add_nat_closure = Forall((a, b), InSet(Add(a, b), Natural), domain=Natural) add_nat_closure add_real_closure = Forall([x_etc], InSet(Add(x_etc), Real), domain=Real) add_real_closure add_complex_closure = Forall([x_etc], InSet(Add(x_etc), Complex), domain=Complex) add_complex_closure add_nat_pos_closure = Forall((a_etc, b, c_etc), InSet(Add(a_etc, b, c_etc), NaturalPos), domain=Natural, conditions=[GreaterThan(b, zero)]) add_nat_pos_closure add_zero = Forall(x, Equals(Add(zero, x), x), domain=Complex) add_zero add_comm = Forall([v_etc, w_etc, x_etc, y_etc, z_etc], Equals(Add(v_etc, w_etc, x_etc, y_etc, z_etc), Add(v_etc, y_etc, x_etc, w_etc, z_etc)), domain=Complex) add_comm add_assoc = Forall( [x_etc, y_etc, z_etc], Equals(Add(x_etc, y_etc, z_etc), Add(x_etc, Add(y_etc), z_etc)), )
int_within_real = Forall(a, InSet(a, Real), domain=Integer) int_within_real int_within_complex = Forall(a, InSet(a, Complex), domain=Integer) int_within_complex in_natural_if_non_neg = Forall(a, InSet(a, Natural), domain=Integer, conditions=[GreaterThanEquals(a, zero)]) in_natural_if_non_neg in_natural_pos_if_pos = Forall(a, InSet(a, NaturalPos), domain=Integer, conditions=[GreaterThan(a, zero)]) in_natural_pos_if_pos interval_is_int = Forall((a, b), Forall(n, InSet(n, Integer), domain=Interval(a, b)), domain=Integer) interval_is_int interval_is_nat = Forall((a, b), Forall(n, InSet(n, Natural), domain=Interval(a, b)), domain=Natural) interval_is_nat interval_in_nat_pos = Forall((a, b), Forall(n, InSet(n, NaturalPos),
from proveit import begin_theorems, end_theorems begin_theorems(locals()) exp_nat_closure = Forall((a, b), InSet(Exp(a, b), NaturalPos), domain=Natural, conditions=[NotEquals(a, zero)]) exp_nat_closure exp_real_closure = Forall( [a, b], InSet(Exp(a, b), Real), domain=Real, conditions=[GreaterThanEquals(a, zero), GreaterThan(b, zero)]) exp_real_closure exp_real_pos_closure = Forall([a, b], InSet(Exp(a, b), RealPos), domain=Real, conditions=[GreaterThan(a, zero)]) exp_real_pos_closure exp_complex_closure = Forall([a, b], InSet(Exp(a, b), Complex), domain=Complex, conditions=[NotEquals(a, zero)]) exp_complex_closure sqrt_real_closure = Forall([a],
from proveit.logic import Forall, Or, Equals, Implies from proveit.numbers import Real from proveit.numbers import LessThan, LessThanEquals, GreaterThan, GreaterThanEquals from proveit.common import x, y, z from proveit import begin_axioms, end_axioms begin_axioms(locals()) less_than_equals_def = Forall([x, y], Or(LessThan(x, y), Equals(x, y)), domain=Real, conditions=LessThanEquals(x, y)) less_than_equals_def greater_than_equals_def = Forall([x, y], Or(GreaterThan(x, y), Equals(x, y)), domain=Real, conditions=GreaterThanEquals(x, y)) greater_than_equals_def reverse_greater_than_equals = Forall((x, y), Implies(GreaterThanEquals(x, y), LessThanEquals(y, x))) reverse_greater_than_equals reverse_less_than_equals = Forall((x, y), Implies(LessThanEquals(x, y), GreaterThanEquals(y, x))) reverse_less_than_equals reverse_greater_than = Forall((x, y), Implies(GreaterThan(x, y),
begin_theorems(locals()) neg_int_closure = Forall(a, InSet(Neg(a), Integer), domain=Integer) neg_int_closure neg_real_closure = Forall(a, InSet(Neg(a), Real), domain=Real) neg_real_closure neg_complex_closure = Forall(a, InSet(Neg(a), Complex), domain=Complex) neg_complex_closure negated_positive_is_negative = Forall(a, LessThan(Neg(a), zero), domain=Real, conditions=[GreaterThan(a, zero)]) negated_positive_is_negative negated_negative_is_positive = Forall(a, GreaterThan(Neg(a), zero), domain=Real, conditions=[LessThan(a, zero)]) negated_negative_is_positive neg_not_eq_zero = Forall(a, NotEquals(Neg(a), zero), domain=Complex, conditions=[NotEquals(a, zero)]) neg_not_eq_zero distribute_neg_through_sum = Forall([x_etc],
subtract_int_closure = Forall([a, b], InSet(Sub(a, b), Integer), domain=Integer) subtract_int_closure subtract_closure_nats = Forall([a, b], InSet(Sub(a, b), Natural), domain=Integer, conditions=[GreaterThanEquals(a, b)]) subtract_closure_nats subtract_closure_nats_pos = Forall([a, b], InSet(Sub(a, b), NaturalPos), domain=Integer, conditions=[GreaterThan(a, b)]) subtract_closure_nats_pos subtract_complex_closure = Forall([a, b], InSet(Sub(a, b), Complex), domain=Complex) subtract_complex_closure subtract_real_closure = Forall([a, b], InSet(Sub(a, b), Real), domain=Real) subtract_real_closure subtract_one_in_nats = Forall(a, InSet(Sub(a, one), Natural), domain=NaturalPos) subtract_one_in_nats
InSet(Min(a, b), RealPos), domain=RealPos) min_real_pos_closure max_real_closure = Forall((a, b), InSet(Max(a, b), Real), domain=Real) max_real_closure max_real_pos_closure = Forall((a, b), InSet(Max(a, b), RealPos), domain=RealPos) max_real_pos_closure relax_greater_than = Forall([a, b], GreaterThanEquals(a, b), domain=Real, conditions=GreaterThan(a, b)) relax_greater_than relax_less_than = Forall([a, b], LessThanEquals(a, b), domain=Real, conditions=LessThan(a, b)) relax_less_than less_than_is_bool = Forall([a, b], InSet(LessThan(a, b), Boolean), domain=Real) less_than_is_bool less_than_equals_is_bool = Forall([a, b], InSet(LessThanEquals(a, b), Boolean), domain=Real) less_than_equals_is_bool