Пример #1
0
def get_configs_from_multiple_files():
    """Reads evaluation configuration from multiple config files.

    Reads the evaluation config from the following files:
      model_config: Read from --model_config_path
      eval_config: Read from --eval_config_path
      input_config: Read from --input_config_path

    Returns:
      model_config: a model_pb2.DetectionModel
      eval_config: a eval_pb2.EvalConfig
      input_config: a input_reader_pb2.InputReader
    """
    eval_config = eval_pb2.EvalConfig()
    with tf.gfile.GFile(FLAGS.eval_config_path, 'r') as f:
        text_format.Merge(f.read(), eval_config)

    model_config = model_pb2.DetectionModel()
    with tf.gfile.GFile(FLAGS.model_config_path, 'r') as f:
        text_format.Merge(f.read(), model_config)

    input_config = input_reader_pb2.InputReader()
    with tf.gfile.GFile(FLAGS.input_config_path, 'r') as f:
        text_format.Merge(f.read(), input_config)

    return model_config, eval_config, input_config
def get_configs_from_multiple_files(model_config_path="",
                                    train_config_path="",
                                    train_input_config_path="",
                                    eval_config_path="",
                                    eval_input_config_path="",
                                    graph_rewriter_config_path=""):
    """Reads training configuration from multiple config files.

  Args:
    model_config_path: Path to model_pb2.DetectionModel.
    train_config_path: Path to train_pb2.TrainConfig.
    train_input_config_path: Path to input_reader_pb2.InputReader.
    eval_config_path: Path to eval_pb2.EvalConfig.
    eval_input_config_path: Path to input_reader_pb2.InputReader.
    graph_rewriter_config_path: Path to graph_rewriter_pb2.GraphRewriter.

  Returns:
    Dictionary of configuration objects. Keys are `model`, `train_config`,
      `train_input_config`, `eval_config`, `eval_input_config`. Key/Values are
        returned only for valid (non-empty) strings.
  """
    configs = {}
    if model_config_path:
        model_config = model_pb2.DetectionModel()
        with tf.gfile.GFile(model_config_path, "r") as f:
            text_format.Merge(f.read(), model_config)
            configs["model"] = model_config

    if train_config_path:
        train_config = train_pb2.TrainConfig()
        with tf.gfile.GFile(train_config_path, "r") as f:
            text_format.Merge(f.read(), train_config)
            configs["train_config"] = train_config

    if train_input_config_path:
        train_input_config = input_reader_pb2.InputReader()
        with tf.gfile.GFile(train_input_config_path, "r") as f:
            text_format.Merge(f.read(), train_input_config)
            configs["train_input_config"] = train_input_config

    if eval_config_path:
        eval_config = eval_pb2.EvalConfig()
        with tf.gfile.GFile(eval_config_path, "r") as f:
            text_format.Merge(f.read(), eval_config)
            configs["eval_config"] = eval_config

    if eval_input_config_path:
        eval_input_config = input_reader_pb2.InputReader()
        with tf.gfile.GFile(eval_input_config_path, "r") as f:
            text_format.Merge(f.read(), eval_input_config)
            configs["eval_input_configs"] = [eval_input_config]

    if graph_rewriter_config_path:
        configs["graph_rewriter_config"] = get_graph_rewriter_config_from_file(
            graph_rewriter_config_path)

    return configs
    def test_get_configs_from_multiple_files(self):
        """Tests that proto configs can be read from multiple files."""
        temp_dir = self.get_temp_dir()

        # Write model config file.
        model_config_path = os.path.join(temp_dir, "model.config")
        model = model_pb2.DetectionModel()
        model.faster_rcnn.num_classes = 10
        _write_config(model, model_config_path)

        # Write train config file.
        train_config_path = os.path.join(temp_dir, "train.config")
        train_config = train_config = train_pb2.TrainConfig()
        train_config.batch_size = 32
        _write_config(train_config, train_config_path)

        # Write train input config file.
        train_input_config_path = os.path.join(temp_dir, "train_input.config")
        train_input_config = input_reader_pb2.InputReader()
        train_input_config.label_map_path = "path/to/label_map"
        _write_config(train_input_config, train_input_config_path)

        # Write eval config file.
        eval_config_path = os.path.join(temp_dir, "eval.config")
        eval_config = eval_pb2.EvalConfig()
        eval_config.num_examples = 20
        _write_config(eval_config, eval_config_path)

        # Write eval input config file.
        eval_input_config_path = os.path.join(temp_dir, "eval_input.config")
        eval_input_config = input_reader_pb2.InputReader()
        eval_input_config.label_map_path = "path/to/another/label_map"
        _write_config(eval_input_config, eval_input_config_path)

        configs = config_util.get_configs_from_multiple_files(
            model_config_path=model_config_path,
            train_config_path=train_config_path,
            train_input_config_path=train_input_config_path,
            eval_config_path=eval_config_path,
            eval_input_config_path=eval_input_config_path)
        self.assertProtoEquals(model, configs["model"])
        self.assertProtoEquals(train_config, configs["train_config"])
        self.assertProtoEquals(train_input_config,
                               configs["train_input_config"])
        self.assertProtoEquals(eval_config, configs["eval_config"])
        self.assertProtoEquals(eval_input_config, configs["eval_input_config"])