize__(self, obj):
        if obj is None: return

        self.name = getattr(obj, 'name', '')
        self.symmetry = getattr(obj, 'symmetry', None)

        self.fx_free = getattr(obj, 'fx_free', True)
        self.fy_free = getattr(obj, 'fy_free', True)
        self.fz_free = getattr(obj, 'fz_free', True)

        self.mx_free = getattr(obj, 'mx_free', True)
        self.my_free = getattr(obj, 'my_free', True)
        self.mz_free = getattr(obj, 'mz_free', True)

    __repr__ = propy.repr_method('name', 'x', 'y', 'z', 'symmetry', 'fx_free',
                                 'fy_free', 'fz_free', 'mx_free', 'my_free',
                                 'mz_free')

    def __str__(self):
        return self.name

    def copy(self):
        """Returns a copy of the node."""
        return copy.copy(self)

    def f_fixed(self):
        """Sets the node force reactions to fixed."""
        self.fx_free = self.fy_free = self.fz_free = False
        return self

    def m_fixed(self):
        """Sets the node moment reactions to fixed."""
        self.mx_free = self.my_free = self.mz_free = False
        return self

    def fixed(self):
        """Sets the node force and moment reactions to fixed."""
        return self.f_fixed().m_fixed()

    def fixities(self):
        """Returns the force and moment fixities for the node."""
        return [
            self.fx_free, self.fy_free, self.fz_free, self.mx_free,
            self.my_free, self.mz_free
        ]

    def sym_nodes(self):
        """Returns the symmetric nodes for the node."""
        def primary():
            n = self.copy()
            n.name = '{}_p'.format(self.name)
            return n

        def x_sym():
            n = self.copy()
            n.name = '{}_x'.format(self.name)
            n[1] *= -1
            return n

        def y_sym():
            n = self.copy()
            n.name = '{}_y'.format(self.name)
            n[0] *= -1
            return n

        def xy_sym():
            n = self.copy()
            n.name = '{}_xy'.format(self.name)
            n[:2] *= -1
            return n

        if self.symmetry is None:
            return primary(),

        elif self.symmetry == 'x':
            return primary(), x_sym()

        elif self.symmetry == 'y':
            return primary(), y_sym()

        elif self.symmetry == 'xy':
            return primary(), x_sym(), y_sym(), xy_sym()
Пример #10
0
class SurveyStake(np.ndarray):
    """
    A class representing a survey stake. This method should be initialized
    using the :meth:`SurveyStake.init_xy` or :meth:`SurveyStake.init_station`
    class methods.
    """
    TYPES = ('xy', 'station')

    # Custom properties
    x = propy.index_property(0)
    y = propy.index_property(1)
    z = propy.index_property(2)
    lock_z = propy.bool_property('lock_z')
    _type = propy.enum_property('_type', TYPES)

    def __new__(cls,
                x,
                y,
                z,
                station,
                offset,
                height,
                rotation,
                lock_z,
                _type,
                _init=False,
                **kwargs):
        if not _init:
            raise ValueError(
                'SurveyStake should be initialized using the '
                '`SurveyStake.init_xy` or `SurveyStake.init_station` methods '
                'in lieu of the standard initializer.')

        obj = np.array([x, y, z], dtype='float').view(cls)
        obj.station = station
        obj.offset = offset
        obj.height = height
        obj.rotation = rotation
        obj.lock_z = lock_z
        obj._type = _type
        obj.meta = dict(**kwargs)
        return obj

    def __array_finalize__(self, obj):
        if obj is None: return
        self.station = getattr(obj, 'station', 0)
        self.offset = getattr(obj, 'offset', 0)
        self.height = getattr(obj, 'height', 0)
        self.rotation = getattr(obj, 'rotation', 0)
        self.lock_z = getattr(obj, 'lock_z', False)
        self._type = getattr(obj, '_type', 'xy')
        self.meta = getattr(obj, 'meta', {})

    __repr__ = propy.repr_method('_type', 'x', 'y', 'z', 'station', 'offset',
                                 'lock_z', 'meta')

    @classmethod
    def init_xy(cls, x, y, z=0, height=0, rotation=0, lock_z=False, **kwargs):
        """
        Initializes a survey stake based on an (x, y) global coordinate.

        Parameters
        ----------
        x, y, z : float
            The x, y, and z coordinates.
        height : float
            The height of the point above z.
        rotation : float
            The rotation of the point about its base point.
        lock_z : float
            If False, the alignment will be snapped to the TIN (if applicable)
            during certain updates. Otherwise, the z coordinate will remain
            fixed.
        """
        return cls(x=x,
                   y=y,
                   z=z,
                   station=0,
                   offset=0,
                   height=height,
                   rotation=rotation,
                   lock_z=lock_z,
                   _type='xy',
                   _init=True,
                   **kwargs)

    @classmethod
    def init_station(cls,
                     station,
                     offset=0,
                     z=0,
                     height=0,
                     rotation=0,
                     lock_z=False,
                     **kwargs):
        """
        Initializes a survey stake based on a survey station and offset.

        Parameters
        ----------
        station : float
            The alignment survey station.
        offset : float
            The offset from the alignment.
        z : float
            The z coordinate.
        height : float
            The height of the point above z.
        rotation : float
            The rotation of the point about its base point.
        lock_z : float
            If False, the alignment will be snapped to the TIN (if applicable)
            during certain updates. Otherwise, the z coordinate will remain
            fixed.
        """
        return cls(x=0,
                   y=0,
                   z=z,
                   height=height,
                   rotation=rotation,
                   station=station,
                   offset=offset,
                   lock_z=lock_z,
                   _type='station',
                   _init=True,
                   **kwargs)