Пример #1
0
 def test_moma_minimal_fba(self):
     p = moma.MOMAProblem(self.model, self.solver)
     fluxes = p.get_minimal_fba_flux('rxn_6')
     self.assertAlmostEqual(fluxes['rxn_1'], 500)
     self.assertAlmostEqual(fluxes['rxn_2'], 0)
     self.assertAlmostEqual(fluxes['rxn_3'], 1000)
     self.assertAlmostEqual(fluxes['rxn_6'], 1000)
Пример #2
0
    def test_linear_moma2(self):
        p = moma.MOMAProblem(self.model, self.solver)
        with p.constraints(p.get_flux_var('rxn_3') == 0):
            p.lin_moma2('rxn_6', 1000)

        self.assertAlmostEqual(p.get_flux('rxn_1'), 500)
        self.assertAlmostEqual(p.get_flux('rxn_2'), 0)
        self.assertAlmostEqual(p.get_flux('rxn_3'), 0)
        self.assertAlmostEqual(p.get_flux('rxn_4'), 1000)
        self.assertAlmostEqual(p.get_flux('rxn_5'), 1000)
        self.assertAlmostEqual(p.get_flux('rxn_6'), 1000)
Пример #3
0
    def test_linear_moma(self):
        p = moma.MOMAProblem(self.model, self.solver)
        with p.constraints(p.get_flux_var('rxn_3') == 0):
            p.lin_moma({
                'rxn_3': 1000,
                'rxn_4': 0,
                'rxn_5': 0,
            })

        # The closest solution when these are constrained is for
        # rxn_6 to take on a flux of zero.
        self.assertAlmostEqual(p.get_flux('rxn_6'), 0)