def train(): train_list, test_list = read_train_test_stems() train_list = [FLAGS.data_dir + fn for fn in train_list] test_list = [FLAGS.data_dir + fn for fn in test_list] # train_list=['/home/liuyuan/data/S3DIS/sampled_train_nolimits/'+fn for fn in train_list] # test_list=['/home/liuyuan/data/S3DIS/sampled_test_nolimits/'+fn for fn in test_list] train_provider = Provider(train_list, FLAGS.batch_size, read_pkl, True) test_provider = Provider(test_list, FLAGS.batch_size, read_pkl, False) pls = build_placeholder(FLAGS.batch_size) batch_num_per_epoch = 2000 / FLAGS.batch_size ops = train_ops(pls['xyzs'], pls['feats'], pls['lbls'], pls['is_training'], batch_num_per_epoch) feed_dict = {} config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) saver = tf.train.Saver(max_to_keep=500) if FLAGS.restore: saver.restore(sess, FLAGS.restore_model) else: sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph=sess.graph) for epoch_num in xrange(FLAGS.restore_epoch, FLAGS.train_epoch_num): train_one_epoch(ops, pls, sess, summary_writer, train_provider, epoch_num, feed_dict) test_one_epoch(ops, pls, sess, saver, test_provider, epoch_num, feed_dict)
def get_first_and_last_date(db_root): source_names = get_all_provider_names(db_root) p = Provider(db_root, source_names[0]) all_days = p.get_all_days() return utils.make_date_from_string(all_days[0]), utils.make_date_from_string(all_days[-1])
def get_statistics_from_last_update_for_all_sources(db_root): last_metainfo_by_day = dict() # fetch the summary of the last day for every source for source_name in get_all_provider_names(db_root): p = Provider(db_root, source_name) all_days = p.get_all_days() if all_days: last_day = utils.get_latest_day(all_days) last_metainfo_by_day[source_name] = (last_day, p.get_cached_metainfos_for_day(last_day)) # not every source has data for the real last day, search for th last_days = set([v[0] for k, v in last_metainfo_by_day.items()]) real_last_day = utils.get_latest_day(last_days) # build the overall metainfos using only the source which have data for the real last day overall_metainfo = defaultdict(int) provider_count = 0 for name, data in last_metainfo_by_day.items(): day, metainfos = data if day == real_last_day: provider_count += 1 for k, v in metainfos.items(): overall_metainfo[k] += v overall_metainfo.update(dict(provider_count=provider_count)) return overall_metainfo
def eval(): test_list=['data/ScanNet/sampled_test/test_{}.pkl'.format(i) for i in xrange(312)] def read_fn(model,fn): data=read_pkl(fn) return data[0],data[2],data[3],data[11] test_provider = Provider(test_list,'test',FLAGS.batch_size*FLAGS.num_gpus,read_fn) try: pls=build_placeholder(FLAGS.num_gpus) batch_num_per_epoch=11000/FLAGS.num_gpus ops=train_ops(pls['xyzs'],pls['feats'],pls['lbls'],pls['is_training'],batch_num_per_epoch) feed_dict={} config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) saver = tf.train.Saver(max_to_keep=500) saver.restore(sess,FLAGS.eval_model) summary_writer = tf.summary.FileWriter(FLAGS.train_dir,graph=sess.graph) test_one_epoch(ops,pls,sess,saver,test_provider,0,feed_dict,summary_writer) finally: test_provider.close()
def eval(): train_list, test_list = get_block_train_test_split() test_list = ['data/S3DIS/sampled_test/' + fn for fn in test_list] def fn(model, filename): data = read_pkl(filename) return data[0], data[2], data[3], data[4], data[12] test_provider = Provider(test_list, 'test', FLAGS.batch_size * FLAGS.num_gpus, fn) try: pls = build_placeholder(FLAGS.num_gpus) batch_num_per_epoch = 2000 / FLAGS.num_gpus ops = train_ops(pls['xyzs'], pls['feats'], pls['lbls'], pls['is_training'], batch_num_per_epoch) feed_dict = {} config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) saver = tf.train.Saver(max_to_keep=500) saver.restore(sess, FLAGS.eval_model) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph=sess.graph) test_one_epoch(ops, pls, sess, saver, test_provider, 0, feed_dict, summary_writer) finally: test_provider.close()
def eval(): train_list, test_list = get_block_train_test_split() test_list = ['data/S3DIS/room_block_10_10/' + fn for fn in test_list] test_provider = Provider(test_list, 'test', FLAGS.batch_size * FLAGS.num_gpus, read_fn) try: pls = {} pls['xyzs'],pls['lbls'],pls['rgbs'],pls['covars'],pls['nidxs'],\ pls['nidxs_lens'],pls['nidxs_bgs'],pls['cidxs']=[],[],[],[],[],[],[],[] pls['weights'] = [] for i in xrange(FLAGS.num_gpus): pls['xyzs'].append( tf.placeholder(tf.float32, [None, 3], 'xyz{}'.format(i))) pls['rgbs'].append( tf.placeholder(tf.float32, [None, 3], 'rgb{}'.format(i))) pls['covars'].append( tf.placeholder(tf.float32, [None, 9], 'covar{}'.format(i))) pls['lbls'].append( tf.placeholder(tf.int64, [None], 'lbl{}'.format(i))) pls['nidxs'].append( tf.placeholder(tf.int32, [None], 'nidxs{}'.format(i))) pls['nidxs_lens'].append( tf.placeholder(tf.int32, [None], 'nidxs_lens{}'.format(i))) pls['nidxs_bgs'].append( tf.placeholder(tf.int32, [None], 'nidxs_bgs{}'.format(i))) pls['cidxs'].append( tf.placeholder(tf.int32, [None], 'cidxs{}'.format(i))) pls['weights'].append( tf.placeholder(tf.float32, [None], 'weights{}'.format(i))) pmiu = neighbor_anchors_v2() pls['is_training'] = tf.placeholder(tf.bool, name='is_training') pls['pmiu'] = tf.placeholder(tf.float32, name='pmiu') batch_num_per_epoch = 2500 / FLAGS.num_gpus ops = train_ops(pls['xyzs'], pls['rgbs'], pls['covars'], pls['lbls'], pls['cidxs'], pls['nidxs'], pls['nidxs_lens'], pls['nidxs_bgs'], pmiu.shape[1], pls['is_training'], batch_num_per_epoch, pls['pmiu'], pls['weights']) feed_dict = {} feed_dict[pls['pmiu']] = pmiu config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) saver = tf.train.Saver(max_to_keep=500) saver.restore(sess, FLAGS.eval_model) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph=sess.graph) test_one_epoch(ops, pls, sess, saver, test_provider, 0, feed_dict, summary_writer) finally: test_provider.close()
def __init__(self): """Init the connexion to Dropbox. Returns: The Dropbox client. """ Provider.__init__(self, 'dropbox') self.getToken()
def __init__(self, resource_type): ''' Constructor @see: nublic_resource.Provider.__init__ ''' Provider.__init__(self, resource_type) setup_all(create_tables=True)
def write(self): mkdir_p(self.path) db_handler = DatabaseHandler("SampleDB", pkg=self.pkg) provider = Provider(classname="ItemProvider", pkg=self.pkg) db_triggers = DatabaseTriggers(pkg=self.pkg) db_triggers.add(*self.triggers) db_views = DatabaseViews(pkg=self.pkg) db_views.add(*self.views) # Generate dbitem files for table in self.tables: item = DBItem(table, pkg=self.pkg) filename = item.classname + ".java" fpath = os.path.join(self.path, filename) with open(fpath, 'w') as javafile: javafile.write(str(item)) # Add to other classes db_handler.add_dbitems(item) provider.add_dbitems(item) # Abstract DBItem fpath = os.path.join(self.path, "DBItem.java") with open(fpath, 'w') as javafile: javafile.write(dbitem.DBITEM_CLASS.format(pkg=self.pkg)) # Triggers fpath = os.path.join(self.path, "DatabaseTriggers.java") with open(fpath, 'w') as javafile: javafile.write(str(db_triggers)) # Views fpath = os.path.join(self.path, "DatabaseViews.java") with open(fpath, 'w') as javafile: javafile.write(str(db_views)) # Database handler fpath = os.path.join(self.path, db_handler.classname + ".java") with open(fpath, 'w') as javafile: javafile.write(str(db_handler)) # Provider fpath = os.path.join(self.path, provider.classname + ".java") with open(fpath, 'w') as javafile: javafile.write(str(provider)) # And print manifest stuff self.print_manifest(provider)
def test_compute_elevation(self): provider = Provider("mongodb://localhost:27017/windmobile", "AIzaSyAK2QNa8fWYCDK1o3McUP4--qdNtzl-wsQ") # Le Suchet elevation, is_peak = provider.compute_elevation(46.7724, 6.4662) self.assertTrue(is_peak) # Mont Poupet elevation, is_peak = provider.compute_elevation(46.9722, 5.86472) self.assertFalse(is_peak)
def get_summed_statistics_for_all_sources(db_root): overall_metainfo = defaultdict(int) for source_name in get_all_provider_names(db_root): p = Provider(db_root, source_name) source_metainfo = p.get_cached_metainfos() for k, v in source_metainfo.items(): overall_metainfo[k] += v return overall_metainfo
def __init__(self): """Init the connexion to Google Drive. A credentials file is used to store the token and to renew it. Returns: The drive service. """ Provider.__init__(self, 'googledrive')
async def main(websocket, path): async for message in websocket: data = json.loads(message.replace('\n', '')) answer = dict() answer[names.STATUS] = 200 answer[names.EVENT] = data[names.EVENT] USERS[data.get(names.PAYLOAD).get(names.ID_USER)] = websocket if data[names.EVENT] == names.GET_HISTORY: if data[names.PAYLOAD].get(names.ID_ROOM): result = Provider.get_history_room(data[names.PAYLOAD]) else: result = Provider.get_history(data[names.PAYLOAD]) answer[names.BODY] = result await websocket.send(json.dumps(answer)) if data[names.EVENT] == names.GET_ROOMS: if data[names.PAYLOAD].get(names.ID_USER): result = Provider.get_rooms_user(data[names.PAYLOAD]) else: result = Provider.get_rooms(data[names.PAYLOAD]) answer[names.BODY] = result await websocket.send(json.dumps(answer)) elif data[names.EVENT] == names.JOIN: result = Provider.join_room(data[names.PAYLOAD]) answer[names.BODY] = result await websocket.send(json.dumps(answer)) elif data[names.EVENT] == names.LEAVE: Provider.leave_room(data[names.PAYLOAD]) await websocket.send(json.dumps(answer)) elif data[names.EVENT] == names.SEND_MESSAGE: Provider.send_message(data[names.PAYLOAD]) await notify_users(websocket, data.get(names.PAYLOAD))
def get_queue_errors_for_all_sources(db_root): source_names = get_all_provider_names(db_root) all_errors = list() for name in source_names: p = Provider(db_root, name) errors = p.get_queue_errors() if len(errors): all_errors.append((name, errors)) return all_errors
def get_queue_error_count_for_all_sources(db_root, day_count=300): source_names = get_all_provider_names(db_root) all_errors = list() for name in source_names: p = Provider(db_root, name) error_count = p.get_queue_error_count_for_last_days(day_count) if error_count: all_errors.append((name, error_count)) return all_errors
def playMatchesBetweenVersions(env, run_version, player1version, player2version, EPISODES, logger, turns_until_tau0, goes_first=0): env = Game() if player1version == -1: player1 = User("user1", env.state_size, env.action_size) else: player1_NN = Residual_CNN(config.REG_CONST, config.LEARNING_RATE, env.input_shape, env.action_size, config.HIDDEN_CNN_LAYERS) if player1version > 0: name = env.name + "{0:0>4}".format(player1version) if Provider.getNetByName(name) == None: return player1_network = player1_NN.read(env.name, run_version, player1version) player1_NN.model.set_weights(player1_network.get_weights()) netName = env.name + "{0:0>4}".format(player1version) player1 = Agent(netName, env.state_size, env.action_size, config.MCTS_SIMS, config.CPUCT, player1_NN) if player2version == -1: name = input('enter username: ') user2 = Provider.getPersonByName(name) player2 = User(user2.name, env.state_size, env.action_size) else: player2_NN = Residual_CNN(config.REG_CONST, config.LEARNING_RATE, env.input_shape, env.action_size, config.HIDDEN_CNN_LAYERS) if player2version > 0: name = env.name + "{0:0>4}".format(player2version) if Provider.getNetByName(name) == None: return player2_network = player2_NN.read(env.name, run_version, player2version) player2_NN.model.set_weights(player2_network.get_weights()) net2Name = env.name + "{0:0>4}".format(player2version) player2 = Agent(net2Name, env.state_size, env.action_size, config.MCTS_SIMS, config.CPUCT, player2_NN) scores, memory, points, sp_scores = playMatches(player1, player2, EPISODES, logger, turns_until_tau0, None, goes_first) return (scores, memory, points, sp_scores)
def get_data_from_provider_update_db(connection, control): # Получаем данные от провайдера p = Provider() data = p.get_data() data = build_graph(data) # Записываем данные в базу cur = connection.cursor() r = control.upsert_request(data) cur.execute(r) conn.commit() cur.close() return data
def test_data_iter(): from provider import Provider, default_unpack_feats_labels from draw_util import output_points, get_class_colors import time import random train_list, test_list = get_block_train_test_split() random.shuffle(train_list) train_list = ['data/S3DIS/room_block_10_10/' + fn for fn in train_list] test_list = ['data/S3DIS/room_block_10_10/' + fn for fn in test_list] train_provider = Provider(train_list, 'train', 4, read_fn) test_provider = Provider(test_list, 'test', 4, read_fn) print len(train_list) try: begin = time.time() i = 0 for data in test_provider: i += 1 pass print 'batch_num {}'.format(i * 4) print 'test set cost {} s'.format(time.time() - begin) begin = time.time() i = 0 for data in train_provider: i += 1 pass print 'batch_num {}'.format(i * 4) print 'train set cost {} s'.format(time.time() - begin) finally: print 'done' train_provider.close() test_provider.close()
def get_summary_from_last_update_for_all_sources(db_root): source_names = get_all_provider_names(db_root) last_update = list() for name in source_names: p = Provider(db_root, name) all_days = p.get_all_days() if all_days: last_day = utils.get_latest_day(all_days) summary = p.get_cached_metainfos_for_day(last_day) last_update.append((name, utils.make_date_from_string(last_day), summary)) return last_update
def test_read_semantic_dataset(): from provider import Provider, default_unpack_feats_labels train_list, test_list = get_semantic3d_block_train_list() # print train_list # exit(0) train_list = [ 'data/Semantic3D.Net/block/sampled/merged/' + fn for fn in train_list ] test_list = [ 'data/Semantic3D.Net/block/sampled/merged/' + fn for fn in test_list ] read_fn = lambda model, filename: read_pkl(filename) train_provider = Provider(train_list, 'train', 4, read_fn) test_provider = Provider(test_list, 'test', 4, read_fn) try: begin = time.time() i = 0 for data in train_provider: i += 1 cxyzs, rgbs, covars, lbls, = default_unpack_feats_labels(data, 4) for k in xrange(4): print len(cxyzs[k]) print 'batch_num {}'.format(i * 4) print 'train set cost {} s'.format(time.time() - begin) finally: train_provider.close() test_provider.close()
def executeCommand(): pluginHandle = int(sys.argv[1]) success = False if ( mycgi.EmptyQS() ): success = ShowProviders() else: (providerName, clearCache, testForwardedIP) = mycgi.Params( u'provider', u'clearcache', u'testforwardedip' ) if clearCache != u'': httpManager.ClearCache() return True elif testForwardedIP != u'': provider = Provider() provider.addon = addon httpManager.SetDefaultHeaders( provider.GetHeaders() ) forwardedIP = provider.CreateForwardedForIP('0.0.0.0') return TestForwardedIP(forwardedIP) elif providerName != u'': log(u"providerName: " + providerName, xbmc.LOGDEBUG) if providerName <> u'': provider = providerfactory.getProvider(providerName) if provider is None: # ProviderFactory return none for providerName: %s logException = LoggingException(language(30000) % providerName) # 'Cannot proceed', Error processing provider name logException.process(language(30755), language(30020), xbmc.LOGERROR) return False if provider.initialise(httpManager, sys.argv[0], pluginHandle, addon, language, PROFILE_DATA_FOLDER, RESOURCE_PATH): success = provider.ExecuteCommand(mycgi) log (u"executeCommand done", xbmc.LOGDEBUG) """ print cookiejar print 'These are the cookies we have received so far :' for index, cookie in enumerate(cookiejar): print index, ' : ', cookie cookiejar.save() """ return success
class Reducer: provider = Provider() data = [] def __init__(self): data = self.provider.data inputData = [] targetData = [] for d in data: inputData.append(d[0]) targetData.append(d[1]) X = np.array(inputData) pca = PCA(n_components=10) XX = pca.fit_transform(X) for i, t in enumerate(targetData): self.data.append([XX[i], t]) def getLearnData(self): return self.data[:int(len(self.data) / 3)] def getValidationData(self): return self.data[int(len(self.data) / 3):int((2 * len(self.data)) / 3)] def getTestData(self): return self.data[int((2 * len(self.data)) / 3):]
def ProviderCreator(n, max_mu, max_provider_bid, max_provider_skill): creatures =[] for i in np.arange(n): creatures.append(Provider(max_mu, max_provider_bid, max_provider_skill)) return np.array(creatures)
def get_urls(self): """ Return the URL patterns. """ pat = Provider.get_urls(self) if self.forms: pat.append(url(r'choicescombo.js$', self.get_choices_combo_src)) pat.append(url(r'(?P<formname>\w+).js$', self.get_form)) return pat
def train(): test_set = [ 'sg27_station4_intensity_rgb', 'bildstein_station1_xyz_intensity_rgb' ] train_list, test_list = get_context_train_test(test_set) train_list = [ 'data/Semantic3D.Net/context/block_avg/' + fn for fn in train_list ] test_list = [ 'data/Semantic3D.Net/context/block_avg/' + fn for fn in test_list ] read_fn = lambda model, filename: read_pkl(filename) train_provider = Provider(train_list, 'train', FLAGS.batch_size * FLAGS.num_gpus, read_fn) test_provider = Provider(test_list, 'test', FLAGS.batch_size * FLAGS.num_gpus, read_fn) try: pls = build_placeholder(FLAGS.num_gpus) batch_num_per_epoch = 5000 / FLAGS.num_gpus ops = train_ops(pls['xyzs'], pls['feats'], pls['ctx_pts'], pls['ctx_idxs'], pls['lbls'], pls['is_training'], batch_num_per_epoch) feed_dict = {} config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) saver = tf.train.Saver(max_to_keep=500) sess.run(tf.global_variables_initializer()) if FLAGS.restore: all_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) all_vars = [ var for var in all_vars if not var.name.startswith('tower') ] restore_saver = tf.train.Saver(var_list=all_vars) restore_saver.restore(sess, FLAGS.restore_model) else: sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph=sess.graph) for epoch_num in xrange(FLAGS.restore_epoch, FLAGS.train_epoch_num): train_one_epoch(ops, pls, sess, summary_writer, train_provider, epoch_num, feed_dict) test_one_epoch(ops, pls, sess, saver, test_provider, epoch_num, feed_dict) finally: train_provider.close() test_provider.close()
def getNewToken(self): """ Get a new token for a new app """ Provider.__init__(self, 'dropbox') print 'test de connexion a ' + self.provider_name flow = dropbox.client.DropboxOAuth2FlowNoRedirect( self.app_key, self.app_secret) r = requests.get(flow.start()) if r.status_code == 200: print "url:", flow.start() print "Please authorize in the browser. After you're done, press enter." auth_code = raw_input().strip() access_token, _ = flow.finish(auth_code) config = ConfigParser.ConfigParser() config.readfp(open('conf.ini')) config.set('dropbox', 'token', access_token) else: return False return True
def ProviderCreator(n, max_mu, max_provider_bid, time_unit): creatures =[] for _ in range(n): creatures.append(Provider(max_mu, max_provider_bid, time_unit)) #creatures.append(Provider(max_mu, max_provider_bid, max_provider_skill)) return np.array(creatures)
def __init__(self, backup,*args, **kw): Fuse.__init__(self, *args, **kw) config = Config() self.provider = Provider.getInstance('Virgin Media', config) resulttype, result = self.provider.login( config.username, config.password, backup ) if resulttype != "ERROR": print 'Init complete.' else: print result[0]['message']
async def notify_users(websocket, payload): USERS[payload.get(names.ID_USER)] = websocket users = Provider.get_users_by_room(payload) users_send = [] for i in users: user = USERS.get(i.get(names.ID_USER)) if user is not None: users_send.append(user) await asyncio.wait([u.send(json.dumps(payload)) for u in users_send])
def train(): train_list, test_list = get_block_train_test_split() # test_list=['data/S3DIS/sampled_train/'+fn for fn in train_list[:2]] train_list = ['data/S3DIS/sampled_train/' + fn for fn in train_list] test_list = ['data/S3DIS/sampled_test/' + fn for fn in test_list] def fn(model, filename): data = read_pkl(filename) return data[0], data[2], data[3], data[4], data[12] train_provider = Provider(train_list, 'train', FLAGS.batch_size * FLAGS.num_gpus, fn) test_provider = Provider(test_list, 'test', FLAGS.batch_size * FLAGS.num_gpus, fn) try: pls = build_placeholder(FLAGS.num_gpus) batch_num_per_epoch = 2000 / FLAGS.num_gpus ops = train_ops(pls['xyzs'], pls['feats'], pls['lbls'], pls['is_training'], batch_num_per_epoch) feed_dict = {} config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) saver = tf.train.Saver(max_to_keep=500) if FLAGS.restore: saver.restore(sess, FLAGS.restore_model) else: sess.run(tf.global_variables_initializer()) base_var = [ var for var in tf.trainable_variables() if var.name.startswith('base') or var.name.startswith('class_mlp') ] base_saver = tf.train.Saver(base_var) base_saver.restore(sess, FLAGS.base_restore) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph=sess.graph) for epoch_num in xrange(FLAGS.restore_epoch, FLAGS.train_epoch_num): train_one_epoch(ops, pls, sess, summary_writer, train_provider, epoch_num, feed_dict) test_one_epoch(ops, pls, sess, saver, test_provider, epoch_num, feed_dict) finally: train_provider.close() test_provider.close()
def train(): with open('cached/scannet_train_filenames.txt', 'r') as f: train_list = [line.strip('\n') for line in f.readlines()] train_list = [ 'data/ScanNet/sampled_train/{}'.format(fn) for fn in train_list ] test_list = [ 'data/ScanNet/sampled_test/test_{}.pkl'.format(i) for i in xrange(312) ] read_fn = lambda model, filename: read_pkl(filename) train_provider = Provider(train_list, 'train', FLAGS.batch_size * FLAGS.num_gpus, read_fn) test_provider = Provider(test_list, 'test', FLAGS.batch_size * FLAGS.num_gpus, read_fn) try: pls = build_placeholder(FLAGS.num_gpus) pmiu = neighbor_anchors_v2() batch_num_per_epoch = 11000 / FLAGS.num_gpus ops = train_ops(pls['cxyzs'], pls['dxyzs'], pls['covars'], pls['vlens'], pls['vlens_bgs'], pls['vcidxs'], pls['cidxs'], pls['nidxs'], pls['nidxs_lens'], pls['nidxs_bgs'], pls['lbls'], pls['weights'], pmiu.shape[1], pls['is_training'], batch_num_per_epoch, pls['pmiu']) feed_dict = {} feed_dict[pls['pmiu']] = pmiu config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) saver = tf.train.Saver(max_to_keep=500) if FLAGS.restore: saver.restore(sess, FLAGS.restore_model) else: sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph=sess.graph) for epoch_num in xrange(FLAGS.restore_epoch, FLAGS.train_epoch_num): train_one_epoch(ops, pls, sess, summary_writer, train_provider, epoch_num, feed_dict) test_one_epoch(ops, pls, sess, saver, test_provider, epoch_num, feed_dict) finally: train_provider.close() test_provider.close()
def train(): train_list, test_list = prepare_input_list('data/S3DIS/point/fpfh/', FLAGS.batch_size) fetch_data_with_batch = functools.partial(fetch_data, batch_size=FLAGS.batch_size) train_provider = Provider(train_list, 1, fetch_data_with_batch, 'train', 4, fetch_batch, max_worker_num=1) test_provider = Provider(test_list, 1, fetch_data_with_batch, 'test', 4, fetch_batch, max_worker_num=1) trainset = ProviderMultiGPUWrapper(FLAGS.num_gpus, train_provider) testset = ProviderMultiGPUWrapper(FLAGS.num_gpus, test_provider) try: pls = {} pls['feats'] = tf.placeholder(tf.float32, [None, 39], 'feats') pls['labels'] = tf.placeholder(tf.int64, [ None, ], 'labels') pls['is_training'] = tf.placeholder(tf.bool, [], 'is_training') ops = train_ops(pls['feats'], pls['labels'], pls['is_training'], train_provider.batch_num) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(max_to_keep=500) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph=sess.graph) for epoch_num in xrange(FLAGS.train_epoch_num): test_one_epoch(ops, pls, sess, saver, testset, epoch_num) train_one_epoch(ops, pls, sess, summary_writer, trainset, epoch_num) finally: train_provider.close() test_provider.close()
def test_semantic_read_pkl(): from provider import Provider, default_unpack_feats_labels train_list, test_list = get_semantic3d_block_train_list() train_list = [ 'data/Semantic3D.Net/block/sampled/train_merge/{}.pkl'.format(i) for i in xrange(231) ] test_list = [ 'data/Semantic3D.Net/block/sampled/test/' + fn for fn in test_list ] simple_read_fn = lambda model, filename: read_pkl(filename) train_provider = Provider(train_list, 'train', 4, simple_read_fn) # test_provider = Provider(test_list,'test',4,simple_read_fn) print len(train_list) try: # begin = time.time() # i = 0 # for data in test_provider: # i += 1 # pass # print 'batch_num {}'.format(i * 4) # print 'test set cost {} s'.format(time.time() - begin) begin = time.time() i = 0 for data in train_provider: i += 1 if i % 2500 == 0: print 'cost {} s'.format(time.time() - begin) print 'batch_num {}'.format(i * 4) print 'train set cost {} s'.format(time.time() - begin) finally: print 'done' train_provider.close() test_provider.close()
def executeCommand(): pluginHandle = int(sys.argv[1]) success = False if (mycgi.EmptyQS()): success = ShowProviders() else: (providerName, clearCache, testForwardedIP) = mycgi.Params(u'provider', u'clearcache', u'testforwardedip') if clearCache != u'': httpManager.ClearCache() return True elif testForwardedIP != u'': provider = Provider() provider.addon = addon httpManager.SetDefaultHeaders(provider.GetHeaders()) forwardedIP = provider.CreateForwardedForIP('0.0.0.0') return TestForwardedIP(forwardedIP) elif providerName != u'': log(u"providerName: " + providerName, xbmc.LOGDEBUG) if providerName <> u'': provider = providerfactory.getProvider(providerName) if provider is None: # ProviderFactory return none for providerName: %s logException = LoggingException( language(30000) % providerName) # 'Cannot proceed', Error processing provider name logException.process(language(30755), language(30020), xbmc.LOGERROR) return False if provider.initialise(httpManager, sys.argv[0], pluginHandle, addon, language, PROFILE_DATA_FOLDER, RESOURCE_PATH): success = provider.ExecuteCommand(mycgi) log(u"executeCommand done", xbmc.LOGDEBUG) """ print cookiejar print 'These are the cookies we have received so far :' for index, cookie in enumerate(cookiejar): print index, ' : ', cookie cookiejar.save() """ return success
def eval(): test_list = [ 'data/ScanNet/sampled_test/test_{}.pkl'.format(i) for i in xrange(312) ] read_fn = lambda model, filename: read_pkl(filename) test_provider = Provider(test_list, 'test', FLAGS.batch_size * FLAGS.num_gpus, read_fn) try: pls = build_placeholder(FLAGS.num_gpus) pmiu = neighbor_anchors_v2() batch_num_per_epoch = 11000 / FLAGS.num_gpus ops = train_ops(pls['cxyzs'], pls['dxyzs'], pls['covars'], pls['vlens'], pls['vlens_bgs'], pls['vcidxs'], pls['cidxs'], pls['nidxs'], pls['nidxs_lens'], pls['nidxs_bgs'], pls['lbls'], pls['weights'], pmiu.shape[1], pls['is_training'], batch_num_per_epoch, pls['pmiu']) feed_dict = {} feed_dict[pls['pmiu']] = pmiu config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) saver = tf.train.Saver(max_to_keep=500) saver.restore(sess, FLAGS.eval_model) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph=sess.graph) test_one_epoch(ops, pls, sess, saver, test_provider, 0, feed_dict, summary_writer) finally: test_provider.close()
def eval(): from semantic3d_context_util import get_context_train_test test_set = [ 'sg27_station4_intensity_rgb', 'bildstein_station1_xyz_intensity_rgb' ] train_list, test_list = get_context_train_test(test_set) test_list = ['data/Semantic3D.Net/context/block/' + fn for fn in test_list] def read_fn(model, fn): xyzs, rgbs, covars, lbls, ctx_xyzs, ctx_idxs, block_mins = read_pkl(fn) return xyzs, rgbs, covars, lbls, block_mins test_provider = Provider(test_list, 'test', FLAGS.batch_size * FLAGS.num_gpus, read_fn) try: pls = build_placeholder(FLAGS.num_gpus) batch_num_per_epoch = 2000 / FLAGS.num_gpus ops = train_ops(pls['xyzs'], pls['feats'], pls['lbls'], pls['is_training'], batch_num_per_epoch) feed_dict = {} config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) saver = tf.train.Saver(max_to_keep=500) saver.restore(sess, FLAGS.eval_model) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph=sess.graph) test_one_epoch(ops, pls, sess, saver, test_provider, 0, feed_dict, summary_writer) finally: test_provider.close()
def train(): train_list, test_list = get_block_train_test_split() train_list = ['data/S3DIS/sampled_train/' + fn for fn in train_list] test_list = ['data/S3DIS/sampled_test/' + fn for fn in test_list] fn = lambda model, filename: read_pkl(filename) train_provider = Provider(train_list, 'train', FLAGS.batch_size * FLAGS.num_gpus, fn) test_provider = Provider(test_list, 'test', FLAGS.batch_size * FLAGS.num_gpus, fn) try: pls = build_placeholder(FLAGS.num_gpus) pmiu = neighbor_anchors_v2() batch_num_per_epoch = 2000 / FLAGS.num_gpus ops = train_ops(pls['cxyzs'], pls['dxyzs'], pls['rgbs'], pls['covars'], pls['vlens'], pls['vlens_bgs'], pls['vcidxs'], pls['cidxs'], pls['nidxs'], pls['nidxs_lens'], pls['nidxs_bgs'], pls['lbls'], pmiu.shape[1], pls['is_training'], batch_num_per_epoch, pls['pmiu']) feed_dict = {} feed_dict[pls['pmiu']] = pmiu config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) saver = tf.train.Saver(max_to_keep=500) if FLAGS.restore: saver.restore(sess, FLAGS.restore_model) else: sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph=sess.graph) for epoch_num in xrange(FLAGS.restore_epoch, FLAGS.train_epoch_num): train_one_epoch(ops, pls, sess, summary_writer, train_provider, epoch_num, feed_dict) test_one_epoch(ops, pls, sess, saver, test_provider, epoch_num, feed_dict) finally: train_provider.close() test_provider.close()
class Selector: data = [] provider = Provider() outputs = 20 def __init__(self): inputData = [] targetData = [] for d in self.provider.data: inputData.append(d[0]) targetData.append(d[1][0]) # feature extraction lab_enc = preprocessing.LabelEncoder() encoded = lab_enc.fit_transform(targetData) test = SelectKBest(score_func=chi2, k=self.outputs) fit = test.fit(inputData, encoded) # summarize scores fields = zip(fit.scores_, self.provider.dataCols) self.sortedFields = sorted(fields, key=lambda x: x[0], reverse=True)[0:self.outputs] # print(sortedFields[0:self.outputs]) features = fit.transform(inputData) for i, t in enumerate(targetData): self.data.append([features[i], [t]]) self.multiplier = self.provider.multiplier def getLearnData(self): return self.data[:int(len(self.data) / 3)] def getValidationData(self): return self.data[int(len(self.data) / 3):int((2 * len(self.data)) / 3)] def getTestData(self): return self.data[int((2 * len(self.data)) / 3):] def getDataRanges(self): ranges = [] for cel in self.data[0][0]: ranges.append([cel, cel]) for row in self.data: for i, cel in enumerate(row[0]): if ranges[i][0] > cel: ranges[i][0] = cel if ranges[i][1] < cel: ranges[i][1] = cel return ranges def getInputCount(self): return self.outputs
def train(): import random train_list, test_list = get_block_train_test_split() train_list = [ 'data/S3DIS/sampled_train_nolimits/' + fn for fn in train_list ] random.shuffle(train_list) test_list = ['data/S3DIS/sampled_test_nolimits/' + fn for fn in test_list] def test_fn(model, filename): xyzs, rgbs, covars, lbls, block_mins = read_pkl(filename) return xyzs, rgbs, covars, lbls, block_mins train_provider = Provider(train_list, 'train', FLAGS.batch_size * FLAGS.num_gpus, test_fn) test_provider = Provider(test_list, 'test', FLAGS.batch_size * FLAGS.num_gpus, test_fn) try: pls = build_placeholder(FLAGS.num_gpus) batch_num_per_epoch = 2000 / FLAGS.num_gpus ops = train_ops(pls['xyzs'], pls['feats'], pls['lbls'], pls['is_training'], batch_num_per_epoch) feed_dict = {} config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) var_list = [ var for var in tf.trainable_variables() if not var.name.startswith('class_mlp') ] saver = tf.train.Saver(max_to_keep=500, var_list=var_list) saver.restore(sess, FLAGS.restore_model) for epoch_num in xrange(FLAGS.restore_epoch, FLAGS.train_epoch_num): train_one_epoch(ops, pls, sess, train_provider, epoch_num, feed_dict) test_one_epoch(ops, pls, sess, test_provider, epoch_num, feed_dict) finally: train_provider.close() test_provider.close()
def train(): train_list, test_list = get_block_train_test_split() train_list = [ 'data/S3DIS/sampled_train_nolimits/' + fn for fn in train_list ] # train_list=['data/S3DIS/sampled_train_no_aug/'+fn for fn in train_list] # with open('cached/s3dis_merged_train.txt', 'r') as f: # train_list=[line.strip('\n') for line in f.readlines()] random.shuffle(train_list) test_list = ['data/S3DIS/sampled_test_nolimits/' + fn for fn in test_list] train_provider = Provider(train_list, 'train', FLAGS.batch_size * FLAGS.num_gpus, test_fn) test_provider = Provider(test_list, 'test', FLAGS.batch_size * FLAGS.num_gpus, test_fn) try: pls = build_placeholder(FLAGS.num_gpus) batch_num_per_epoch = 2000 / FLAGS.num_gpus ops = train_ops(pls['xyzs'], pls['feats'], pls['lbls'], pls['is_training'], batch_num_per_epoch) feed_dict = {} config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) saver = tf.train.Saver(max_to_keep=500) if FLAGS.restore: saver.restore(sess, FLAGS.restore_model) else: sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph=sess.graph) for epoch_num in xrange(FLAGS.restore_epoch, FLAGS.train_epoch_num): train_one_epoch(ops, pls, sess, summary_writer, train_provider, epoch_num, feed_dict) test_one_epoch(ops, pls, sess, saver, test_provider, epoch_num, feed_dict) finally: train_provider.close() test_provider.close()
def loginSubmit(self): self.loginButton.setEnabled(False) global backupInstance, config backupInstance = Provider.getInstance( self.providerBox.currentText(), config ) resulttype, result = backupInstance.login( str(self.usernameEdit.text()), str(self.passwordEdit.text()), config.backupName ) if resulttype != "ERROR": # success self.hide() global mainwin, choosebackuplocation choosebackuplocation = BackupLocationWindow() choosebackuplocation.show() mainwin = choosebackuplocation else: KMessageBox.error(None, result[0]['message']) self.loginButton.setEnabled(True)
def _runAction(self, resource, action): utils.log("Performing action %s on %s" % (action, resource)) providerClass = Provider.resolve(self, resource.__class__.__name__, resource.provider) provider = providerClass(resource) try: providerAction = getattr(provider, 'action_%s' % action) except AttributeError: raise Fail("%r does not implement action %s" % (provider, action)) providerAction() if resource.isUpdated: for action, res in resource.subscriptions['immediate']: utils.log("%s sending %s action to %s (immediate)" % (resource, action, res)) self._runAction(res, action) for action, res in resource.subscriptions['delayed']: utils.log("%s sending %s action to %s (delayed)" % (resource, action, res)) self.delayedActions |= resource.subscriptions['delayed']
def __init__(self, *args, **kwds): self._trovebox = trovebox.Trovebox() self._photo_count = None Provider.__init__(self, *args, **kwds)
def __init__(self): Provider.__init__(self)
def do_provider(self, _args): """ Interact with exported providers on the device """ subconsole = Provider(self.session) subconsole.cmdloop()