def test_get_input_fn(self):
        options_str = r"""
      vcr_reader {
        input_pattern: "output/uncased/VCR-RAW/val.record-00000-of-00005"
        shuffle_buffer_size: 10
        interleave_cycle_length: 1
        batch_size: 8
        prefetch_buffer_size: 8000
        desired_size: 600
        vocab_file: "data/bert/tf1.x/BERT-Base/vocab.txt"
        out_of_vocabulary_token_id: 100
      }
    """
        options = text_format.Merge(options_str, reader_pb2.Reader())

        dataset = reader.get_input_fn(options, is_training=False)()
        for elem in dataset.take(1):
            import pdb
            pdb.set_trace()
            for key, value in elem.items():
                logging.info('%s: %s', key, value.shape)
            logging.info('Examples:')
            logging.info('answer_choices: %s', elem['answer_choices'][0])
            logging.info('answer_choices_tag: %s',
                         elem['answer_choices_tag'][0])
            logging.info('answer_choices_len: %s',
                         elem['answer_choices_len'][0])
            logging.info('rationale_choices: %s', elem['rationale_choices'][0])
            logging.info('rationale_choices_tag: %s',
                         elem['rationale_choices_tag'][0])
            logging.info('rationale_choices_len: %s',
                         elem['rationale_choices_len'][0])
Пример #2
0
    def test_get_input_fn(self):
        options_str = r"""
      vcr_reader {
        input_pattern: "/own_files/yekeren/VCR-2stages-allboxes/val.record-*-of-00005"
        shuffle_buffer_size: 10
        interleave_cycle_length: 1
        batch_size: 20
        prefetch_buffer_size: 8000
        frcnn_feature_dims: 1536
        bert_feature_dims: 768
        decode_jpeg: false
      }
    """
        options = text_format.Merge(options_str, reader_pb2.Reader())

        dataset = reader.get_input_fn(options, is_training=False)()
        for elem in dataset.take(1):
            self.assertNotIn(InputFields.img_data, elem)
            self.assertNotIn(InputFields.img_width, elem)
            self.assertNotIn(InputFields.img_height, elem)

            (num_objects, object_bboxes, object_labels, object_scores,
             object_features) = (elem[InputFields.num_objects],
                                 elem[InputFields.object_bboxes],
                                 elem[InputFields.object_labels],
                                 elem[InputFields.object_scores],
                                 elem[InputFields.object_features])

            import pdb
            pdb.set_trace()
            for key, value in elem.items():
                logging.info('=' * 64)
                logging.info(key)
                logging.info(value)
Пример #3
0
    def test_get_input_fn(self):
        batch_size = 17
        # input_pattern: "data-mscoco/tfrecords_v2_prop50_iou/coco_sgs.tfreocrd-00000-of-00020"
        options_str = r"""
      caption_graph_reader {
        input_pattern: "/own_files/yekeren/WSSGG/data-vspnet/tfrecords/caption-graph-hanwang-v1/train.tfrecord*"
        batch_size: %i
        shuffle_buffer_size: 500
        prefetch_buffer_size: 500
        feature_dimensions: 1536
        max_n_proposal: 20
      }
    """ % (batch_size)
        options = text_format.Merge(options_str, reader_pb2.Reader())

        dataset = reader.get_input_fn(options, is_training=False)()
        for elem in dataset.take(1):
            import pdb
            pdb.set_trace()
            self.assertAllEqual(elem['id'].shape, [batch_size])
            self.assertAllEqual(elem['image/n_proposal'].shape, [batch_size])
            self.assertAllEqual(elem['image/proposal'].shape,
                                [batch_size, 20, 4])
            self.assertAllEqual(elem['image/proposal/feature'].shape,
                                [batch_size, 20, 1536])

            self.assertDTypeEqual(elem['id'], np.int64)
            self.assertDTypeEqual(elem['image/n_proposal'], np.int32)
            self.assertDTypeEqual(elem['image/proposal'], np.float32)
            self.assertDTypeEqual(elem['image/proposal/feature'], np.float32)

            # Check graphs.
            for scope in ['caption_graph']:
                self.assertDTypeEqual(elem[scope + '/caption'], np.object)

                max_n_node = elem[scope + '/n_node'].numpy().max()
                max_n_edge = elem[scope + '/n_edge'].numpy().max()
                self.assertAllEqual(elem[scope + '/nodes'].shape,
                                    [batch_size, max_n_node])
                self.assertAllEqual(elem[scope + '/edges'].shape,
                                    [batch_size, max_n_edge])
                self.assertAllEqual(elem[scope + '/senders'].shape,
                                    [batch_size, max_n_edge])
                self.assertAllEqual(elem[scope + '/receivers'].shape,
                                    [batch_size, max_n_edge])

                self.assertDTypeEqual(elem[scope + '/n_node'], np.int32)
                self.assertDTypeEqual(elem[scope + '/n_edge'], np.int32)
                self.assertDTypeEqual(elem[scope + '/nodes'], np.object)
                self.assertDTypeEqual(elem[scope + '/edges'], np.object)
                self.assertDTypeEqual(elem[scope + '/senders'], np.int32)
                self.assertDTypeEqual(elem[scope + '/receivers'], np.int32)
Пример #4
0
 def setUp(self):
     options_str = r"""
   input_pattern: "output/VOC2007_test_ssbox.record-00001-of-00020"
   interleave_cycle_length: 2
   is_training: true
   shuffle_buffer_size: 10
   batch_size: 7
   max_num_proposals: 2000
   image_resizer {
     fixed_shape_resizer {
       height: 448
       width: 448
     }
   }
 """
     self._options = reader_pb2.Reader()
     text_format.Merge(options_str, self._options)
Пример #5
0
    def test_get_input_fn(self):
        options_str = r"""
      vcr_text_frcnn_reader {
        input_pattern: "output/uncased/VCR-text_and_frcnn/val.record-*-of-00005"
        shuffle_buffer_size: 10
        interleave_cycle_length: 1
        batch_size: 60
        prefetch_buffer_size: 8000
        frcnn_feature_dims: 1536
        num_parallel_calls: 10
      }
    """
        options = text_format.Merge(options_str, reader_pb2.Reader())

        dataset = reader.get_input_fn(options, is_training=False)()
        for elem in dataset.take(10000):
            for key, value in elem.items():
                import pdb
                pdb.set_trace()
                j = 1
Пример #6
0
    def test_get_input_fn(self):
        options_str = r"""
      vcr_text_only_reader {
        input_pattern: "output/uncased/VCR-text_only/val.record-*-of-00005"
        shuffle_buffer_size: 10
        interleave_cycle_length: 1
        batch_size: 3
        prefetch_buffer_size: 8000
      }
    """
        options = text_format.Merge(options_str, reader_pb2.Reader())

        dataset = reader.get_input_fn(options, is_training=False)()
        for elem in dataset.take(1):
            for key, value in elem.items():
                logging.info('=' * 64)
                logging.info(key)
                logging.info(value)
            import pdb
            pdb.set_trace()
            j = 1