Пример #1
0
def ray_aim(P, S, prescription, j, wvl, target=(0, 0, np.nan), debug=False):
    """Aim a ray such that it encounters the jth surface at target.

    Parameters
    ----------
    P : numpy.ndarray
        shape (3,), a single ray's initial positions
    S : numpy.ndarray
        shape (3,) a single ray's initial direction cosines
    prescription : iterable
        sequence of surfaces in the prescription
    j : int
        the surface index in prescription at which the ray should hit (target)
    wvl : float
        wavelength of light to use in ray aiming, microns
    target : iterable of length 3
        the position at which the ray should intersect the target surface
        NaNs indicate to ignore that position in aiming
    debug : bool, optional
        if True, returns the (ray-aiming) optimization result as well as the
        adjustment P

    Returns
    -------
    numpy.ndarray
        deltas to P which result in ray intersection

    """
    P = np.asarray(P).astype(config.precision).copy()
    S = np.asarray(S).astype(config.precision).copy()
    target = np.asarray(target)
    trace_path = prescription[:j + 1]

    def optfcn(x):
        P[:2] = x
        phist, _ = spencer_and_murty.raytrace(trace_path, P, S, wvl)
        final_position = phist[-1]
        euclidean_dist = (final_position - target)**2
        euclidean_dist = np.nansum(
            euclidean_dist) / 3  # /3 = div by number of axes
        return euclidean_dist

    res = optimize.minimize(optfcn, np.zeros(2), method='L-BFGS-B')
    P[:] = 0
    P[:2] = res.x
    if debug:
        return P, res
    else:
        return P
Пример #2
0
def _ensure_P_vec(P):
    if not hasattr(P, '__iter__'):
        P = np.array([0, 0, P], dtype=config.precision)
    else:
        # iterable
        P2 = np.zeros(3, dtype=config.precision)
        P2[-len(P):] = P
        P = P2

    return np.asarray(P).astype(config.precision)
Пример #3
0
def fix_zero_singularity(arr, x, y, fill='xypoly', order=2):
    """Fix a singularity at the origin of arr by polynomial interpolation.

    Parameters
    ----------
    arr : numpy.ndarray
        array of dimension 2 to modify at the origin (x==y==0)
    x : numpy.ndarray
        array of dimension 2 of X coordinates
    y : numpy.ndarray
        array of dimension 2 of Y coordinates
    fill : str, optional, {'xypoly'}
        how to fill.  Not used/hard-coded to X/Y polynomials, but made an arg
        today in case it may be added future for backwards compatibility
    order : int
        polynomial order to fit

    Returns
    -------
    numpy.ndarray
        arr (modified in-place)

    """
    zloc = find_zero_indices_2d(x, y)
    min_y = zloc[0] - order
    max_y = zloc[0] + order + 1
    min_x = zloc[1] - order
    max_x = zloc[1] + order + 1
    # newaxis schenanigans to get broadcasting right without
    # meshgrid
    ypts = np.arange(min_y, max_y)[:, np.newaxis]
    xpts = np.arange(min_x, max_x)[np.newaxis, :]
    window = arr[ypts, xpts].copy()
    c = [s // 2 for s in window.shape]
    window[c] = np.nan
    # no longer need xpts, ypts
    # really don't care about fp64 vs fp32 (very small arrays)
    xpts = xpts.astype(float)
    ypts = ypts.astype(float)
    # use Hermite polynomials as
    # XY polynomial-like basis orthogonal
    # over the infinite plane
    # H0 = 0
    # H1 = x
    # H2 = x^2 - 1, and so on
    ns = np.arange(order + 1)
    xbasis = hermite_He_sequence(ns, xpts)
    ybasis = hermite_He_sequence(ns, ypts)
    xbasis = [mode_1d_to_2d(mode, xpts, ypts, 'x') for mode in xbasis]
    ybasis = [mode_1d_to_2d(mode, xpts, ypts, 'y') for mode in ybasis]
    basis_set = np.asarray([*xbasis, *ybasis])
    coefs = lstsq(basis_set, window)
    projected = np.dot(basis_set[:, c[0], c[1]], coefs)
    arr[zloc] = projected
    return arr
Пример #4
0
def sum_of_2d_modes(modes, weights):
    """Compute a sum of 2D modes.

    Parameters
    ----------
    modes : iterable
        sequence of ndarray of shape (k, m, n);
        a list of length k with elements of shape (m,n) works
    weights : numpy.ndarray
        weight of each mode

    Returns
    -------
    numpy.ndarry
        ndarray of shape (m, n) that is the sum of modes as given

    """
    modes = np.asarray(modes)
    weights = np.asarray(weights).astype(modes.dtype)

    # dot product of the 0th dim of modes and weights => weighted sum
    return np.tensordot(modes, weights, axes=(0, 0))
Пример #5
0
def lstsq(modes, data):
    """Least-Squares fit of modes to data.

    Parameters
    ----------
    modes : iterable
        modes to fit; sequence of ndarray of shape (m, n)
    data : numpy.ndarray
        data to fit, of shape (m, n)
        place NaN values in data for points to ignore

    Returns
    -------
    numpy.ndarray
        fit coefficients

    """
    mask = np.isfinite(data)
    data = data[mask]
    modes = np.asarray(modes)
    modes = modes.reshape((modes.shape[0], -1))  # flatten second dim
    modes = modes[:, mask.ravel()].T  # transpose moves modes to columns, as needed for least squares fit
    c, *_ = np.linalg.lstsq(modes, data, rcond=None)
    return c
Пример #6
0
def barplot(coefs,
            names=None,
            orientation='h',
            buffer=1,
            zorder=3,
            number=True,
            offset=0,
            width=0.8,
            fig=None,
            ax=None):
    """Create a barplot of coefficients and their names.

    Parameters
    ----------
    coefs : dict
        with keys of Zn, values of numbers
    names : dict
        with keys of Zn, values of names (e.g. Primary Coma X)
    orientation : str, {'h', 'v', 'horizontal', 'vertical'}
        orientation of the plot
    buffer : float, optional
        buffer to use around the left and right (or top and bottom) bars
    zorder : int, optional
        zorder of the bars.  Use zorder > 3 to put bars in front of gridlines
    number : bool, optional
        if True, plot numbers along the y=0 line showing indices
    offset : float, optional
        offset to apply to bars, useful for before/after Zernike breakdowns
    width : float, optional
        width of bars, useful for before/after Zernike breakdowns
    fig : matplotlib.figurnp.Figure
        Figure containing the plot
    ax : matplotlib.axes.Axis
        Axis containing the plot

    Returns
    -------
    fig : matplotlib.figurnp.Figure
        Figure containing the plot
    ax : matplotlib.axes.Axis
        Axis containing the plot

    """
    from matplotlib import pyplot as plt
    fig, ax = share_fig_ax(fig, ax)

    coefs2 = np.asarray(list(coefs.values()))
    idxs = np.asarray(list(coefs.keys()))
    coefs = coefs2
    lims = (idxs[0] - buffer, idxs[-1] + buffer)
    if orientation.lower() in ('h', 'horizontal'):
        vmin, vmax = coefs.min(), coefs.max()
        drange = vmax - vmin
        offsetY = drange * 0.01

        ax.bar(idxs + offset, coefs, zorder=zorder, width=width)
        plt.xticks(idxs, names, rotation=90)
        if number:
            for i in idxs:
                ax.text(i, offsetY, str(i), ha='center')
    else:
        ax.barh(idxs + offset, coefs, zorder=zorder, height=width)
        plt.yticks(idxs, names)
        if number:
            for i in idxs:
                ax.text(0, i, str(i), ha='center')

    ax.set(xlim=lims)
    return fig, ax
Пример #7
0
def raytrace(surfaces, P, S, wvl, n_ambient=1):
    """Perform a raytrace through a sequence of surfaces.

    Notes
    -----
    When P and S are single dimensional, a single ray is traced.

    When they have two dimensions, the first dimension is the "batch" and the
    second contains [X,Y,Z] and [k,l,m] for each ray in the batch.

    There is no internal ray aiming or other adjustment to P and S.

    In a batch raytrace, there is no reason all rows of P and S must belong to
    the same ray bundle.

    wvl does not matter and is not used in raytraces with only reflective
    surfaces

    A ray originating "at infinity" would have
    P = [Px, Py, -1e99]
    S = [0, 0, 1] # propagating in the +z direction
    though the value of P is not so important, since S defines the ray as moving in the +z direction only

    Parameters
    ----------
    surfaces : iterable
        the surfaces to trace through;
        a surface is defined by the interface:
        surf.F(x,y) -> z sag
        surf.Fp(x,y) -> (Fx, Fy, 1) derivatives (with S&M convention for 1 in z)
        surf.typ in {STYPE}
        surf.P, surface global coordinates, [X,Y,Z]
        surf.R, surface rotation matrix (may be None)
        surf.n(wvl) -> refractive index (wvl in um)
    P : numpy.ndarray
        shape (3,) or (N,3), any float dtype
        position (X0,Y0,Z0) at the outset of the raytrace
    S : numpy.ndarray
        shape (3,) or (N,3), any float dtype
        (k,l,m) starting direction cosines
    wvl : float
        wavelength of light, um
    n_ambient : float
        ambient index of refraction (1=vacuum)

    Returns
    -------
    P_hist, S_hist
        position history and direction cosine history

    Implementation Notes
    --------------------
    See Spencer & Murty, General Ray-Tracing Procedure JOSA 1961

    Steps (I, II, III, IV) utilize the functions:
    I   -> transform_to_local_coords
    II  -> newton_raphson_solve_s
    III -> reflect or refract
    IV  -> transform_to_global_coords

    """
    P = np.asarray(P)
    S = np.asarray(S)
    jj = len(surfaces)
    P_hist = np.empty((jj+1, *P.shape), dtype=P.dtype)
    S_hist = np.empty((jj+1, *S.shape), dtype=P.dtype)
    Pj = P
    Sj = S
    P_hist[0] = P
    S_hist[0] = S
    nj = n_ambient
    for j, surf in enumerate(surfaces):
        # I - transform from global to local coordinates
        P0, Sj = transform_to_local_coords(Pj, surf.P, Sj, surf.R)
        # II - find ray intersection
        Pj, r = intersect(P0, Sj, surf.sag_normal)
        # III - reflection or refraction
        if surf.typ == STYPE_REFLECT:
            Sjp1 = reflect(Sj, r)
        elif surf.typ == STYPE_REFRACT:
            nprime = surf.n(wvl)
            Sjp1 = refract(nj, nprime, Sj, r)
            nj = nprime
        else:
            # other surface types do not bend rays
            Sjp1 = Sj
            Pjp1 = Pj

        # IV - back to world coordinates
        if surf.R is None:
            Rt = None
        else:
            # transformation matrix has inverse which is its transpose
            Rt = surf.R.T
        Pjp1, Sjp1 = transform_to_global_coords(Pj, surf.P, Sjp1, Rt)
        P_hist[j+1] = Pjp1
        S_hist[j+1] = Sjp1
        Pj, Sj = Pjp1, Sjp1

    return P_hist, S_hist
Пример #8
0
def generate_collimated_ray_fan(nrays,
                                maxr,
                                z=0,
                                minr=None,
                                azimuth=90,
                                yangle=0,
                                xangle=0,
                                distribution='uniform',
                                aim_at=None):
    """Generate a 1D fan of rays.

    Colloquially, an extended field in Y for an object at inf is represented by a ray fan with yangle != 0.

    Parameters
    ----------
    nrays : int
        the number of rays in the fan
    maxr : float
        maximum radial value of the fan
    z : float
        z position for the ray fan
    minr : float, optional
        minimum radial value of the fan, -maxr if None
    azimuth: float
        angle in the XY plane, degrees.  0=X ray fan, 90=Y ray fan
    yangle : float
        propagation angle of the rays with respect to the Y axis, clockwise
    xangle : float
        propagation angle of the rays with respect to the X axis, clockwise
    distribution : str, {'uniform', 'random', 'cheby'}
        The distribution to use when placing the rays
        a uniform distribution has rays which are equally spaced from minr to maxr,
        random has rays randomly distributed in minr and maxr, while cheby has the
        Cheby-Gauss-Lobatto roots as its locations from minr to maxr
    aim_at : numpy.ndarray or float
        position [X,Y,Z] aim the rays such that the gut ray of the fan,
        when propagated in an open medium, hits (aim_at)

        if a float, interpreted as if x=0,y=0, z=aim_at

        This argument mimics ray aiming in commercial optical design software, and
        is used in conjunction with xangle/yangle to form off-axis ray bundles which
        properly go through the center of the stop

    Returns
    -------
    numpy.ndarray, numpy.ndarray
        "P" and "S" variables, positions and direction cosines of the rays

    """
    dtype = config.precision
    distribution = distribution.lower()
    if minr is None:
        minr = -maxr
    S = np.array([0, 0, 1], dtype=dtype)
    R = make_rotation_matrix((0, yangle, -xangle))
    S = np.matmul(R, S)
    # need to see a copy of S for each ray, -> add empty dim and broadcast
    S = S[np.newaxis, :]
    S = np.broadcast_to(S, (nrays, 3))

    # now generate the radial part of P
    if distribution == 'uniform':
        r = np.linspace(minr, maxr, nrays, dtype=dtype)
    elif distribution == 'random':
        r = np.random.uniform(low=minr, high=maxr, size=nrays).astype(dtype)

    t = np.asarray(np.radians(azimuth), dtype=dtype)
    t = np.broadcast_to(t, r.shape)
    x, y = polar_to_cart(r, t)
    z = np.array(z, dtype=x.dtype)
    z = np.broadcast_to(z, x.shape)
    xyz = np.stack([x, y, z], axis=1)
    return xyz, S