Пример #1
0
def plot_rays(phist, lw=1, ls='-', c='r', alpha=1, zorder=4, x='z', y='y', fig=None, ax=None):
    """Plot rays in 2D.

    Parameters
    ----------
    phist : list or numpy.ndarray
        the first return from spencer_and_murty.raytrace,
        iterable of arrays of length 3 (X,Y,Z)
    lw : float, optional
        linewidth
    ls : str, optional
        line style
    c : color
        anything matplotlib interprets as a color, strings, 3-tuples, 4-tuples, ...
    alpha : float
        opacity of the rays, 1=fully opaque, 0=fully transparent
    zorder : int
        stack order in the plot, higher z orders are on top of lower z orders
    x : str, {'x', 'y', 'z'}
        which position to plot on the X axis, defaults to traditional ZY plot
    y : str, {'x', 'y', 'z'}
        which position to plot on the X axis, defaults to traditional ZY plot
    fig : matplotlib.figure.Figure
        A figure object
    ax : matplotlib.axes.Axis
        An axis object

    Returns
    -------
    matplotlib.figure.Figure
        A figure object
    matplotlib.axes.Axis
        An axis object

    """
    fig, ax = share_fig_ax(fig, ax)

    ph = np.asarray(phist)
    xs = ph[..., 0]
    ys = ph[..., 1]
    zs = ph[..., 2]
    sieve = {
        'x': xs,
        'y': ys,
        'z': zs,
    }
    x = x.lower()
    y = y.lower()
    x = sieve[x]
    y = sieve[y]
    ax.plot(x, y, c=c, lw=lw, ls=ls, alpha=alpha, zorder=zorder)
    return fig, ax
Пример #2
0
def plot_transverse_ray_aberration(phist, lw=1, ls='-', c='r', alpha=1, zorder=4, axis='y', fig=None, ax=None):
    """Plot the transverse ray aberration for a single ray fan.

    Parameters
    ----------
    phist : list or numpy.ndarray
        the first return from spencer_and_murty.raytrace,
        iterable of arrays of length 3 (X,Y,Z)
    lw : float, optional
        linewidth
    ls : str, optional
        line style
    c : color
        anything matplotlib interprets as a color, strings, 3-tuples, 4-tuples, ...
    alpha : float
        opacity of the rays, 1=fully opaque, 0=fully transparent
    zorder : int
        stack order in the plot, higher z orders are on top of lower z orders
    axis : str, {'x', 'y'}
        which ray position to plot, x or y
    fig : matplotlib.figure.Figure
        A figure object
    ax : matplotlib.axes.Axis
        An axis object

    Returns
    -------
    matplotlib.figure.Figure
        A figure object
    matplotlib.axes.Axis
        An axis object

    """
    fig, ax = share_fig_ax(fig, ax)

    ph = np.asarray(phist)
    sieve = {
        'x': 0,
        'y': 1,
    }
    axis = axis.lower()
    axis = sieve[axis]
    input_rays = ph[0, ..., axis]
    output_rays = ph[-1, ..., axis]
    ax.plot(input_rays, output_rays, c=c, lw=lw, ls=ls, alpha=alpha, zorder=zorder)
    return fig, ax
Пример #3
0
def plot_spot_diagram(phist, marker='+', c='k', alpha=1, zorder=4, s=None, fig=None, ax=None):
    """Plot a spot diagram from a ray trace.

    Parameters
    ----------
    phist : list or numpy.ndarray
        the first return from spencer_and_murty.raytrace,
        iterable of arrays of length 3 (X,Y,Z)
    marker : str, optional
        marker style
    c : color
        anything matplotlib interprets as a color, strings, 3-tuples, 4-tuples, ...
    alpha : float
        opacity of the rays, 1=fully opaque, 0=fully transparent
    zorder : int
        stack order in the plot, higher z orders are on top of lower z orders
    s : float
        marker size or variable used for marker size
    axis : str, {'x', 'y'}
        which ray position to plot, x or y
    fig : matplotlib.figure.Figure
        A figure object
    ax : matplotlib.axes.Axis
        An axis object

    Returns
    -------
    matplotlib.figure.Figure
        A figure object
    matplotlib.axes.Axis
        An axis object

    """
    fig, ax = share_fig_ax(fig, ax)
    x = phist[-1, ..., 0]
    y = phist[-1, ..., 1]
    ax.scatter(x, y, c=c, s=s, marker=marker, alpha=alpha, zorder=zorder)
    return fig, ax
Пример #4
0
def test_share_fig_ax_produces_an_axis():
    fig = plt.figure()
    fig, ax = plotting.share_fig_ax(fig)
    assert ax is not None
Пример #5
0
def test_share_fig_ax_produces_figure_and_axis():
    fig, ax = plotting.share_fig_ax()
    assert fig
    assert ax
Пример #6
0
def test_share_fig_ax_figure_number_remains_unchanged():
    fig, ax = plt.subplots()
    fig2, ax2 = plotting.share_fig_ax(fig, ax)
    assert fig.number == fig2.number
Пример #7
0
def barplot_magnitudes(magnitudes,
                       orientation='h',
                       sort=False,
                       buffer=1,
                       zorder=3,
                       offset=0,
                       width=0.8,
                       fig=None,
                       ax=None):
    """Create a barplot of magnitudes of coefficient pairs and their names.

    e.g., astigmatism will get one bar.

    Parameters
    ----------
    magnitudes : dict
        keys of names, values of magnitudes.  E.g., {'Primary Coma': 1234567}
    orientation : str, {'h', 'v', 'horizontal', 'vertical'}
        orientation of the plot
    sort : bool, optional
        whether to sort the zernikes in descending order
    buffer : float, optional
        buffer to use around the left and right (or top and bottom) bars
    zorder : int, optional
        zorder of the bars.  Use zorder > 3 to put bars in front of gridlines
    offset : float, optional
        offset to apply to bars, useful for before/after Zernike breakdowns
    width : float, optional
        width of bars, useful for before/after Zernike breakdowns
    fig : matplotlib.figure.Figure
        Figure containing the plot
    ax : matplotlib.axes.Axis
        Axis containing the plot

    Returns
    -------
    fig : matplotlib.figure.Figure
        Figure containing the plot
    ax : matplotlib.axes.Axis
        Axis containing the plot

    """
    from matplotlib import pyplot as plt

    mags = magnitudes.values()
    names = magnitudes.keys()
    idxs = np.arange(len(names))
    # idxs = np.asarray(list(range(len(names))))

    if sort:
        mags, names = sort_xy(mags, names)
        mags = list(reversed(mags))
        names = list(reversed(names))

    lims = (idxs[0] - buffer, idxs[-1] + buffer)
    fig, ax = share_fig_ax(fig, ax)
    if orientation.lower() in ('h', 'horizontal'):
        ax.bar(idxs + offset, mags, zorder=zorder, width=width)
        plt.xticks(idxs, names, rotation=90)
        ax.set(xlim=lims)
    else:
        ax.barh(idxs + offset, mags, zorder=zorder, height=width)
        plt.yticks(idxs, names)
        ax.set(ylim=lims)
    return fig, ax
Пример #8
0
def barplot(coefs,
            names=None,
            orientation='h',
            buffer=1,
            zorder=3,
            number=True,
            offset=0,
            width=0.8,
            fig=None,
            ax=None):
    """Create a barplot of coefficients and their names.

    Parameters
    ----------
    coefs : dict
        with keys of Zn, values of numbers
    names : dict
        with keys of Zn, values of names (e.g. Primary Coma X)
    orientation : str, {'h', 'v', 'horizontal', 'vertical'}
        orientation of the plot
    buffer : float, optional
        buffer to use around the left and right (or top and bottom) bars
    zorder : int, optional
        zorder of the bars.  Use zorder > 3 to put bars in front of gridlines
    number : bool, optional
        if True, plot numbers along the y=0 line showing indices
    offset : float, optional
        offset to apply to bars, useful for before/after Zernike breakdowns
    width : float, optional
        width of bars, useful for before/after Zernike breakdowns
    fig : matplotlib.figurnp.Figure
        Figure containing the plot
    ax : matplotlib.axes.Axis
        Axis containing the plot

    Returns
    -------
    fig : matplotlib.figurnp.Figure
        Figure containing the plot
    ax : matplotlib.axes.Axis
        Axis containing the plot

    """
    from matplotlib import pyplot as plt
    fig, ax = share_fig_ax(fig, ax)

    coefs2 = np.asarray(list(coefs.values()))
    idxs = np.asarray(list(coefs.keys()))
    coefs = coefs2
    lims = (idxs[0] - buffer, idxs[-1] + buffer)
    if orientation.lower() in ('h', 'horizontal'):
        vmin, vmax = coefs.min(), coefs.max()
        drange = vmax - vmin
        offsetY = drange * 0.01

        ax.bar(idxs + offset, coefs, zorder=zorder, width=width)
        plt.xticks(idxs, names, rotation=90)
        if number:
            for i in idxs:
                ax.text(i, offsetY, str(i), ha='center')
    else:
        ax.barh(idxs + offset, coefs, zorder=zorder, height=width)
        plt.yticks(idxs, names)
        if number:
            for i in idxs:
                ax.text(0, i, str(i), ha='center')

    ax.set(xlim=lims)
    return fig, ax
Пример #9
0
def plot_optics(prescription, phist, mirror_backing=None, points=100,
                lw=1, ls='-', c='k', alpha=1, zorder=3,
                x='z', y='y', fig=None, ax=None):
    """Draw the optics of a prescription.

    Parameters
    ----------
    prescription : iterable of Surface
        a prescription for an optical layout
    phist : iterable of numpy.ndarray
        the first return of spencer_and_murty.raytrace, the history of positions
        through a raytrace
    mirror_backing : TODO
        TODO
    points : int, optional
        the number of points used in making the curve for the surface
    lw : float, optional
        linewidth
    ls : str, optional
        line style
    c : color, optional
        anything matplotlib interprets as a color, strings, 3-tuples, 4-tuples, ...
    alpha : float, optional
        opacity of the rays, 1=fully opaque, 0=fully transparent
    zorder : int
        stack order in the plot, higher z orders are on top of lower z orders
    x : str, {'x', 'y', 'z'}
        which position to plot on the X axis, defaults to traditional ZY plot
    y : str, {'x', 'y', 'z'}
        which position to plot on the X axis, defaults to traditional ZY plot
    fig : matplotlib.figure.Figure
        A figure object
    ax : matplotlib.axes.Axis
        An axis object

    Returns
    -------
    matplotlib.figure.Figure
        A figure object
    matplotlib.axes.Axis
        An axis object

    """
    x = x.lower()
    y = y.lower()
    fig, ax = share_fig_ax(fig, ax)

    # manual iteration due to how lenses are drawn, start from -1 so the
    # increment can be at the top of a large loop
    j = -1
    jj = len(prescription)
    while True:
        j += 1
        if j == jj:
            break
        surf = prescription[j]
        if surf.typ == STYPE_REFLECT:
            z = surf.P[2]
            xpt, ypt, mask, ploty = _gather_inputs_for_surface_sag(surf, phist, j, points, y)
            sag = surf.F(xpt, ypt)
            sag += z
            sag[mask] = np.nan
            # TODO: mirror backing
            ax.plot(sag, ploty, c=c, lw=lw, ls=ls, alpha=alpha, zorder=zorder)
        elif surf.typ == STYPE_REFRACT:
            if (j + 1) == jj:
                raise ValueError('cant draw a prescription that terminates on a refracting surface')

            z = surf.P[2]
            xpt, ypt, mask, ploty = _gather_inputs_for_surface_sag(surf, phist, j, points, y)
            sag = surf.F(xpt, ypt)
            sag += z
            sag[mask] = np.nan

            # now get the points for the second surface of the lens
            j += 1
            surf = prescription[j]
            z = surf.P[2]
            xpt2, ypt2, mask2, ploty2 = _gather_inputs_for_surface_sag(surf, phist, j, points, y)
            sag2 = surf.F(xpt2, ypt2)
            sag2 += z
            sag2[mask2] = np.nan

            # now bundle the two surfaces together so one line is drawn for the
            # whole lens
            first_x = sag[0]
            first_y = ploty[0]
            # the ::-1 are because we need to reverse the order of the second
            # surface's points, so that matplotlib doesn't draw an X through the lens
            xx = [*sag, *sag2[::-1], first_x]
            yy = [*ploty, *ploty2[::-1], first_y]
            ax.plot(xx, yy, c=c, lw=lw, ls=ls, alpha=alpha, zorder=zorder)

    return fig, ax