Пример #1
0
    def __init__(self, upscale_factor, num_blocks=36, **kwargs):
        super(EDSR, self).__init__()

        if upscale_factor % 2 != 0 and upscale_factor != 1:
            error("Upscaling factor must be 1 or a multiple of 2")
            raise SystemExit(1)

        self.num_blocks = num_blocks
        self.upscale_factor = upscale_factor
        self.scales = [self.upscale_factor]

        # Projection from image space.
        self.add_module('init_conv',
                        Conv2d(3, 256,
                               3))  # Change to (4,256,3) fir alpha channel

        # Backbone
        arch = OrderedDict()
        for i in range(1, self.num_blocks + 1):
            arch['resblock_%d' % i] = ResidualBlock(block_type.CRC,
                                                    'RELU',
                                                    256,
                                                    res_factor=0.1)
        arch['final_conv'] = Conv2d(256, 256, 3)
        self.add_module('residual', nn.Sequential(arch))

        # Upsampling and reconstruction
        self.add_module('upsampler',
                        PixelShuffleUpsampler(upscale_factor, 256))
        self.add_module('reconst',
                        nn.Sequential(
                            OrderedDict([
                                ('reconst_conv0', Conv2d(256, 3, 3))
                            ])))  # Change to (256,4,3) for alpha channel
Пример #2
0
    def forward(self, x, scale=None, blend=1):
        if scale is not None and scale != self.upscale_factor:
            error("Invalid upscaling factor: choose one of: {}".format(
                [self.upscale_factor]))

        init_conv = self.init_conv(x)
        residual = self.residual(init_conv)
        output = init_conv + residual
        output = self.upsampler(output)
        output = self.reconst(output)

        return output
Пример #3
0
    def forward(self, x, upscale_factor=None, blend=1.0):

        # print("******************forward******************")
        # print("X shape", x.shape)

        if upscale_factor is None:
            upscale_factor = self.max_scale
        else:
            valid_upscale_factors = [
                2**(i + 1) for i in range(self.n_pyramids)
            ]
            if upscale_factor not in valid_upscale_factors:
                error("Invalid upscaling factor {}: choose one of: {}".format(
                    upscale_factor, valid_upscale_factors))
                raise SystemExit(1)

        feats = self.get_init_conv(log2(upscale_factor))(x)
        for s in range(1, int(log2(upscale_factor)) + 1):
            if self.residual_denseblock:
                feats = getattr(self, 'pyramid_residual_%d' % s)(feats) + feats
            else:
                feats = getattr(self, 'pyramid_residual_%d' % s)(feats)
            feats = getattr(self, 'pyramid_residual_%d_residual_upsampler' %
                            s)(feats)

            # reconst residual image if reached desired scale /
            # use intermediate as base_img / use blend and s is one step lower than desired scale
            if 2**s == upscale_factor or (blend != 1.0
                                          and 2**(s + 1) == upscale_factor):
                tmp = getattr(self, 'reconst_%d' % s)(feats)
                # if using blend, upsample the second last feature via bilinear upsampling
                if (blend != 1.0 and s == self.current_scale_idx):
                    base_img = nn.functional.upsample(tmp,
                                                      scale_factor=2,
                                                      mode='bilinear',
                                                      align_corners=True)
                if 2**s == upscale_factor:
                    if (blend != 1.0) and s == self.current_scale_idx + 1:
                        tmp = tmp * blend + (1 - blend) * base_img
                    output = tmp

        # print("Output shape", output.shape)
        return output
Пример #4
0
def parse_args():
    parser = ArgumentParser(description='Evaluation')
    parser.add_argument(
        '-i',
        '--input',
        help='High-resolution images, either list or path to folder',
        type=str,
        nargs='*',
        required=True,
        default=[])
    parser.add_argument(
        '-t',
        '--target',
        help='Super-resolution images, either list or path to folder',
        type=str,
        nargs='*',
        required=True,
        default=[])
    parser.add_argument(
        '-s',
        '--scale',
        help='upscale ratio e.g. 2, 4 or 8',
        type=int,
        required=True)

    args = parser.parse_args()

    args.input = get_filenames(args.input, IMG_EXTENSIONS)
    args.target = get_filenames(args.target, IMG_EXTENSIONS)

    if not len(args.input):
        error("Did not find images in: {}".format(args.input))

    if len(args.input) != len(args.target):
        error("Inconsistent number of images between 'input' and 'target'")

    return args