def DetectBins(self, robot, table, **kw_args):
        """
        Place bins on table
        """
        from prpy.rave import Disabled
        from prpy.util import ComputeEnabledAABB

        env = robot.GetEnv()

        # Place blocks in a pattern on the table
        with Disabled(table, padding_only=True):
            table_aabb = ComputeEnabledAABB(table)

        table_height = table_aabb.pos()[2] + table_aabb.extents()[2]
        table_corner = numpy.eye(4)
        table_corner[:3, 3] = [
            table_aabb.pos()[0] - table_aabb.extents()[0],
            table_aabb.pos()[1] - table_aabb.extents()[1],
            table_height,
        ]
        # Get the pr-ordata package path
        data_dir = prpy.util.FindCatkinResource("pr_ordata", "data")

        # Import the yaml file telling where to place blocks
        bin_config_dir = prpy.util.FindCatkinResource("block_sorting", "config")
        bin_config = os.path.join(bin_config_dir, "bin_metadata.yaml")
        with open(bin_config, "r") as f:
            import yaml

            bin_yaml = yaml.load(f.read())

        bins = []
        for b in bin_yaml:
            bin_obj = env.ReadKinBodyXMLFile(os.path.join(data_dir, "objects", b["kinbody"]))

            # Set the pose
            bin_pose = numpy.eye(4)
            bin_pose[:2, 3] = b["pose"]
            bin_in_world = numpy.dot(table_corner, bin_pose)
            bin_in_world[2, 3] = table_height
            bin_obj.SetTransform(bin_in_world)

            # Set the color
            for l in bin_obj.GetLinks():
                for g in l.GetGeometries():
                    color = b["color"] + [1.0]
                    g.SetDiffuseColor(numpy.array(color))

            # Set the name
            bin_obj.SetName(b["name"])

            # Add it
            env.Add(bin_obj)
            bins.append(bin_obj)

        return bins
    def DetectBlocks(self, robot, table, blocks=[], **kw_args):
        """
        Place blocks on the table
        """
        from prpy.rave import Disabled
        from prpy.util import ComputeEnabledAABB

        if len(blocks) == 0:
            # Add all blocks

            # Import the yaml file telling where to place blocks
            block_config_dir = prpy.util.FindCatkinResource("block_sorting", "config")
            block_config = os.path.join(block_config_dir, "block_pattern.yaml")
            with open(block_config, "r") as f:
                import yaml

                block_yaml = yaml.load(f.read())

            env = robot.GetEnv()

            # Place blocks in a pattern on the table
            with Disabled(table, padding_only=True):
                table_aabb = ComputeEnabledAABB(table)

            table_height = table_aabb.pos()[2] + table_aabb.extents()[2]
            table_corner = numpy.eye(4)
            table_corner[:3, 3] = [
                table_aabb.pos()[0] - table_aabb.extents()[0],
                table_aabb.pos()[1] - table_aabb.extents()[1],
                table_height,
            ]

            for b in block_yaml:
                block = env.ReadKinBodyXMLFile("objects/block.kinbody.xml")
                block_pose = numpy.eye(4)
                block_pose[:2, 3] = b["pose"]
                block_in_world = numpy.dot(table_corner, block_pose)
                block_in_world[2, 3] = table_height
                block.SetTransform(block_in_world)
                block.SetName(b["name"])
                env.Add(block)
                blocks.append(block)

        return blocks
Пример #3
0
def _GrabBlock(robot, blocks, table, manip=None, preshape=None,
              **kw_args):
    """
    @param robot The robot performing the grasp
    @param block The block to grab
    @param table The table, or object, the block is resting on
    @param manip The manipulator to use to grab the block
      (if None active manipulator is used)
    @param preshape The shape (dof_values) to move the hand to before
      executing the grab
    """
    from prpy.rave import AllDisabled, Disabled
    from prpy.viz import RenderTSRList, RenderVector

    env = robot.GetEnv()
    block = None

    if manip is None:
        with env:
            manip = robot.GetActiveManipulator()
    
    if preshape is None:
        preshape=[1.7, 1.7, 0.2, 2.45]

    # First move the hand to the right preshape
    manip.hand.MoveHand(*preshape)

    block_tsr_list = []
    with env:
        for b in blocks:
            # Get a TSR to move near the block.
            tsr_list = robot.tsrlibrary(b, 'grasp', manip=manip)
            block_tsr_list += tsr_list
    
    # Plan to a pose above the block
    with RenderTSRList(block_tsr_list, robot.GetEnv()):
        with Disabled(table, padding_only=True):
            manip.PlanToTSR(block_tsr_list, execute=True)

    with manip.GetRobot().GetEnv():
        ee_pose = manip.GetEndEffectorTransform()
    
    block_idxs = [ idx for idx, tsr_chain in enumerate(block_tsr_list)
                  if tsr_chain.contains(ee_pose) ]
    if len(block_idxs) == 0:
        raise NoTSRException("Failed to find the TSR PlanToTSR planned to")
    block = blocks[block_idxs[0]]
    
    try:
        with AllDisabled(env, [table] + blocks, padding_only=True):
            # Move down until touching the table
            with env:
                start_point = manip.GetEndEffectorTransform()[0:3, 3]
                table_aabb = ComputeEnabledAABB(table)
                table_height = table_aabb.pos()[2] + table_aabb.extents()[2]
                # 0.14 is the distance from finger tip to end-effector frame
                current_finger_height = manip.GetEndEffectorTransform()[2,3] - 0.14
                min_distance = 0.10# current_finger_height - table_height

            down_direction = [0., 0., -1.]
            with RenderVector(start_point, down_direction, min_distance, env):
                manip.MoveUntilTouch(direction=down_direction, timelimit=5,
                    distance=min_distance, max_distance=min_distance + 0.05,
                    ignore_collisions=blocks + [table])

            # Move parallel to the table to funnel the block into the fingers
            # by projecting the -x direction of end-effector onto the xy-plane.
            with env:
                start_point = manip.GetEndEffectorTransform()[0:3, 3]
                funnel_direction = -1. * manip.GetEndEffectorTransform()[:3,0]
                funnel_direction[2] = 0.

            # TODO: We should only have to disable the block for this. Why does
            # this fail if we do not disable the table?
            with AllDisabled(env, blocks + [table]):
                with RenderVector(start_point, funnel_direction, 0.1, env):
                    manip.PlanToEndEffectorOffset(direction=funnel_direction,
                                                  distance=0.08, max_distance=0.12, 
                                                  timelimit=5., execute=True)
        
        # Close the finger to grab the block
        manip.hand.MoveHand(f3=1.7)
            
        # Compute the pose of the block in the hand frame
        with env:
            local_p = [0.01, 0, 0.24, 1.0]
            hand_pose = manip.GetEndEffectorTransform()
            world_p = numpy.dot(hand_pose, local_p)
            block_pose = block.GetTransform()
            block_pose[:,3] = world_p
            block_relative = numpy.dot(numpy.linalg.inv(hand_pose), block_pose)
        
        # Now lift the block up off the table
        with AllDisabled(env, blocks + [table]):
            manip.PlanToEndEffectorOffset(direction=[0, 0, 1], distance=0.05, 
                                          timelimit=5, execute=True)
            
        # OpenRAVE trick to hallucinate the block into the correct pose relative to the hand
        with env:
            hand_pose = manip.GetEndEffectorTransform()
            block_pose = numpy.dot(hand_pose, block_relative)
            block.SetTransform(block_pose)
            manip.GetRobot().Grab(block)
        return block
    except PlanningError as e:
        logger.error('Failed to complete block grasp')
        raise
Пример #4
0
def PushToPoseOnTable(robot, obj, table, goal_position, goal_radius, 
                      manip=None, max_plan_duration=30.0, 
                      shortcut_time=3., render=True, **kw_args):
    """
    @param robot The robot performing the push
    @param obj The object to push
    @param table The table kinbody the object is resting on
    @param goal_position The desired (x,y) position of the object in world coordinates
    @param goal_radius The max distance from goal_position for the object to be to 
      still consider the goal achieved
    @param manip The manipulator to use for the push - if None the active manipulator is used
    @param max_plan_duration The max time to run the planner
    @param shortcut_time The amount of time to spend shortcutting, if 0. no shortcutting is performed
    @param render If true, render the trajectory while executing
    """
    # Get a push planner
    try:
        from or_pushing.push_planner import PushPlanner
        planner = PushPlanner(robot.GetEnv())
    except ImportError:
        raise ActionError("Unable to create PushPlanner. Is the randomized_rearrangement_planning"
                          "repository checked out in your workspace?")

    # Get the manipulator
    if manip is None:
        with robot.GetEnv():
            manip = robot.GetActiveManipulator()


    with robot.GetEnv():
        from prpy.rave import Disabled
        from prpy.util import ComputeEnabledAABB
        with Disabled(table, padding_only=True):
            table_aabb = ComputeEnabledAABB(table)
        ee_pushing_transform = manip.GetEndEffectorTransform()
        goal_pose = obj.GetTransform()

    # Make the state bounds be at the edges of the table
    table_pos = table_aabb.pos()
    table_extents = table_aabb.extents()
    sbounds = {'high': [table_pos[0] + table_extents[0],
                        table_pos[1] + table_extents[1],
                        2.*numpy.pi],
               'low': [table_pos[0] - table_extents[0],
                       table_pos[1] - table_extents[1],
                       0]}
    
    # Assume we want to keep the current orientation and height of the manipulator
    #  throughout the push
    ee_pushing_transform[:2,3] = [0., 0.] #ignore x,y pose

    # Compute the goal pose
    table_height = table_pos[2] + table_extents[2]
    goal_pose[:3,3] = [goal_position[0],
                       goal_position[1],
                       table_height]

    with robot.CreateRobotStateSaver():
        traj = planner.PushToPose(robot, obj, goal_pose,
                                  state_bounds = sbounds,
                                  pushing_manifold = ee_pushing_transform.flatten().tolist(),
                                  max_plan_duration = max_plan_duration,
                                  goal_epsilon = goal_radius,
                                  **kw_args)
    if traj is None:
        raise PlanningError('Failed to find pushing plan')

    # Execute
    from prpy.viz import RenderTrajectory
    with RenderTrajectory(robot, traj, color=[1, 0, 0, 1], render=render):
        if shortcut_time > 0:
            traj = planner.ShortcutPath(timelimit=shortcut_time)
        with RenderTrajectory(robot, traj, color=[0, 0, 1, 1], render=render):
          if manip.simulated:
              # Use the push planner code to simulate path execution.
              # This simulates the pushing of the objects during
              # execution of the trajectory.
              planner.ExecutePlannedPath()
          else:
              # Execute the trajectory
              robot.ExecuteTrajectory(traj)

              # During execution, object pushes won't be simulated. 
              # In the OpenRAVE world, the robot will instead move through the objects
              # and probably be in collision at the end.
              # This call sets all the objects to their expected poses
              # at the end of the trajectory. If execution was successful, this should resolve 
              # collisions. 
              planner.SetFinalObjectPoses()

    return traj
Пример #5
0
    def plan(self, env):
        """
        Plan to rearrange objects.

        @param env: OpenRAVE environment
        @return a RearrangeObjectSolution
        @throws an ActionError if the or_pushing module is missing, or if an
          error is encountered during planning
        """
        if not HAS_RANDOMIZED_REARRANGEMENT_PLANNING:
            raise ActionError(
                "Unable to import or_pushing. Is the randomized_rearrangement_planning"
                "repository checked out in your workspace?")

        on_obj = self.get_on_obj(env)
        manipulator = self.get_manipulator(env)
        robot = self.get_robot(env)
        movables = self.get_movables(env)
        obj = self.get_pushed_object(env)

        # Make the state bounds be at the edges of the table
        with env:
            on_obj_aabb = ComputeEnabledAABB(on_obj)
        on_obj_pos = on_obj_aabb.pos()
        on_obj_extents = on_obj_aabb.extents()
        sbounds = {
            'high': [
                on_obj_pos[0] + on_obj_extents[0],
                on_obj_pos[1] + on_obj_extents[1], 2. * np.pi
            ],
            'low': [
                on_obj_pos[0] - on_obj_extents[0],
                on_obj_pos[1] - on_obj_extents[1], 0
            ]
        }

        # Assume we want to keep the current orientation and heigh of the manipulator
        #   throughout the push
        with env:
            ee_pushing_transform = manipulator.GetTransform()
        ee_pushing_transform[:2, 3] = [0., 0.]  # ignore x,y pose

        planner = DiscreteSearchPushPlanner(env)
        try:
            with robot.CreateRobotStateSaver():
                robot.SetActiveManipulator(manipulator)
                traj = planner.PushToPose(
                    robot,
                    obj,
                    self.goal_pose,
                    state_bounds=sbounds,
                    movable_objects=movables,
                    pushing_model='quasistatic',
                    pushing_manifold=ee_pushing_transform.flatten().tolist(),
                    goal_radius=self.goal_epsilon,
                    **self.kwargs)
            self.ompl_path = planner.GetPlannedPath()
            self.planner_params = planner.GetPlannerParameters()

            # Mark this action as deterministic based on the traj tags
            path_tags = GetTrajectoryTags(path)
            deterministic = path_tags.get(Tags.DETERMINISTIC_ENDPOINT, None)
            if deterministic is None:
                LOGGER.warn(
                    "Trajectory does not have DETERMINISTIC_ENDPOINT flag set. "
                    "Assuming non-deterministic.")
                deterministic = False

        except PlanningError as err:
            filepath = '/tmp'
            planner.WritePlannerData(filepath)
            raise ActionError(str(err), deterministic=err.deterministic)

        if traj is None:
            raise ActionError('Failed to find pushing plan',
                              deterministic=deterministic)

        return RearrangeObjectSolution(action=self,
                                       traj=traj,
                                       deterministic=deterministic)
Пример #6
0
    env.Add(glass)
    glass_transform = numpy.eye(4)
    glass_transform[:3, 3] = [0.6239455840637041, -0.4013916328109689, 0.75]
    glass.SetTransform(glass_transform)

    # Goal pose for the object
    import numpy
    goal_in_table = [0.15, 0., -0.03, 1.]
    goal_in_world = numpy.dot(table.GetTransform(), goal_in_table)
    goal_pose = goal_in_world[:2]
    goal_radius = 0.1

    from prpy.rave import Disabled
    from prpy.util import ComputeEnabledAABB
    with Disabled(table, padding_only=True):
        table_aabb = ComputeEnabledAABB(table)
    table_height = 0.01 + table_aabb.pos()[2] + table_aabb.extents()[2]

    pts = []
    for a in numpy.arange(0, 2.*numpy.pi, 0.1):
        pts.append([goal_pose[0] + goal_radius*numpy.sin(a),
                    goal_pose[1] + goal_radius*numpy.cos(a),
                    table_height])
    h = env.drawlinestrip(points=numpy.array(pts), linewidth=5.0,
                          colors=numpy.array([0.0, 1., 0.]))

    # Plan to the start configuration
    try:
        push_arm.SetActive()
        start_pose = [4.49119545, -1.59899798, -0.6, 1.65274406, -1.7742985, -0.63854765, -1.23051631]
        push_arm.PlanToConfiguration(start_pose, execute=True)
Пример #7
0
def _GrabBlock(robot, blocks, table, manip=None, preshape=None, **kw_args):
    """
    @param robot The robot performing the grasp
    @param block The block to grab
    @param table The table, or object, the block is resting on
    @param manip The manipulator to use to grab the block
      (if None active manipulator is used)
    @param preshape The shape (dof_values) to move the hand to before
      executing the grab
    """
    from prpy.rave import AllDisabled, Disabled
    from prpy.viz import RenderTSRList, RenderVector

    env = robot.GetEnv()
    block = None

    if manip is None:
        with env:
            manip = robot.GetActiveManipulator()

    if preshape is None:
        preshape = [1.7, 1.7, 0.2, 2.45]

    # First move the hand to the right preshape
    manip.hand.MoveHand(*preshape)

    block_tsr_list = []
    with env:
        for b in blocks:
            # Get a TSR to move near the block.
            tsr_list = robot.tsrlibrary(b, 'grasp', manip=manip)
            block_tsr_list += tsr_list

    # Plan to a pose above the block
    with RenderTSRList(block_tsr_list, robot.GetEnv()):
        with Disabled(table, padding_only=True):
            manip.PlanToTSR(block_tsr_list, execute=True)

    with manip.GetRobot().GetEnv():
        ee_pose = manip.GetEndEffectorTransform()

    block_idxs = [
        idx for idx, tsr_chain in enumerate(block_tsr_list)
        if tsr_chain.contains(ee_pose)
    ]
    if len(block_idxs) == 0:
        raise NoTSRException("Failed to find the TSR PlanToTSR planned to")
    block = blocks[block_idxs[0]]

    try:
        with AllDisabled(env, [table] + blocks, padding_only=True):
            # Move down until touching the table
            with env:
                start_point = manip.GetEndEffectorTransform()[0:3, 3]
                table_aabb = ComputeEnabledAABB(table)
                #table_height = table_aabb.pos()[2] + table_aabb.extents()[2]
                # 0.14 is the distance from finger tip to end-effector frame
                #current_finger_height = manip.GetEndEffectorTransform()[2, 3] - 0.14
                min_distance = 0.10  # current_finger_height - table_height

            down_direction = [0., 0., -1.]
            with RenderVector(start_point, down_direction, min_distance, env):
                manip.MoveUntilTouch(direction=down_direction,
                                     timelimit=5,
                                     distance=min_distance,
                                     max_distance=min_distance + 0.05,
                                     ignore_collisions=blocks + [table])

            # Move parallel to the table to funnel the block into the fingers
            # by projecting the -x direction of end-effector onto the xy-plane.
            with env:
                start_point = manip.GetEndEffectorTransform()[0:3, 3]
                funnel_direction = -1. * manip.GetEndEffectorTransform()[:3, 0]
                funnel_direction[2] = 0.

            # TODO: We should only have to disable the block for this. Why does
            # this fail if we do not disable the table?
            with AllDisabled(env, blocks + [table]):
                with RenderVector(start_point, funnel_direction, 0.1, env):
                    manip.PlanToEndEffectorOffset(direction=funnel_direction,
                                                  distance=0.08,
                                                  max_distance=0.12,
                                                  timelimit=5.,
                                                  execute=True)

        # Close the finger to grab the block
        manip.hand.MoveHand(f3=1.7)

        # Compute the pose of the block in the hand frame
        with env:
            local_p = [0.01, 0, 0.24, 1.0]
            hand_pose = manip.GetEndEffectorTransform()
            world_p = numpy.dot(hand_pose, local_p)
            block_pose = block.GetTransform()
            block_pose[:, 3] = world_p
            block_relative = numpy.dot(numpy.linalg.inv(hand_pose), block_pose)

        # Now lift the block up off the table
        with AllDisabled(env, blocks + [table]):
            manip.PlanToEndEffectorOffset(direction=[0, 0, 1],
                                          distance=0.05,
                                          timelimit=5,
                                          execute=True)

        # OpenRAVE trick to hallucinate the block into the correct
        # pose relative to the hand
        with env:
            hand_pose = manip.GetEndEffectorTransform()
            block_pose = numpy.dot(hand_pose, block_relative)
            block.SetTransform(block_pose)
            manip.GetRobot().Grab(block)
        return block
    except PlanningError as e:
        logger.error('Failed to complete block grasp')
        raise
Пример #8
0
def PushToPoseOnTable(robot,
                      obj,
                      table,
                      goal_position,
                      goal_radius,
                      manip=None,
                      max_plan_duration=30.0,
                      shortcut_time=3.,
                      render=True,
                      search=True,
                      tracker=None,
                      **kw_args):
    """
    @param robot The robot performing the push
    @param obj The object to push
    @param table The table kinbody the object is resting on
    @param goal_position The desired (x,y) position of the object in
                          world coordinates
    @param goal_radius The max distance from goal_position for the object
                       to be to still consider the goal achieved
    @param manip The manipulator to use for the push - if None the active
                 manipulator is used
    @param max_plan_duration The max time to run the planner
    @param shortcut_time The amount of time to spend shortcutting,
                         if 0. no shortcutting is performed
    @param render If true, render the trajectory while executing
    @param tracker The perception module to use to track the object
                    during pushing
    """
    # Get a push planner
    try:
        if search:
            from or_pushing.discrete_search_push_planner import DiscreteSearchPushPlanner
            planner = DiscreteSearchPushPlanner(robot.GetEnv())
        else:
            from or_pushing.push_planner import PushPlanner
            planner = PushPlanner(robot.GetEnv())
    except ImportError:
        raise ActionError(
            "Unable to create PushPlanner. Is the randomized_rearrangement_planning"
            "repository checked out in your workspace?")

    # Get the manipulator
    if manip is None:
        with robot.GetEnv():
            manip = robot.GetActiveManipulator()

    with robot.GetEnv():
        from prpy.rave import Disabled
        from prpy.util import ComputeEnabledAABB
        with Disabled(table, padding_only=True):
            table_aabb = ComputeEnabledAABB(table)
        ee_pushing_transform = manip.GetEndEffectorTransform()

    # Make the state bounds be at the edges of the table
    table_pos = table_aabb.pos()
    table_extents = table_aabb.extents()
    sbounds = {
        'high': [
            table_pos[0] + table_extents[0], table_pos[1] + table_extents[1],
            2. * numpy.pi
        ],
        'low':
        [table_pos[0] - table_extents[0], table_pos[1] - table_extents[1], 0]
    }

    # Assume we want to keep the current orientation and height of the
    # manipulator throughout the push
    ee_pushing_transform[:2, 3] = [0., 0.]  #ignore x,y pose

    # Compute the goal pose
    #table_height = table_pos[2] + table_extents[2]
    goal_pose = [goal_position[0], goal_position[1]]

    with robot.CreateRobotStateSaver():
        traj = planner.PushToPose(
            robot,
            obj,
            goal_pose,
            state_bounds=sbounds,
            pushing_manifold=ee_pushing_transform.flatten().tolist(),
            max_plan_duration=max_plan_duration,
            goal_radius=goal_radius,
            **kw_args)
    if traj is None:
        raise PlanningError('Failed to find pushing plan')

    # Execute
    from prpy.viz import RenderTrajectory
    with RenderTrajectory(robot, traj, color=[1, 0, 0, 1], render=render):
        if shortcut_time > 0:
            traj = planner.ShortcutPath(timelimit=shortcut_time)
        with RenderTrajectory(robot, traj, color=[0, 0, 1, 1], render=render):
            if tracker is not None:
                tracker.StartTrackObject(robot, obj.GetName())
            try:
                if manip.simulated:
                    # Use the push planner code to simulate path execution.
                    # This simulates the pushing of the objects during
                    # execution of the trajectory.
                    planner.ExecutePlannedPath()
                else:
                    # Execute the trajectory
                    robot.ExecuteTrajectory(traj)

                    # During execution, object pushes won't be simulated.
                    # In the OpenRAVE world, the robot will instead move
                    # through the objects and probably be in collision at
                    # the end. This call sets all the objects to their
                    # expected poses at the end of the trajectory.
                    # If execution was successful, this should resolve
                    # collisions.
                    planner.SetFinalObjectPoses()
            finally:
                if tracker is not None:
                    tracker.StopTrackObject(robot, obj.GetName())

    return traj
Пример #9
0
    def DetectBlocks(self, robot, table, blocks=None,timeout=10, **kw_args):
        """
        Calls detector for blocks and places them on the table

        @param robot: The robot instance using the detector
        @param table: The kinbody for the table on which the blocks are placed
        @blocks: List of blocks currently in the environment; if present, redetection not done

        @return The list of blocks detected
        """
        if blocks is not None and len(blocks) == 0:
            # Add all blocks
        
            env = robot.GetEnv()

            # Get the pr-ordata package path
            import prpy.util
            block_path = os.path.join('objects', 'block.kinbody.xml')
            
            detected_blocks = self.find_blocks(cloud_topic=self.point_cloud_topic)
        
            # Place blocks on the table
            from prpy.util import ComputeEnabledAABB
            with prpy.rave.Disabled(table, padding_only=True):
                table_aabb = ComputeEnabledAABB(table)
                z = table_aabb.pos()[2] + table_aabb.extents()[2] + table_z_offset #OFFSET SET AT TOP

            for b in detected_blocks:

                block = env.ReadKinBodyXMLFile(block_path)

                for link in block.GetLinks():
                    for geometry in link.GetGeometries():
                        geometry.SetDiffuseColor(numpy.array([b.avg_color.r,b.avg_color.g,b.avg_color.b,b.avg_color.a]))

                block_pose = numpy.array(quaternion_matrix([
                        b.pose.orientation.x,
                        b.pose.orientation.y,
                        b.pose.orientation.z,
                        b.pose.orientation.w]))
                block_pose[0,3] = b.pose.position.x
                block_pose[1,3] = b.pose.position.y
                block_pose[2,3] = b.pose.position.z

                self.listener.waitForTransform(
                        self.detection_frame,
                        self.destination_frame,
                        rospy.Time(0),
                        rospy.Duration(timeout))

                frame_trans, frame_rot = self.listener.lookupTransform(
                        self.destination_frame,
                        self.detection_frame,
                        rospy.Time(0))

                frame_offset = numpy.matrix(quaternion_matrix(frame_rot))
                frame_offset[0,3] = frame_trans[0]
                frame_offset[1,3] = frame_trans[1]
                frame_offset[2,3] = frame_trans[2]

                block_in_world = numpy.array(numpy.dot(frame_offset,block_pose))
              
                
                #Snap block to table
                
                block_in_world[2,3] = z

                #To snap blocks to upright on table
                
                block_matrix = block_in_world[0:3,0:3]
                ax, ay, az = euler_from_matrix(block_matrix)
                ax = 0
                ay = 0
                block_in_world_corrected = euler_matrix(ax,ay,az)
                block_in_world[0:3,0:3] = block_in_world_corrected[0:3,0:3]
                block.SetTransform(block_in_world)
                
                #Set block name 
                block.SetName('block')
                env.Add(block,anonymous=True)
                blocks.append(block)

        return blocks
Пример #10
0
    def DetectBlocks(self, robot, table, blocks=None, timeout=10, **kw_args):
        """
        Calls detector for blocks and places them on the table

        @param robot: The robot instance using the detector
        @param table: The kinbody for the table on which the blocks are placed
        @blocks: List of blocks currently in the environment; if present, redetection not done

        @return The list of blocks detected
        """
        if blocks is not None and len(blocks) == 0:
            # Add all blocks

            env = robot.GetEnv()

            # Get the pr-ordata package path
            import prpy.util
            block_path = os.path.join('objects', 'block.kinbody.xml')

            detected_blocks = self.find_blocks(
                cloud_topic=self.point_cloud_topic)

            # Place blocks on the table
            from prpy.util import ComputeEnabledAABB
            with prpy.rave.Disabled(table, padding_only=True):
                table_aabb = ComputeEnabledAABB(table)
                z = table_aabb.pos()[2] + table_aabb.extents(
                )[2] + table_z_offset  #OFFSET SET AT TOP

            for b in detected_blocks:

                block = env.ReadKinBodyXMLFile(block_path)

                for link in block.GetLinks():
                    for geometry in link.GetGeometries():
                        geometry.SetDiffuseColor(
                            numpy.array([
                                b.avg_color.r, b.avg_color.g, b.avg_color.b,
                                b.avg_color.a
                            ]))

                block_pose = numpy.array(
                    quaternion_matrix([
                        b.pose.orientation.x, b.pose.orientation.y,
                        b.pose.orientation.z, b.pose.orientation.w
                    ]))
                block_pose[0, 3] = b.pose.position.x
                block_pose[1, 3] = b.pose.position.y
                block_pose[2, 3] = b.pose.position.z

                self.listener.waitForTransform(self.detection_frame,
                                               self.destination_frame,
                                               rospy.Time(0),
                                               rospy.Duration(timeout))

                frame_trans, frame_rot = self.listener.lookupTransform(
                    self.destination_frame, self.detection_frame,
                    rospy.Time(0))

                frame_offset = numpy.matrix(quaternion_matrix(frame_rot))
                frame_offset[0, 3] = frame_trans[0]
                frame_offset[1, 3] = frame_trans[1]
                frame_offset[2, 3] = frame_trans[2]

                block_in_world = numpy.array(
                    numpy.dot(frame_offset, block_pose))

                #Snap block to table

                block_in_world[2, 3] = z

                #To snap blocks to upright on table

                block_matrix = block_in_world[0:3, 0:3]
                ax, ay, az = euler_from_matrix(block_matrix)
                ax = 0
                ay = 0
                block_in_world_corrected = euler_matrix(ax, ay, az)
                block_in_world[0:3, 0:3] = block_in_world_corrected[0:3, 0:3]
                block.SetTransform(block_in_world)

                #Set block name
                block.SetName('block')
                env.Add(block, anonymous=True)
                blocks.append(block)

        return blocks
Пример #11
0
    env.Add(glass)
    glass_transform = numpy.eye(4)
    glass_transform[:3,3] = [0.6239455840637041, -0.4013916328109689, 0.75]
    glass.SetTransform(glass_transform)

    # Goal pose for the object
    import numpy
    goal_in_table = [0.15, 0., -0.03, 1.]
    goal_in_world = numpy.dot(table.GetTransform(), goal_in_table)
    goal_pose = goal_in_world[:2]
    goal_radius = 0.1    
        
    from prpy.rave import Disabled
    from prpy.util import ComputeEnabledAABB
    with Disabled(table, padding_only=True):
        table_aabb = ComputeEnabledAABB(table)
    table_height = 0.01 + table_aabb.pos()[2] + table_aabb.extents()[2]

    pts = []
    for a in numpy.arange(0, 2.*numpy.pi, 0.1):
        pts.append([goal_pose[0] + goal_radius*numpy.sin(a),
                    goal_pose[1] + goal_radius*numpy.cos(a),
                    table_height])
    h = env.drawlinestrip(points = numpy.array(pts), linewidth=5.0,
                          colors=numpy.array([0.0, 1., 0.]))
        
    # Plan to the start configuration
    try:
        push_arm.SetActive()
        start_pose = [ 4.49119545, -1.59899798, -0.6,  1.65274406, -1.7742985,  -0.63854765, -1.23051631]
        push_arm.PlanToConfiguration(start_pose, execute=True)