Пример #1
0
    def test_norm1_halide(self):
        """Halide Norm 1 test
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(
                os.path.dirname(os.path.realpath(__file__)), 'data',
                'angela.jpg')
            img = Image.open(
                testimg_filename
            )  # opens the file using Pillow - it's not an array yet
            np_img = np.asfortranarray(im2nparray(img))

            # Convert to gray
            np_img = np.mean(np_img, axis=2)

            # Test problem
            v = np_img
            theta = 0.5

            # Output
            output = np.zeros_like(np_img)
            Halide('prox_L1.cpp').prox_L1(v, theta, output)  # Call

            # Reference
            output_ref = np.maximum(0.0, v - theta) - np.maximum(
                0.0, -v - theta)

            self.assertItemsAlmostEqual(output, output_ref)
Пример #2
0
    def test_mask_halide(self):
        """Test mask lin op in halide.
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(
                os.path.dirname(os.path.realpath(__file__)), 'data',
                'angela.jpg')
            # opens the file using Pillow - it's not an array yet
            img = Image.open(testimg_filename)
            np_img = np.asfortranarray(im2nparray(img))

            # Test problem
            output = np.zeros_like(np_img)
            mask = np.asfortranarray(
                np.random.randn(*list(np_img.shape)).astype(np.float32))
            mask = np.maximum(mask, 0.)

            Halide('A_mask.cpp').A_mask(np_img, mask, output)  # Call
            output_ref = mask * np_img

            # Transpose
            output_trans = np.zeros_like(np_img)
            Halide('At_mask.cpp').At_mask(np_img, mask, output_trans)  # Call

            self.assertItemsAlmostEqual(output, output_ref)
            self.assertItemsAlmostEqual(output_trans, output_ref)
Пример #3
0
    def test_poisson_halide(self):
        """Halide Poisson norm test
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                            'data', 'angela.jpg')
            img = Image.open(testimg_filename)
            np_img = np.asfortranarray(im2nparray(img))

            # Convert to gray
            np_img = np.mean(np_img, axis=2)

            # Test problem
            v = np_img
            theta = 0.5

            mask = np.asfortranarray(np.random.randn(*list(np_img.shape)).astype(np.float32))
            mask = np.maximum(mask, 0.)
            b = np_img * np_img

            # Output
            output = np.zeros_like(v)

            tic()
            Halide('prox_Poisson.cpp').prox_Poisson(v, mask, b, theta, output)  # Call
            print('Running took: {0:.1f}ms'.format(toc()))

            # Reference
            output_ref = 0.5 * (v - theta + np.sqrt((v - theta) * (v - theta) + 4 * theta * b))
            output_ref[mask <= 0.5] = v[mask <= 0.5]

            self.assertItemsAlmostEqual(output, output_ref)
Пример #4
0
    def test_slicing(self):
        """Test slicing  over numpy arrays in halide.
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(
                os.path.dirname(os.path.realpath(__file__)), 'data',
                'angela.jpg')
            np_img = im2nparray(Image.open(testimg_filename))
            np_img = np.asfortranarray(
                np.tile(np_img[..., np.newaxis], (1, 1, 1, 3)))

            # Test problem
            output = np.zeros_like(np_img)
            mask = np.asfortranarray(
                np.random.randn(*list(np_img.shape[0:3])).astype(np.float32))
            mask = np.maximum(mask, 0.)

            for k in range(np_img.shape[3]):
                Halide('A_mask.cpp').A_mask(
                    np.asfortranarray(np_img[:, :, :, k]), mask,
                    output[:, :, :, k])  # Call

                output_ref = np.zeros_like(np_img)
                for k in range(np_img.shape[3]):
                    output_ref[:, :, :, k] = mask * np_img[:, :, :, k]

            self.assertItemsAlmostEqual(output, output_ref)
Пример #5
0
    def test_norm1_halide(self):
        """Halide Norm 1 test
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                            'data', 'angela.jpg')
            img = Image.open(testimg_filename)  # opens the file using Pillow - it's not an array yet
            np_img = np.asfortranarray(im2nparray(img))

            # Convert to gray
            np_img = np.mean(np_img, axis=2)

            # Test problem
            v = np_img
            theta = 0.5

            # Output
            output = np.zeros_like(np_img)
            Halide('prox_L1.cpp').prox_L1(v, theta, output)  # Call

            # Reference
            output_ref = np.maximum(0.0, v - theta) - np.maximum(0.0, -v - theta)

            self.assertItemsAlmostEqual(output, output_ref)
Пример #6
0
    def test_mask_halide(self):
        """Test mask lin op in halide.
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                            'data', 'angela.jpg')
            # opens the file using Pillow - it's not an array yet
            img = Image.open(testimg_filename)
            np_img = np.asfortranarray(im2nparray(img))

            # Test problem
            output = np.zeros_like(np_img)
            mask = np.asfortranarray(np.random.randn(*list(np_img.shape)).astype(np.float32))
            mask = np.maximum(mask, 0.)

            Halide('A_mask.cpp').A_mask(np_img, mask, output)  # Call
            output_ref = mask * np_img

            # Transpose
            output_trans = np.zeros_like(np_img)
            Halide('At_mask.cpp').At_mask(np_img, mask, output_trans)  # Call

            self.assertItemsAlmostEqual(output, output_ref)
            self.assertItemsAlmostEqual(output_trans, output_ref)
Пример #7
0
    def test_conv_halide(self):
        """Test convolution lin op in halide.
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                            'data', 'angela.jpg')
            # opens the file using Pillow - it's not an array yet
            img = Image.open(testimg_filename)
            np_img = np.asfortranarray(im2nparray(img))

            # Convert to gray
            np_img = np.mean(np_img, axis=2)

            # Test problem
            output = np.zeros_like(np_img)
            K = np.ones((11, 11), dtype=np.float32, order='FORTRAN')
            K /= np.prod(K.shape)

            #Convolve in halide
            Halide('A_conv.cpp').A_conv(np_img, K, output)

            #Convolve in scipy
            output_ref = signal.convolve2d(np_img, K, mode='same', boundary='wrap')

            # Transpose
            output_corr = np.zeros_like(np_img)
            Halide('At_conv.cpp').At_conv(np_img, K, output_corr)  # Call

            output_corr_ref = signal.convolve2d(np_img, np.flipud(np.fliplr(K)),
                                                mode='same', boundary='wrap')

            self.assertItemsAlmostEqual(output, output_ref)
            self.assertItemsAlmostEqual(output_corr, output_corr_ref)
Пример #8
0
    def test_warp_halide(self):
        """Test warp lin op in halide.
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(
                os.path.dirname(os.path.realpath(__file__)), 'data',
                'angela.jpg')
            img = Image.open(testimg_filename)
            np_img = np.asfortranarray(im2nparray(img))

            # Convert to gray
            np_img = np.mean(np_img, axis=2)

            # Generate problem
            theta_rad = 5.0 * np.pi / 180.0
            H = np.array([[np.cos(theta_rad), -np.sin(theta_rad), 0.0001],
                          [np.sin(theta_rad),
                           np.cos(theta_rad), 0.0003], [0., 0., 1.]],
                         dtype=np.float32,
                         order='F')

            # Reference
            output_ref = cv2.warpPerspective(np_img,
                                             H.T,
                                             np_img.shape[1::-1],
                                             flags=cv2.INTER_LINEAR,
                                             borderMode=cv2.BORDER_CONSTANT,
                                             borderValue=0.)

            # Halide
            output = np.zeros_like(np_img)
            Hc = np.asfortranarray(
                np.linalg.pinv(H)[..., np.newaxis])  # Third axis for halide
            Halide('A_warp.cpp').A_warp(np_img, Hc, output)  # Call

            # Transpose
            output_trans = np.zeros_like(np_img)
            Hinvc = np.asfortranarray(H[...,
                                        np.newaxis])  # Third axis for halide
            Halide('At_warp.cpp').At_warp(output, Hinvc, output_trans)  # Call

            # Compute reference
            output_ref_trans = cv2.warpPerspective(
                output_ref,
                H.T,
                np_img.shape[1::-1],
                flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP,
                borderMode=cv2.BORDER_CONSTANT,
                borderValue=0.)
            # Opencv does inverse warp
            self.assertItemsAlmostEqual(output, output_ref, places=1)
            # Opencv does inverse warp
            self.assertItemsAlmostEqual(output_trans,
                                        output_ref_trans,
                                        places=1)
Пример #9
0
    def test_grad_halide(self):
        """Test gradient lin op in halide.
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(
                os.path.dirname(os.path.realpath(__file__)), 'data',
                'angela.jpg')
            img = Image.open(testimg_filename)
            np_img = np.asfortranarray(im2nparray(img))

            # Convert to gray
            np_img = np.mean(np_img, axis=2)

            # Test problem
            output = np.zeros(
                (np_img.shape[0], np_img.shape[1], np_img.shape[2] if
                 (len(np_img.shape) > 2) else 1, 2),
                dtype=np.float32,
                order='FORTRAN')

            # Gradient in halide
            Halide('A_grad.cpp').A_grad(np_img, output)  # Call

            # Compute comparison
            f = np_img
            if len(np_img.shape) == 2:
                f = f[..., np.newaxis]

            ss = f.shape
            fx = f[:, np.r_[1:ss[1], ss[1] - 1], :] - f
            fy = f[np.r_[1:ss[0], ss[0] - 1], :, :] - f
            Kf = np.asfortranarray(np.stack((fy, fx), axis=-1))

            # Transpose
            output_trans = np.zeros(f.shape, dtype=np.float32, order='F')
            Halide('At_grad.cpp').At_grad(Kf, output_trans)  # Call

            # Compute comparison (Negative divergence)
            Kfy = Kf[:, :, :, 0]
            fy = Kfy - Kfy[np.r_[0, 0:ss[0] - 1], :, :]
            fy[0, :, :] = Kfy[0, :, :]
            fy[-1, :, :] = -Kfy[-2, :, :]

            Kfx = Kf[:, :, :, 1]
            ss = Kfx.shape
            fx = Kfx - Kfx[:, np.r_[0, 0:ss[1] - 1], :]
            fx[:, 0, :] = Kfx[:, 0, :]
            fx[:, -1, :] = -Kfx[:, -2, :]
Пример #10
0
    def test_grad_halide(self):
        """Test gradient lin op in halide.
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                            'data', 'angela.jpg')
            img = Image.open(testimg_filename)
            np_img = np.asfortranarray(im2nparray(img))

            # Convert to gray
            np_img = np.mean(np_img, axis=2)

            # Test problem
            output = np.zeros((np_img.shape[0], np_img.shape[1],
                               np_img.shape[2] if (len(np_img.shape) > 2) else 1, 2),
                              dtype=np.float32, order='FORTRAN')

            #Gradient in halide
            Halide('A_grad.cpp').A_grad(np_img, output)  # Call

            # Compute comparison
            f = np_img
            if len(np_img.shape) == 2:
                f = f[..., np.newaxis]

            ss = f.shape
            fx = f[:, np.r_[1:ss[1], ss[1] - 1], :] - f
            fy = f[np.r_[1:ss[0], ss[0] - 1], :, :] - f
            Kf = np.asfortranarray(np.stack((fy, fx), axis=-1))

            # Transpose
            output_trans = np.zeros(f.shape, dtype=np.float32, order='F')
            Halide('At_grad.cpp').At_grad(Kf, output_trans)  # Call

            # Compute comparison (Negative divergence)
            Kfy = Kf[:, :, :, 0]
            fy = Kfy - Kfy[np.r_[0, 0:ss[0] - 1], :, :]
            fy[0, :, :] = Kfy[0, :, :]
            fy[-1, :, :] = -Kfy[-2, :, :]

            Kfx = Kf[:, :, :, 1]
            ss = Kfx.shape
            fx = Kfx - Kfx[:, np.r_[0, 0:ss[1] - 1], :]
            fx[:, 0, :] = Kfx[:, 0, :]
            fx[:, -1, :] = -Kfx[:, -2, :]
Пример #11
0
    def test_warp_halide(self):
        """Test warp lin op in halide.
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                            'data', 'angela.jpg')
            img = Image.open(testimg_filename)
            np_img = np.asfortranarray(im2nparray(img))

            # Convert to gray
            np_img = np.mean(np_img, axis=2)

            # Generate problem
            theta_rad = 5.0 * np.pi / 180.0
            H = np.array([[np.cos(theta_rad), -np.sin(theta_rad), 0.0001],
                          [np.sin(theta_rad), np.cos(theta_rad), 0.0003],
                          [0., 0., 1.]], dtype=np.float32, order='F')

            # Reference
            output_ref = cv2.warpPerspective(np_img, H.T, np_img.shape[1::-1], flags=cv2.INTER_LINEAR,
                                             borderMode=cv2.BORDER_CONSTANT, borderValue=0.)

            # Halide
            output = np.zeros_like(np_img)
            Hc = np.asfortranarray(np.linalg.pinv(H)[..., np.newaxis])  # Third axis for halide
            Halide('A_warp.cpp').A_warp(np_img, Hc, output)  # Call

            # Transpose
            output_trans = np.zeros_like(np_img)
            Hinvc = np.asfortranarray(H[..., np.newaxis])  # Third axis for halide
            Halide('At_warp.cpp').At_warp(output, Hinvc, output_trans)  # Call

            # Compute reference
            output_ref_trans = cv2.warpPerspective(output_ref, H.T, np_img.shape[1::-1],
                                                   flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP,
                                                   borderMode=cv2.BORDER_CONSTANT, borderValue=0.)
            # Opencv does inverse warp
            self.assertItemsAlmostEqual(output, output_ref, places=1)
            # Opencv does inverse warp
            self.assertItemsAlmostEqual(output_trans, output_ref_trans, places=1)
Пример #12
0
    def test_conv_halide(self):
        """Test convolution lin op in halide.
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(
                os.path.dirname(os.path.realpath(__file__)), 'data',
                'angela.jpg')
            # opens the file using Pillow - it's not an array yet
            img = Image.open(testimg_filename)
            np_img = np.asfortranarray(im2nparray(img))

            # Convert to gray
            np_img = np.mean(np_img, axis=2)

            # Test problem
            output = np.zeros_like(np_img)
            K = np.ones((11, 11), dtype=np.float32, order='FORTRAN')
            K /= np.prod(K.shape)

            # Convolve in halide
            Halide('A_conv.cpp').A_conv(np_img, K, output)

            # Convolve in scipy
            output_ref = signal.convolve2d(np_img,
                                           K,
                                           mode='same',
                                           boundary='wrap')

            # Transpose
            output_corr = np.zeros_like(np_img)
            Halide('At_conv.cpp').At_conv(np_img, K, output_corr)  # Call

            output_corr_ref = signal.convolve2d(np_img,
                                                np.flipud(np.fliplr(K)),
                                                mode='same',
                                                boundary='wrap')

            self.assertItemsAlmostEqual(output, output_ref)
            self.assertItemsAlmostEqual(output_corr, output_corr_ref)
Пример #13
0
    def test_isonorm1_halide(self):
        """Halide Norm 1 test
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(
                os.path.dirname(os.path.realpath(__file__)), 'data',
                'angela.jpg')
            img = Image.open(testimg_filename)
            np_img = np.asfortranarray(im2nparray(img))

            # Convert to gray
            np_img = np.mean(np_img, axis=2)

            # Test problem
            theta = 0.5

            f = np_img
            if len(np_img.shape) == 2:
                f = f[..., np.newaxis]

            ss = f.shape
            fx = f[:, np.r_[1:ss[1], ss[1] - 1], :] - f
            fy = f[np.r_[1:ss[0], ss[0] - 1], :, :] - f
            v = np.asfortranarray(np.stack((fx, fy), axis=-1))

            # Output
            output = np.zeros_like(v)
            Halide('prox_IsoL1.cpp').prox_IsoL1(v, theta, output)  # Call

            # Reference
            normv = np.sqrt(
                np.multiply(v[:, :, :, 0], v[:, :, :, 0]) +
                np.multiply(v[:, :, :, 1], v[:, :, :, 1]))
            normv = np.stack((normv, normv), axis=-1)
            with np.errstate(divide='ignore'):
                output_ref = np.maximum(0.0, 1.0 - theta / normv) * v

            self.assertItemsAlmostEqual(output, output_ref)
Пример #14
0
    def test_poisson_halide(self):
        """Halide Poisson norm test
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(
                os.path.dirname(os.path.realpath(__file__)), 'data',
                'angela.jpg')
            img = Image.open(testimg_filename)
            np_img = np.asfortranarray(im2nparray(img))

            # Convert to gray
            np_img = np.mean(np_img, axis=2)

            # Test problem
            v = np_img
            theta = 0.5

            mask = np.asfortranarray(
                np.random.randn(*list(np_img.shape)).astype(np.float32))
            mask = np.maximum(mask, 0.)
            b = np_img * np_img

            # Output
            output = np.zeros_like(v)

            tic()
            Halide('prox_Poisson.cpp').prox_Poisson(v, mask, b, theta,
                                                    output)  # Call
            print('Running took: {0:.1f}ms'.format(toc()))

            # Reference
            output_ref = 0.5 * (v - theta +
                                np.sqrt((v - theta) *
                                        (v - theta) + 4 * theta * b))
            output_ref[mask <= 0.5] = v[mask <= 0.5]

            self.assertItemsAlmostEqual(output, output_ref)
Пример #15
0
    def test_isonorm1_halide(self):
        """Halide Norm 1 test
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                            'data', 'angela.jpg')
            img = Image.open(testimg_filename)
            np_img = np.asfortranarray(im2nparray(img))

            # Convert to gray
            np_img = np.mean(np_img, axis=2)

            # Test problem
            theta = 0.5

            f = np_img
            if len(np_img.shape) == 2:
                f = f[..., np.newaxis]

            ss = f.shape
            fx = f[:, np.r_[1:ss[1], ss[1] - 1], :] - f
            fy = f[np.r_[1:ss[0], ss[0] - 1], :, :] - f
            v = np.asfortranarray(np.stack((fx, fy), axis=-1))

            # Output
            output = np.zeros_like(v)
            Halide('prox_IsoL1.cpp').prox_IsoL1(v, theta, output)  # Call

            # Reference
            normv = np.sqrt(np.multiply(v[:, :, :, 0], v[:, :, :, 0]) +
                            np.multiply(v[:, :, :, 1], v[:, :, :, 1]))
            normv = np.stack((normv, normv), axis=-1)
            with np.errstate(divide='ignore'):
                output_ref = np.maximum(0.0, 1.0 - theta / normv) * v

            self.assertItemsAlmostEqual(output, output_ref)
Пример #16
0
    def test_slicing(self):
        """Test slicing  over numpy arrays in halide.
        """
        if halide_installed():
            # Load image
            testimg_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                        'data', 'angela.jpg')
            np_img = im2nparray(Image.open(testimg_filename))
            np_img = np.asfortranarray(np.tile(np_img[..., np.newaxis], (1, 1, 1, 3)))

            # Test problem
            output = np.zeros_like(np_img)
            mask = np.asfortranarray(np.random.randn(*list(np_img.shape[0:3])).astype(np.float32))
            mask = np.maximum(mask, 0.)

            for k in range(np_img.shape[3]):
                Halide('A_mask.cpp').A_mask(np.asfortranarray(np_img[:, :, :, k]),
                                            mask, output[:, :, :, k])  # Call

                output_ref = np.zeros_like(np_img)
                for k in range(np_img.shape[3]):
                    output_ref[:, :, :, k] = mask * np_img[:, :, :, k]

            self.assertItemsAlmostEqual(output, output_ref)
Пример #17
0
 def test_compile(self):
     """Test compilation and run.
     """
     if halide_installed():
         # Force recompilation of conv
         Halide('A_conv.cpp', recompile=True, verbose=False)
Пример #18
0
 def test_compile(self):
     """Test compilation and run.
     """
     if halide_installed():
         # Force recompilation of conv
         Halide('A_conv.cpp', recompile=True, verbose=False)