Пример #1
0
def rotated_ellipse(width_major, width_minor, major_axis_angle=0, samples=128):
    """Generate a binary mask for an ellipse, centered at the origin.

    The major axis will notionally extend to the limits of the array, but this
    will not be the case for rotated cases.

    Parameters
    ----------
    width_major : `float`
        width of the ellipse in its major axis
    width_minor : `float`
        width of the ellipse in its minor axis
    major_axis_angle : `float`
        angle of the major axis w.r.t. the x axis, degrees
    samples : `int`
        number of samples

    Returns
    -------
    `numpy.ndarray`
        An ndarray of shape (samples,samples) of value 0 outside the ellipse,
        and value 1 inside the ellipse

    Notes
    -----
    The formula applied is:
         ((x-h)cos(A)+(y-k)sin(A))^2      ((x-h)sin(A)+(y-k)cos(A))^2
        ______________________________ + ______________________________ 1
                     a^2                               b^2
    where x and y are the x and y dimensions, A is the rotation angle of the
    major axis, h and k are the centers of the the ellipse, and a and b are
    the major and minor axis widths.  In this implementation, h=k=0 and the
    formula simplifies to:
            (x*cos(A)+y*sin(A))^2             (x*sin(A)+y*cos(A))^2
        ______________________________ + ______________________________ 1
                     a^2                               b^2

    see SO:
    https://math.stackexchange.com/questions/426150/what-is-the-general-equation-of-the-ellipse-that-is-not-in-the-origin-and-rotate

    Raises
    ------
    ValueError
        Description

    """
    if width_minor > width_major:
        raise ValueError(
            'By definition, major axis must be larger than minor.')

    arr = m.ones((samples, samples))
    lim = width_major
    x, y = m.linspace(-lim, lim, samples), m.linspace(-lim, lim, samples)
    xv, yv = m.meshgrid(x, y)
    A = m.radians(-major_axis_angle)
    a, b = width_major, width_minor
    major_axis_term = ((xv * m.cos(A) + yv * m.sin(A))**2) / a**2
    minor_axis_term = ((xv * m.sin(A) - yv * m.cos(A))**2) / b**2
    arr[major_axis_term + minor_axis_term > 1] = 0
    return arr
Пример #2
0
    def interferogram(self, visibility=1, passes=2, fig=None, ax=None):
        ''' Creates an interferogram of the :class:`Pupil~.

        Args:
            visibility (`float`): Visibility of the interferogram

            passes (`float`): number of passes (double-pass, quadra-pass, etc.)

            fig (pyplot.figure): Figure to draw plot in

            ax (pyplot.axis): Axis to draw plot in

        Returns:
            `tuple` containing:
                :class:`~matplotlib.pyplot.figure`: Figure containing the plot

                :class:`~matplotlib.pyplot.axis`: Axis containing the plot

        '''
        epd = self.epd

        fig, ax = share_fig_ax(fig, ax)
        plotdata = (visibility * sin(2 * pi * passes * self.phase))
        im = ax.imshow(plotdata,
                       extent=[-epd / 2, epd / 2, -epd / 2, epd / 2],
                       cmap='Greys_r',
                       interpolation='lanczos',
                       clim=(-1, 1),
                       origin='lower')
        fig.colorbar(im,
                     label=r'Wrapped Phase [$\lambda$]',
                     ax=ax,
                     fraction=0.046)
        ax.set(xlabel=r'Pupil $\xi$ [mm]', ylabel=r'Pupil $\eta$ [mm]')
        return fig, ax
Пример #3
0
    def __init__(self,
                 angle=4,
                 background='white',
                 sample_spacing=2,
                 samples=256):
        """Create a new TitledSquare instance.

        Parameters
        ----------
        angle : `float`
            angle in degrees to tilt w.r.t. the x axis
        background : `string`
            white or black; the square will be the opposite color of the background
        sample_spacing : `float`
            spacing of samples
        samples : `int`
            number of samples

        """
        radius = 0.3
        if background.lower() == 'white':
            arr = m.ones((samples, samples))
            fill_with = 0
        else:
            arr = m.zeros((samples, samples))
            fill_with = 1

        # TODO: optimize by working with index numbers directly and avoid
        # creation of X,Y arrays for performance.
        x = m.linspace(-0.5, 0.5, samples)
        y = m.linspace(-0.5, 0.5, samples)
        xx, yy = m.meshgrid(x, y)
        sf = samples * sample_spacing

        # TODO: convert inline operation to use of rotation matrix
        angle = m.radians(angle)
        xp = xx * m.cos(angle) - yy * m.sin(angle)
        yp = xx * m.sin(angle) + yy * m.cos(angle)
        mask = (abs(xp) < radius) * (abs(yp) < radius)
        arr[mask] = fill_with
        super().__init__(data=arr,
                         unit_x=x * sf,
                         unit_y=y * sf,
                         has_analytic_ft=False)
Пример #4
0
    def __init__(self,
                 angle=8,
                 background='white',
                 sample_spacing=2,
                 samples=384):
        ''' Creates a new TitledSquare instance.

        Args:
            angle (`float`): angle in degrees to tilt w.r.t. the x axis.

            background (`string`): white or black; the square will be the opposite
                color of the background.

            sample_spacing (`float`): spacing of samples.

            samples (`int`): number of samples.

        Returns:
            `TiltedSquare`: new TiltedSquare instance.

        '''
        radius = 0.3
        if background.lower() == 'white':
            arr = np.ones((samples, samples))
            fill_with = 0
        else:
            arr = np.zeros((samples, samples))
            fill_with = 1

        # TODO: optimize by working with index numbers directly and avoid
        # creation of X,Y arrays for performance.
        x = np.linspace(-0.5, 0.5, samples)
        y = np.linspace(-0.5, 0.5, samples)
        xx, yy = np.meshgrid(x, y)

        # TODO: convert inline operation to use of rotation matrix
        angle = np.radians(angle)
        xp = xx * cos(angle) - yy * sin(angle)
        yp = xx * sin(angle) + yy * cos(angle)
        mask = (abs(xp) < radius) * (abs(yp) < radius)
        arr[mask] = fill_with
        super().__init__(data=arr,
                         sample_spacing=sample_spacing,
                         synthetic=True)
Пример #5
0
def na_to_fno(na):
    '''Converts an NA to an f/#

    Args:
        na (float): numerical aperture

    Returns:
        fno.  The f/# of the system.

    '''
    return 1 / (2 * sin(na))
Пример #6
0
def cie_1976_wavelength_annotations(wavelengths, fig=None, ax=None):
    ''' Draws lines normal to the spectral locust on a CIE 1976 diagram and
        writes the text for each wavelength.

    Args:
        wavelengths (`iterable`): set of wavelengths to annotate.

        fig (`matplotlib.figure.Figure`): figure to draw on.

        ax (`matplotlib.axes.Axis`): axis to draw in.

    Returns:

        `tuple` containing:

            `matplotlib.figure.Figure`: figure containing the annotations.

            `matplotlib.axes.Axis`: axis containing the annotations.

    Notes:
        see SE:
        https://stackoverflow.com/questions/26768934/annotation-along-a-curve-in-matplotlib

    '''
    # some tick parameters
    tick_length = 0.025
    text_offset = 0.06

    # convert wavelength to u' v' coordinates
    wavelengths = np.asarray(wavelengths)
    idx = np.arange(1, len(wavelengths) - 1, dtype=int)
    wvl_lbl = wavelengths[idx]
    uv = XYZ_to_uvprime(wavelength_to_XYZ(wavelengths))
    u, v = uv[..., 0][idx], uv[..., 1][idx]
    u_last, v_last = uv[..., 0][idx - 1], uv[..., 1][idx - 1]
    u_next, v_next = uv[..., 0][idx + 1], uv[..., 1][idx + 1]

    angle = atan2(v_next - v_last, u_next - u_last) + pi / 2
    cos_ang, sin_ang = cos(angle), sin(angle)
    u1, v1 = u + tick_length * cos_ang, v + tick_length * sin_ang
    u2, v2 = u + text_offset * cos_ang, v + text_offset * sin_ang

    fig, ax = share_fig_ax(fig, ax)
    tick_lines = LineCollection(np.c_[u, v, u1, v1].reshape(-1, 2, 2), color='0.25', lw=1.25)
    ax.add_collection(tick_lines)
    for i in range(len(idx)):
        ax.text(u2[i], v2[i], str(wvl_lbl[i]), va="center", ha="center", clip_on=True)

    return fig, ax
Пример #7
0
def na_to_fno(na):
    """Convert an NA to an f/#.

    Parameters
    ----------
    na : `float`
        numerical aperture

    Returns
    -------
    `float`
        fno.  The f/# of the system.

    """
    return 1 / (2 * m.sin(na))
Пример #8
0
    def __init__(self,
                 angle=4,
                 contrast=0.9,
                 crossed=False,
                 sample_spacing=2,
                 samples=256):
        """Create a new TitledSquare instance.

        Parameters
        ----------
        angle : `float`
            angle in degrees to tilt w.r.t. the y axis
        contrast : `float`
            difference between minimum and maximum values in the image
        crossed : `bool`, optional
            whether to make a single edge (crossed=False) or pair of crossed edges (crossed=True)
            aka a "BMW target"
        sample_spacing : `float`
            spacing of samples
        samples : `int`
            number of samples

        """
        diff = (1 - contrast) / 2
        arr = m.full((samples, samples), 1 - diff)
        x = m.linspace(-0.5, 0.5, samples)
        y = m.linspace(-0.5, 0.5, samples)
        xx, yy = m.meshgrid(x, y)
        sf = samples * sample_spacing

        angle = m.radians(angle)
        xp = xx * m.cos(angle) - yy * m.sin(angle)
        # yp = xx * m.sin(angle) + yy * m.cos(angle)  # do not need this
        mask = xp > 0  # single edge
        if crossed:
            mask = xp > 0  # set of 4 edges
            upperright = mask & m.rot90(mask)
            lowerleft = m.rot90(upperright, 2)
            mask = upperright | lowerleft

        arr[mask] = diff
        self.contrast = contrast
        self.black = diff
        self.white = 1 - diff
        super().__init__(data=arr,
                         unit_x=x * sf,
                         unit_y=y * sf,
                         has_analytic_ft=False)
Пример #9
0
    def interferogram(self,
                      visibility=1,
                      passes=2,
                      interp_method='lanczos',
                      fig=None,
                      ax=None):
        """Create an interferogram of the `Pupil`.

        Parameters
        ----------
        visibility : `float`
            Visibility of the interferogram
        passes : `float`
            Number of passes (double-pass, quadra-pass, etc.)
        interp_method : `str`, optional
            interpolation method, passed directly to matplotlib
        fig : `matplotlib.figure.Figure`, optional
            Figure to draw plot in
        ax : `matplotlib.axes.Axis`
            Axis to draw plot in

        Returns
        -------
        fig : `matplotlib.figure.Figure`, optional
            Figure containing the plot
        ax : `matplotlib.axes.Axis`, optional:
            Axis containing the plot

        """
        epd = self.diameter
        phase = self.change_phase_unit(to='waves', inplace=False)

        fig, ax = share_fig_ax(fig, ax)
        plotdata = (visibility * m.sin(2 * m.pi * passes * phase))
        im = ax.imshow(plotdata,
                       extent=[-epd / 2, epd / 2, -epd / 2, epd / 2],
                       cmap='Greys_r',
                       interpolation=interp_method,
                       clim=(-1, 1),
                       origin='lower')
        fig.colorbar(im,
                     label=r'Wrapped Phase [$\lambda$]',
                     ax=ax,
                     fraction=0.046)
        ax.set(xlabel=r'Pupil $\xi$ [mm]', ylabel=r'Pupil $\eta$ [mm]')
        return fig, ax
Пример #10
0
def polar_to_cart(rho, phi):
    ''' Returns the (x,y) coordinates of the (rho,phi) input points.

    Args:
        rho (`float` or `numpy.ndarray`): radial coordinate.

        phi (`float` or `numpy.ndarray`): azimuthal cordinate.

    Returns:
        `tuple` containing:

            `float` or `numpy.ndarray`: x coordinate.

            `float` or `numpy.ndarray`: y coordinate.

    '''
    x = rho * cos(phi)
    y = rho * sin(phi)
    return x, y
Пример #11
0
def polar_to_cart(rho, phi):
    '''Return the (x,y) coordinates of the (rho,phi) input points.

    Parameters
    ----------
    rho : `numpy.ndarray` or number
        radial coordinate
    phi : `numpy.ndarray` or number
        azimuthal coordinate

    Returns
    -------
    x : `numpy.ndarray` or number
        x coordinate
    y : `numpy.ndarray` or number
        y coordinate

    '''
    x = rho * m.cos(phi)
    y = rho * m.sin(phi)
    return x, y
Пример #12
0
def generate_vertices(num_sides, radius=1):
    ''' Generates a list of vertices for a convex regular polygon with the given
        number of sides and radius.

    Args:
        num_sides (`int`): number of sides to the polygon.

        radius (`float`): radius of the polygon.

    Returns:
        `numpy.ndarray`: array with first column X points, second column Y points

    '''
    angle = 2 * pi / num_sides
    pts = []
    for point in range(num_sides):
        x = radius * sin(point * angle)
        y = radius * cos(point * angle)
        pts.append((int(x), int(y)))

    return np.asarray(pts)
Пример #13
0
def generate_vertices(num_sides, radius=1):
    """Generate a list of vertices for a convex regular polygon with the given number of sides and radius.

    Parameters
    ----------
    num_sides : `int`
        number of sides to the polygon
    radius : `float`
        radius of the polygon

    Returns
    -------
    `numpy.ndarray`
        array with first column X points, second column Y points

    """
    angle = 2 * m.pi / num_sides
    pts = []
    for point in range(num_sides):
        x = radius * m.sin(point * angle)
        y = radius * m.cos(point * angle)
        pts.append((int(x), int(y)))

    return m.asarray(pts)
Пример #14
0
def Z39(rho, phi):
    return (7 * rho**7 - 6 * rho**5) * sin(5 * phi)
Пример #15
0
def Z37(rho, phi):
    return rho**6 * sin(6 * phi)
Пример #16
0
def Z34(rho, phi):
    return (5 * rho - 60 * rho**3 + 210 * rho**5 - 280 * rho**7 + 126 * rho**9)\
        * sin(phi)
Пример #17
0
def Z32(rho, phi):
    return (10 * rho**2 - 30 * rho**4 + 21 * rho**6) * sin(2 * phi)
Пример #18
0
def Z28(rho, phi):
    return (6 * rho**6 - 5 * rho**4) * sin(4 * phi)
Пример #19
0
def Z26(rho, phi):
    return rho**5 * sin(5 * phi)
Пример #20
0
def Z23(rho, phi):
    return (-4 * rho + 30 * rho**3 - 60 * rho**5 + 35 * rho**7) * sin(phi)
Пример #21
0
def Z21(rho, phi):
    return (6 * rho**2 - 20 * rho**4 + 15 * rho**6) * sin(2 * phi)
Пример #22
0
def Z2(rho, phi):
    return rho * sin(phi)
Пример #23
0
def Z45(rho, phi):
    return (210 * rho**10 - 504 * rho**8 + 420 * rho**6 - 140 * rho**4 + 15 * rho**2) \
        * sin(2 * phi)
Пример #24
0
def Z41(rho, phi):
    return (28 * rho**8 - 42 * rho**6 + 15 * rho**4) * sin(4 * phi)
Пример #25
0
def Z43(rho, phi):
    return (84 * rho**9 - 168 * rho**7 + 105 * rho**5 - 20 * rho**3) * sin(3 * phi)
Пример #26
0
def Z14(rho, phi):
    return (3 * rho - 12 * rho**3 + 10 * rho**5) * sin(phi)
Пример #27
0
def Z47(rho, phi):
    return (462 * rho**11 - 1260 * rho**9 + 1260 * rho**7 - 560 * rho**5 + 105 * rho**3 - 6 * rho) \
        * sin(phi)
Пример #28
0
def Z17(rho, phi):
    return rho**4 * sin(4 * phi)
Пример #29
0
def Z5(rho, phi):
    return rho**2 * sin(2 * phi)
Пример #30
0
def Z19(rho, phi):
    return (5 * rho**5 - 4 * rho**3) * sin(3 * phi)