Пример #1
0
def rigid_scan_2_mesh_alignment(scan, mesh, visualize=False):
    options = {'sparse_solver': lambda A, x: cg(A, x, maxiter=2000)[0]}
    options['disp'] = 1.0
    options['delta_0'] = 0.1
    options['e_3'] = 1e-4

    s = ch.ones(1)
    r = ch.zeros(3)
    R = Rodrigues(r)
    t = ch.zeros(3)
    trafo_mesh = s*(R.dot(mesh.v.T)).T + t

    sampler = sample_from_mesh(scan, sample_type='vertices')
    s2m = ScanToMesh(scan, trafo_mesh, mesh.f, scan_sampler=sampler, signed=False, normalize=False)

    if visualize:       
        #Visualization code
        mv = MeshViewer()
        mv.set_static_meshes([scan])
        tmp_mesh = Mesh(trafo_mesh.r, mesh.f)
        tmp_mesh.set_vertex_colors('light sky blue')
        mv.set_dynamic_meshes([tmp_mesh])
        def on_show(_):
            tmp_mesh = Mesh(trafo_mesh.r, mesh.f)
            tmp_mesh.set_vertex_colors('light sky blue')
            mv.set_dynamic_meshes([tmp_mesh])
    else:
        def on_show(_):
            pass

    ch.minimize(fun={'dist': s2m, 's_reg': 100*(ch.abs(s)-s)}, x0=[s, r, t], callback=on_show, options=options)
    return s,Rodrigues(r),t
Пример #2
0
def fit_3D_mesh(target_3d_mesh_fname, model_fname, weights, show_fitting=True):
    '''
    Fit FLAME to 3D mesh in correspondence to the FLAME mesh (i.e. same number of vertices, same mesh topology)
    :param target_3d_mesh_fname:    target 3D mesh filename
    :param model_fname:             saved FLAME model
    :param weights:             weights of the individual objective functions
    :return: a mesh with the fitting results
    '''

    target_mesh = Mesh(filename=target_3d_mesh_fname)

    tf_trans = tf.Variable(np.zeros((1,3)), name="trans", dtype=tf.float64, trainable=True)
    tf_rot = tf.Variable(np.zeros((1,3)), name="pose", dtype=tf.float64, trainable=True)
    tf_pose = tf.Variable(np.zeros((1,12)), name="pose", dtype=tf.float64, trainable=True)
    tf_shape = tf.Variable(np.zeros((1,300)), name="shape", dtype=tf.float64, trainable=True)
    tf_exp = tf.Variable(np.zeros((1,100)), name="expression", dtype=tf.float64, trainable=True)
    smpl = SMPL(model_fname)
    tf_model = tf.squeeze(smpl(tf_trans,
                               tf.concat((tf_shape, tf_exp), axis=-1),
                               tf.concat((tf_rot, tf_pose), axis=-1)))

    with tf.Session() as session:
        session.run(tf.global_variables_initializer())

        mesh_dist = tf.reduce_sum(tf.square(tf.subtract(tf_model, target_mesh.v)))
        neck_pose_reg = tf.reduce_sum(tf.square(tf_pose[:,:3]))
        jaw_pose_reg = tf.reduce_sum(tf.square(tf_pose[:,3:6]))
        eyeballs_pose_reg = tf.reduce_sum(tf.square(tf_pose[:,6:]))
        shape_reg = tf.reduce_sum(tf.square(tf_shape))
        exp_reg = tf.reduce_sum(tf.square(tf_exp))

        # Optimize global transformation first
        vars = [tf_trans, tf_rot]
        loss = mesh_dist
        optimizer = scipy_pt(loss=loss, var_list=vars, method='BFGS', options={'disp': 1})
        print('Optimize rigid transformation')
        optimizer.minimize(session)

        # Optimize for the model parameters
        vars = [tf_trans, tf_rot, tf_pose, tf_shape, tf_exp]
        loss = weights['data'] * mesh_dist + weights['shape'] * shape_reg + weights['expr'] * exp_reg + \
               weights['neck_pose'] * neck_pose_reg + weights['jaw_pose'] * jaw_pose_reg + weights['eyeballs_pose'] * eyeballs_pose_reg

        optimizer = scipy_pt(loss=loss, var_list=vars, method='BFGS', options={'disp': 1})
        print('Optimize model parameters')
        optimizer.minimize(session)

        print('Fitting done')

        if show_fitting:
            # Visualize fitting
            mv = MeshViewer()
            fitting_mesh = Mesh(session.run(tf_model), smpl.f)
            fitting_mesh.set_vertex_colors('light sky blue')

            mv.set_static_meshes([target_mesh, fitting_mesh])
            six.moves.input('Press key to continue')

        return Mesh(session.run(tf_model), smpl.f)
Пример #3
0
def fit_lmk3d(target_3d_lmks, model_fname, lmk_face_idx, lmk_b_coords, weights, show_fitting=True):
    '''
    Fit FLAME to 3D landmarks
    :param target_3d_lmks:      target 3D landmarks provided as (num_lmks x 3) matrix
    :param model_fname:         saved Tensorflow FLAME model
    :param lmk_face_idx:        face indices of the landmark embedding in the FLAME topology
    :param lmk_b_coords:        barycentric coordinates of the landmark embedding in the FLAME topology
                                (i.e. weighting of the three vertices for the trinagle, the landmark is embedded in
    :param weights:             weights of the individual objective functions
    :return: a mesh with the fitting results
    '''

    tf_trans = tf.Variable(np.zeros((1,3)), name="trans", dtype=tf.float64, trainable=True)
    tf_rot = tf.Variable(np.zeros((1,3)), name="pose", dtype=tf.float64, trainable=True)
    tf_pose = tf.Variable(np.zeros((1,12)), name="pose", dtype=tf.float64, trainable=True)
    tf_shape = tf.Variable(np.zeros((1,300)), name="shape", dtype=tf.float64, trainable=True)
    tf_exp = tf.Variable(np.zeros((1,100)), name="expression", dtype=tf.float64, trainable=True)
    smpl = SMPL(model_fname)
    tf_model = tf.squeeze(smpl(tf_trans,
                               tf.concat((tf_shape, tf_exp), axis=-1),
                               tf.concat((tf_rot, tf_pose), axis=-1)))
    with tf.Session() as session:
        session.run(tf.global_variables_initializer())

        lmks = tf_get_model_lmks(tf_model, smpl.f, lmk_face_idx, lmk_b_coords)
        lmk_dist = tf.reduce_sum(tf.square(1000 * tf.subtract(lmks, target_3d_lmks)))
        neck_pose_reg = tf.reduce_sum(tf.square(tf_pose[:,:3]))
        jaw_pose_reg = tf.reduce_sum(tf.square(tf_pose[:,3:6]))
        eyeballs_pose_reg = tf.reduce_sum(tf.square(tf_pose[:,6:]))
        shape_reg = tf.reduce_sum(tf.square(tf_shape))
        exp_reg = tf.reduce_sum(tf.square(tf_exp))

        # Optimize global transformation first
        vars = [tf_trans, tf_rot]
        loss = weights['lmk'] * lmk_dist
        optimizer = scipy_pt(loss=loss, var_list=vars, method='L-BFGS-B', options={'disp': 1, 'ftol': 5e-6})
        print('Optimize rigid transformation')
        optimizer.minimize(session)

        # Optimize for the model parameters
        vars = [tf_trans, tf_rot, tf_pose, tf_shape, tf_exp]
        loss = weights['lmk'] * lmk_dist + weights['shape'] * shape_reg + weights['expr'] * exp_reg + \
               weights['neck_pose'] * neck_pose_reg + weights['jaw_pose'] * jaw_pose_reg + weights['eyeballs_pose'] * eyeballs_pose_reg

        optimizer = scipy_pt(loss=loss, var_list=vars, method='L-BFGS-B', options={'disp': 1, 'ftol': 5e-6})
        print('Optimize model parameters')
        optimizer.minimize(session)

        print('Fitting done')

        if show_fitting:
            # Visualize landmark fitting
            mv = MeshViewer()
            mv.set_static_meshes(create_lmk_spheres(target_3d_lmks, 0.001, [255.0, 0.0, 0.0]))
            mv.set_dynamic_meshes([Mesh(session.run(tf_model), smpl.f)] + create_lmk_spheres(session.run(lmks), 0.001, [0.0, 0.0, 255.0]), blocking=True)
            six.moves.input('Press key to continue')

        return Mesh(session.run(tf_model), smpl.f)
Пример #4
0
def sample_texture(model_fname, texture_fname, num_samples, out_path):
    '''
    Sample the FLAME model to demonstrate how to vary the model parameters.FLAME has parameters to
        - model identity-dependent shape variations (paramters: shape),
        - articulation of neck (paramters: pose[0:3]), jaw (paramters: pose[3:6]), and eyeballs (paramters: pose[6:12])
        - model facial expressions, i.e. all expression motion that does not involve opening the mouth (paramters: exp)
        - global translation (paramters: trans)
        - global rotation (paramters: rot)
    :param model_fname          saved FLAME model
    :param num_samples          number of samples
    :param out_path             output path to save the generated templates (no templates are saved if path is empty)
    '''

    tf_trans = tf.Variable(np.zeros((1,3)), name="trans", dtype=tf.float64, trainable=True)
    tf_rot = tf.Variable(np.zeros((1,3)), name="pose", dtype=tf.float64, trainable=True)
    tf_pose = tf.Variable(np.zeros((1,12)), name="pose", dtype=tf.float64, trainable=True)
    tf_shape = tf.Variable(np.zeros((1,300)), name="shape", dtype=tf.float64, trainable=True)
    tf_exp = tf.Variable(np.zeros((1,100)), name="expression", dtype=tf.float64, trainable=True)
    smpl = SMPL(model_fname)
    tf_model = tf.squeeze(smpl(tf_trans,
                               tf.concat((tf_shape, tf_exp), axis=-1),
                               tf.concat((tf_rot, tf_pose), axis=-1)))

    texture_model = np.load(texture_fname)
    tex_dim = texture_model['tex_dir'].shape[-1]
    tf_tex_params = tf.Variable(np.zeros((1,tex_dim)), name="pose", dtype=tf.float64, trainable=True)
    tf_tex_mean = tf.Variable(np.reshape(texture_model['mean'], (1,-1)), name='tex_mean', dtype=tf.float64, trainable=False)
    tf_tex_dir = tf.Variable(np.reshape(texture_model['tex_dir'], (-1, tex_dim)).T, name='tex_dir', dtype=tf.float64, trainable=False)
    
    tf_tex = tf.add(tf_tex_mean, tf.matmul(tf_tex_params, tf_tex_dir)),
    tf_tex = tf.reshape(tf_tex, (texture_model['tex_dir'].shape[0], texture_model['tex_dir'].shape[1], texture_model['tex_dir'].shape[2]))
    tf_tex = tf.cast(tf.clip_by_value(tf_tex, 0.0, 255.0), tf.int64)

    with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        mv = MeshViewer()

        for i in range(num_samples):
            assign_tex = tf.assign(tf_tex_params, np.random.randn(tex_dim)[np.newaxis,:])
            session.run([assign_tex])

            v, tex = session.run([tf_model, tf_tex])
            out_mesh = Mesh(v, smpl.f)
            out_mesh.vt = texture_model['vt']
            out_mesh.ft = texture_model['ft']

            mv.set_dynamic_meshes([out_mesh], blocking=True)
            key = six.moves.input('Press (s) to save sample, any other key to continue ')
            if key == 's':
                out_mesh_fname = os.path.join(out_path, 'tex_sample_%02d.obj' % (i+1))
                out_tex_fname = out_mesh_fname.replace('obj', 'png')
                cv2.imwrite(out_tex_fname, tex)
                out_mesh.set_texture_image(out_tex_fname)
                out_mesh.write_obj(out_mesh_fname)
Пример #5
0
def sample_FLAME(model_fname, num_samples, out_path, visualize, sample_VOCA_template=False):
    '''
    Sample the FLAME model to demonstrate how to vary the model parameters.FLAME has parameters to
        - model identity-dependent shape variations (paramters: shape),
        - articulation of neck (paramters: pose[0:3]), jaw (paramters: pose[3:6]), and eyeballs (paramters: pose[6:12])
        - model facial expressions, i.e. all expression motion that does not involve opening the mouth (paramters: exp)
        - global translation (paramters: trans)
        - global rotation (paramters: rot)
    :param model_fname              saved FLAME model
    :param num_samples              number of samples
    :param out_path                 output path to save the generated templates (no templates are saved if path is empty)
    :param visualize                visualize samples
    :param sample_VOCA_template     sample template in 'zero pose' that can be used e.g. for speech-driven animation in VOCA
    '''

    tf_trans = tf.Variable(np.zeros((1,3)), name="trans", dtype=tf.float64, trainable=True)
    tf_rot = tf.Variable(np.zeros((1,3)), name="pose", dtype=tf.float64, trainable=True)
    tf_pose = tf.Variable(np.zeros((1,12)), name="pose", dtype=tf.float64, trainable=True)
    tf_shape = tf.Variable(np.zeros((1,300)), name="shape", dtype=tf.float64, trainable=True)
    tf_exp = tf.Variable(np.zeros((1,100)), name="expression", dtype=tf.float64, trainable=True)
    smpl = SMPL(model_fname)
    tf_model = tf.squeeze(smpl(tf_trans,
                               tf.concat((tf_shape, tf_exp), axis=-1),
                               tf.concat((tf_rot, tf_pose), axis=-1)))

    with tf.Session() as session:
        session.run(tf.global_variables_initializer())

        if visualize:
            mv = MeshViewer()
        for i in range(num_samples):
            if sample_VOCA_template:
                assign_shape = tf.assign(tf_shape, np.hstack((np.random.randn(100), np.zeros(200)))[np.newaxis,:])
                session.run([assign_shape])
                out_fname = os.path.join(out_path, 'VOCA_template_%02d.ply' % (i+1))
            else:
                # assign_trans = tf.assign(tf_trans, np.random.randn(3)[np.newaxis,:])
                assign_rot = tf.assign(tf_rot, np.random.randn(3)[np.newaxis,:] * 0.03)
                assign_pose = tf.assign(tf_pose, np.random.randn(12)[np.newaxis,:] * 0.02)
                assign_shape = tf.assign(tf_shape, np.hstack((np.random.randn(100), np.zeros(200)))[np.newaxis,:])
                assign_exp = tf.assign(tf_exp, np.hstack((0.5*np.random.randn(50), np.zeros(50)))[np.newaxis,:])
                session.run([assign_rot, assign_pose, assign_shape, assign_exp])
                out_fname = os.path.join(out_path, 'FLAME_sample_%02d.ply' % (i+1))

            sample_mesh = Mesh(session.run(tf_model), smpl.f)
            if visualize:
                mv.set_dynamic_meshes([sample_mesh], blocking=True)
                key = six.moves.input('Press (s) to save sample, any other key to continue ')
                if key == 's':
                    sample_mesh.write_ply(out_fname)
            else:
                sample_mesh.write_ply(out_fname)
Пример #6
0
def visualize(model, self_intersection_ids, default_model, vertices, faces):
    radius = 0.01
    from psbody.mesh.meshviewer import MeshViewer
    # from mesh.mesh.meshviewer import MeshViewer
    mv = MeshViewer(window_width=800, window_height=800)
    mesh = Mesh(v=default_model.r, f=default_model.f)
    mesh.f = []

    if self_intersection_ids == []:
        return
        mv.set_static_meshes([mesh, meanSphere], blocking=True)
    else:
        m = Mesh(v=model.v, f=model.f, vc='SeaGreen')
        m.vc[m.f[faces][self_intersection_ids].flatten()] = ones(1)
        mv.set_static_meshes([m], blocking=True)

    raw_input('Press Enter to exit')
Пример #7
0
def sample_FLAME(template_fname, tf_model_fname, num_samples):
    '''
    Sample the FLAME model to demonstrate how to vary the model parameters.FLAME has parameters to
        - model identity-dependent shape variations (paramters: shape),
        - articulation of neck (paramters: pose[0:3]), jaw (paramters: pose[3:6]), and eyeballs (paramters: pose[6:12])
        - model facial expressions, i.e. all expression motion that does not involve opening the mouth (paramters: exp)
        - global translation (paramters: trans)
        - global rotation (paramters: rot)
    :param template_fname:      template mesh in FLAME topology (only the face information are used)
    :param tf_model_fname:      saved Tensorflow FLAME model
    '''

    template_mesh = Mesh(filename=template_fname)
    saver = tf.train.import_meta_graph(tf_model_fname + '.meta')

    graph = tf.get_default_graph()
    tf_model = graph.get_tensor_by_name(u'vertices:0')

    with tf.Session() as session:
        saver.restore(session, tf_model_fname)

        # Workaround as existing tf.Variable cannot be retrieved back with tf.get_variable
        tf_trans = [x for x in tf.trainable_variables()
                    if 'trans' in x.name][0]
        tf_rot = [x for x in tf.trainable_variables() if 'rot' in x.name][0]
        tf_pose = [x for x in tf.trainable_variables() if 'pose' in x.name][0]
        tf_shape = [x for x in tf.trainable_variables()
                    if 'shape' in x.name][0]
        tf_exp = [x for x in tf.trainable_variables() if 'exp' in x.name][0]

        mv = MeshViewer()

        for i in range(num_samples):
            assign_trans = tf.assign(tf_trans, np.random.randn(3))
            assign_rot = tf.assign(tf_rot, np.random.randn(3) * 0.03)
            assign_pose = tf.assign(tf_pose, np.random.randn(12) * 0.03)
            assign_shape = tf.assign(tf_shape, np.random.randn(300) * 1.0)
            assign_exp = tf.assign(tf_exp, np.random.randn(100) * 0.5)
            session.run([
                assign_trans, assign_rot, assign_pose, assign_shape, assign_exp
            ])

            mv.set_dynamic_meshes(
                [Mesh(session.run(tf_model), template_mesh.f)], blocking=True)
            raw_input('Press key to continue')
Пример #8
0
def sample_FLAME(template_fname, model_fname, num_samples):
    '''
    Sample the FLAME model to demonstrate how to vary the model parameters.FLAME has parameters to
        - model identity-dependent shape variations (paramters: shape),
        - articulation of neck (paramters: pose[0:3]), jaw (paramters: pose[3:6]), and eyeballs (paramters: pose[6:12])
        - model facial expressions, i.e. all expression motion that does not involve opening the mouth (paramters: exp)
        - global translation (paramters: trans)
        - global rotation (paramters: rot)
    :param template_fname:      template mesh in FLAME topology (only the face information are used)
    :param model_fname:         saved FLAME model
    '''

    template_mesh = Mesh(filename=template_fname)

    tf_trans = tf.Variable(np.zeros((1,3)), name="trans", dtype=tf.float64, trainable=True)
    tf_rot = tf.Variable(np.zeros((1,3)), name="pose", dtype=tf.float64, trainable=True)
    tf_pose = tf.Variable(np.zeros((1,12)), name="pose", dtype=tf.float64, trainable=True)
    tf_shape = tf.Variable(np.zeros((1,300)), name="shape", dtype=tf.float64, trainable=True)
    tf_exp = tf.Variable(np.zeros((1,100)), name="expression", dtype=tf.float64, trainable=True)
    smpl = SMPL(model_fname)
    tf_model = tf.squeeze(smpl(tf_trans,
                               tf.concat((tf_shape, tf_exp), axis=-1),
                               tf.concat((tf_rot, tf_pose), axis=-1)))

    with tf.Session() as session:
        session.run(tf.global_variables_initializer())

        mv = MeshViewer()

        for i in range(num_samples):
            assign_trans = tf.assign(tf_trans, np.random.randn(3)[np.newaxis,:])
            assign_rot = tf.assign(tf_rot, np.random.randn(3)[np.newaxis,:] * 0.03)
            assign_pose = tf.assign(tf_pose, np.random.randn(12)[np.newaxis,:] * 0.03)
            assign_shape = tf.assign(tf_shape, np.random.randn(300)[np.newaxis,:] * 1.0)
            assign_exp = tf.assign(tf_exp, np.random.randn(100)[np.newaxis,:] * 0.5)
            session.run([assign_trans, assign_rot, assign_pose, assign_shape, assign_exp])

            mv.set_dynamic_meshes([Mesh(session.run(tf_model), template_mesh.f)], blocking=True)
            six.moves.input('Press key to continue')
Пример #9
0
            (pack(results[i].dot(ch.concatenate((self.J[i, :], [0])))))
            for i in range(len(results))
        ]
        result = ch.dstack(results2)

        return result, results_global

    def compute_r(self):
        return self.v.r

    def compute_dr_wrt(self, wrt):
        if wrt is not self.trans and wrt is not self.betas and wrt is not self.pose and wrt is not self.v_personal and wrt is not self.v_template:
            return None

        return self.v.dr_wrt(wrt)


if __name__ == '__main__':
    from utils.smpl_paths import SmplPaths

    dp = SmplPaths(gender='neutral')

    smpl = Smpl(dp.get_smpl_file())

    from psbody.mesh.meshviewer import MeshViewer
    from psbody.mesh import Mesh
    mv = MeshViewer()
    mv.set_static_meshes([Mesh(smpl.r, smpl.f)])

    input("Press Enter to continue...")
Пример #10
0
def fit_3D_mesh(target_3d_mesh_fname, template_fname, tf_model_fname, weights, show_fitting=True):
    '''
    Fit FLAME to 3D mesh in correspondence to the FLAME mesh (i.e. same number of vertices, same mesh topology)
    :param target_3d_mesh_fname:    target 3D mesh filename
    :param template_fname:          template mesh in FLAME topology (only the face information are used)
    :param tf_model_fname:          saved Tensorflow FLAME model

    :param weights:             weights of the individual objective functions
    :return: a mesh with the fitting results
    '''

    target_mesh = Mesh(filename=target_3d_mesh_fname)
    template_mesh = Mesh(filename=template_fname)

    if target_mesh.v.shape[0] != template_mesh.v.shape[0]:
        print('Target mesh does not have the same number of vertices')
        return

    saver = tf.train.import_meta_graph(tf_model_fname + '.meta')

    graph = tf.get_default_graph()
    tf_model = graph.get_tensor_by_name(u'vertices:0')

    with tf.Session() as session:
        saver.restore(session, tf_model_fname)

        # Workaround as existing tf.Variable cannot be retrieved back with tf.get_variable
        # tf_v_template = [x for x in tf.trainable_variables() if 'v_template' in x.name][0]
        tf_trans = [x for x in tf.trainable_variables() if 'trans' in x.name][0]
        tf_rot = [x for x in tf.trainable_variables() if 'rot' in x.name][0]
        tf_pose = [x for x in tf.trainable_variables() if 'pose' in x.name][0]
        tf_shape = [x for x in tf.trainable_variables() if 'shape' in x.name][0]
        tf_exp = [x for x in tf.trainable_variables() if 'exp' in x.name][0]

        mesh_dist = tf.reduce_sum(tf.square(tf.subtract(tf_model, target_mesh.v)))
        neck_pose_reg = tf.reduce_sum(tf.square(tf_pose[:3]))
        jaw_pose_reg = tf.reduce_sum(tf.square(tf_pose[3:6]))
        eyeballs_pose_reg = tf.reduce_sum(tf.square(tf_pose[6:]))
        shape_reg = tf.reduce_sum(tf.square(tf_shape))
        exp_reg = tf.reduce_sum(tf.square(tf_exp))

        # Optimize global transformation first
        vars = [tf_trans, tf_rot]
        loss = mesh_dist
        optimizer = scipy_pt(loss=loss, var_list=vars, method='L-BFGS-B', options={'disp': 1})
        print('Optimize rigid transformation')
        optimizer.minimize(session)

        # Optimize for the model parameters
        vars = [tf_trans, tf_rot, tf_pose, tf_shape, tf_exp]
        loss = mesh_dist + weights['shape'] * shape_reg + weights['expr'] * exp_reg + \
               weights['neck_pose'] * neck_pose_reg + weights['jaw_pose'] * jaw_pose_reg + weights['eyeballs_pose'] * eyeballs_pose_reg

        optimizer = scipy_pt(loss=loss, var_list=vars, method='L-BFGS-B', options={'disp': 1})
        print('Optimize model parameters')
        optimizer.minimize(session)

        print('Fitting done')

        if show_fitting:
            # Visualize fitting
            mv = MeshViewer()
            fitting_mesh = Mesh(session.run(tf_model), template_mesh.f)
            fitting_mesh.set_vertex_colors('light sky blue')

            mv.set_static_meshes([target_mesh, fitting_mesh])
            raw_input('Press key to continue')

        return Mesh(session.run(tf_model), template_mesh.f)
Пример #11
0
def fit_sources(
    dir_tup_list,
    tf_model_fname,
    template_fname,
    weight_reg_shape,
    weight_reg_expr,
    weight_reg_neck_pos,
    weight_reg_jaw_pos,
    weight_reg_eye_pos,
    showing=False
):
    global g_mv
    if showing:
        g_mv = MeshViewer()

    saver = tf.train.import_meta_graph(tf_model_fname + '.meta')

    graph = tf.get_default_graph()
    tf_model = graph.get_tensor_by_name(u'vertices:0')

    with tf.Session() as session:
        saver.restore(session, tf_model_fname)

        template = Mesh(filename=template_fname)
        tf_src = tf.Variable(tf.zeros(template.v.shape, dtype=tf.float64))

        # get all params
        tf_trans = [x for x in tf.trainable_variables() if 'trans' in x.name][0]
        tf_rot   = [x for x in tf.trainable_variables() if 'rot'   in x.name][0]
        tf_pose  = [x for x in tf.trainable_variables() if 'pose'  in x.name][0]
        tf_shape = [x for x in tf.trainable_variables() if 'shape' in x.name][0]
        tf_exp   = [x for x in tf.trainable_variables() if 'exp'   in x.name][0]

        def _save_state(*names, **kwargs):
            state = dict()
            if "trans" in names: state["trans"] = tf_trans.eval()
            if "rot"   in names: state["rot"]   = tf_rot.eval()
            if "pose"  in names: state["pose"]  = tf_pose.eval()
            if "shape" in names: state["shape"] = tf_shape.eval()
            if "exp"   in names: state["exp"]   = tf_exp.eval()
            if kwargs.get("set_zero", False):
                _zero_state(*names)
            return state

        def _load_state(state):
            ops = []
            if "trans" in state: ops.append(tf_trans.assign(state["trans"]))
            if "rot"   in state: ops.append(tf_rot.assign  (state["rot"]  ))
            if "pose"  in state: ops.append(tf_pose.assign (state["pose"] ))
            if "shape" in state: ops.append(tf_shape.assign(state["shape"]))
            if "exp"   in state: ops.append(tf_exp.assign  (state["exp"]  ))
            session.run(ops)

        def _zero_state(*names):
            ops = []
            if "trans" in names: ops.append(tf_trans.assign(tf.zeros_like(tf_trans)))
            if "rot"   in names: ops.append(tf_rot  .assign(tf.zeros_like(tf_rot  )))
            if "pose"  in names: ops.append(tf_pose .assign(tf.zeros_like(tf_pose )))
            if "shape" in names: ops.append(tf_shape.assign(tf.zeros_like(tf_shape)))
            if "exp"   in names: ops.append(tf_exp  .assign(tf.zeros_like(tf_exp  )))
            session.run(ops)

        mesh_dist     = tf.reduce_sum(tf.square(tf.subtract(tf_model, tf_src)))
        neck_pose_reg = tf.reduce_sum(tf.square(tf_pose[:3]))
        jaw_pose_reg  = tf.reduce_sum(tf.square(tf_pose[3:6]))
        eye_pose_reg  = tf.reduce_sum(tf.square(tf_pose[6:]))
        shape_reg     = tf.reduce_sum(tf.square(tf_shape))
        exp_reg       = tf.reduce_sum(tf.square(tf_exp))
        reg_term = (
            weight_reg_neck_pos * neck_pose_reg +
            weight_reg_jaw_pos  * jaw_pose_reg  +
            weight_reg_eye_pos  * eye_pose_reg  +
            weight_reg_shape    * shape_reg     +
            weight_reg_expr     * exp_reg
        )

        # optimizers
        optim_shared_rigid = scipy_pt(
            loss=mesh_dist,
            var_list=[tf_trans, tf_rot],
            method='L-BFGS-B',
            options={'disp': 0}
        )
        optim_shared_all = scipy_pt(
            loss=mesh_dist+reg_term,
            var_list=[tf_trans, tf_rot, tf_pose, tf_shape, tf_exp],
            method='L-BFGS-B',
            options={'disp': 0}
        )
        optim_seq = scipy_pt(
            loss=mesh_dist+reg_term,
            var_list=[tf_shape, tf_exp],
            method='L-BFGS-B', options={'disp': 0, 'maxiter': 50}
        )

        def _fit_sentence(src_dir, dst_dir, prm_dir, last_speaker):
            _anchor = os.path.join(dst_dir, "_anchor")
            if os.path.exists(_anchor):
                print("- Skip " + src_dir)
                return
            if not os.path.exists(src_dir):
                print("- Failed to find " + src_dir)
                return
            if not os.path.exists(dst_dir): os.makedirs(dst_dir)
            if not os.path.exists(prm_dir): os.makedirs(prm_dir)

            ply_files = []
            for root, _, files in os.walk(src_dir):
                for f in files:
                    if os.path.splitext(f)[1] == ".ply":
                        ply_files.append(os.path.join(root, f))
            ply_files = sorted(ply_files)

            # get shared
            src_mesh = Mesh(filename=ply_files[0])
            session.run(tf.assign(tf_src, src_mesh.v))

            speaker = os.path.basename(os.path.dirname(src_dir))

            if last_speaker != speaker:
                print("- clear speaker information")
                _zero_state("trans", "rot", "pose", "shape", "exp")
            else:
                _zero_state("exp")

            stt_dir = os.path.join(os.path.dirname(dst_dir), "state")
            if os.path.exists(stt_dir):
                state_dict = dict(
                    trans  = np.load(os.path.join(stt_dir, "trans.npy")),
                    rot    = np.load(os.path.join(stt_dir, "rot.npy")),
                    pose   = np.load(os.path.join(stt_dir, "pose.npy")),
                    shape  = np.load(os.path.join(stt_dir, "shape.npy")),
                )
                _load_state(state_dict)

                fitting_mesh = Mesh(session.run(tf_model), src_mesh.f)
                fitting_mesh.write_ply(os.path.join(stt_dir, "zero.ply"))
            fit_zero_dir = os.path.join(os.path.dirname(os.path.dirname(dst_dir)), "zero_exp")
            if not os.path.exists(fit_zero_dir): os.makedirs(fit_zero_dir)

            print("- " + speaker + " " + os.path.basename(src_dir))
            print("  -> fit shared parameters...")
            optim_shared_rigid.minimize(session)
            optim_shared_all.minimize(session)

            state_dict = _save_state("exp", set_zero=True)

            fitting_mesh = Mesh(session.run(tf_model), src_mesh.f)
            fitting_mesh.write_ply(os.path.join(fit_zero_dir, "{}.ply".format(speaker)))

            _load_state(state_dict)

            return

            if not os.path.exists(stt_dir): os.makedirs(stt_dir)
            np.save(os.path.join(stt_dir, "trans.npy"), tf_trans.eval(), allow_pickle=False)
            np.save(os.path.join(stt_dir, "rot.npy"),   tf_rot.eval(),   allow_pickle=False)
            np.save(os.path.join(stt_dir, "pose.npy"),  tf_pose.eval(),  allow_pickle=False)
            np.save(os.path.join(stt_dir, "shape.npy"), tf_shape.eval(), allow_pickle=False)

            progress = tqdm(ply_files)
            for src_fname in progress:
                frame = os.path.basename(src_fname)
                progress.set_description("  -> " + frame)
                dst_fname = os.path.join(dst_dir, frame)
                # param filename
                prm_fname = os.path.join(prm_dir, frame)
                exp_fname = os.path.splitext(prm_fname)[0] + '_exp.npy'
                idn_fname = os.path.splitext(prm_fname)[0] + '_idn.npy'

                src_mesh = Mesh(filename=src_fname)
                session.run(tf.assign(tf_src, src_mesh.v))

                optim_seq.minimize(session)

                # save expr
                np.save(exp_fname, tf_exp.eval())
                np.save(idn_fname, tf_shape.eval())

                # state_dict = _save_state("trans", "rot", "pose", "shape", set_zero=True)

                # save mesh
                fitting_mesh = Mesh(session.run(tf_model), src_mesh.f)
                fitting_mesh.write_ply(dst_fname)

                # _load_state(state_dict)
                # print(tf_shape.eval())

                if showing:
                    g_mv.set_static_meshes([fitting_mesh])

            os.system("touch {}".format(_anchor))
            return speaker

        last_speaker = None
        for (src, dst, prm) in dir_tup_list:
            last_speaker = _fit_sentence(src, dst, prm, last_speaker)
Пример #12
0
def fit_lmk3d(target_3d_lmks,
              template_fname,
              tf_model_fname,
              lmk_face_idx,
              lmk_b_coords,
              weights,
              show_fitting=True):
    '''
    Fit FLAME to 3D landmarks
    :param target_3d_lmks:      target 3D landmarks provided as (num_lmks x 3) matrix
    :param template_fname:      template mesh in FLAME topology (only the face information are used)
    :param tf_model_fname:      saved Tensorflow FLAME model
    :param lmk_face_idx:        face indices of the landmark embedding in the FLAME topology
    :param lmk_b_coords:        barycentric coordinates of the landmark embedding in the FLAME topology
                                (i.e. weighting of the three vertices for the trinagle, the landmark is embedded in
    :param weights:             weights of the individual objective functions
    :return: a mesh with the fitting results
    '''

    template_mesh = Mesh(filename=template_fname)
    saver = tf.train.import_meta_graph(tf_model_fname + '.meta')

    graph = tf.get_default_graph()
    tf_model = graph.get_tensor_by_name(u'vertices:0')

    with tf.Session() as session:
        saver.restore(session, tf_model_fname)

        # Workaround as existing tf.Variable cannot be retrieved back with tf.get_variable
        # tf_v_template = [x for x in tf.trainable_variables() if 'v_template' in x.name][0]
        tf_trans = [x for x in tf.trainable_variables()
                    if 'trans' in x.name][0]
        tf_rot = [x for x in tf.trainable_variables() if 'rot' in x.name][0]
        tf_pose = [x for x in tf.trainable_variables() if 'pose' in x.name][0]
        tf_shape = [x for x in tf.trainable_variables()
                    if 'shape' in x.name][0]
        tf_exp = [x for x in tf.trainable_variables() if 'exp' in x.name][0]

        lmks = tf_get_model_lmks(tf_model, template_mesh, lmk_face_idx,
                                 lmk_b_coords)
        lmk_dist = tf.reduce_sum(
            tf.square(1000 * tf.subtract(lmks, target_3d_lmks)))
        neck_pose_reg = tf.reduce_sum(tf.square(tf_pose[:3]))
        jaw_pose_reg = tf.reduce_sum(tf.square(tf_pose[3:6]))
        eyeballs_pose_reg = tf.reduce_sum(tf.square(tf_pose[6:]))
        shape_reg = tf.reduce_sum(tf.square(tf_shape))
        exp_reg = tf.reduce_sum(tf.square(tf_exp))

        # Optimize global transformation first
        vars = [tf_trans, tf_rot]
        loss = weights['lmk'] * lmk_dist
        optimizer = scipy_pt(loss=loss,
                             var_list=vars,
                             method='L-BFGS-B',
                             options={
                                 'disp': 1,
                                 'ftol': 5e-6
                             })
        print('Optimize rigid transformation')
        optimizer.minimize(session)

        # Optimize for the model parameters
        vars = [tf_trans, tf_rot, tf_pose, tf_shape, tf_exp]
        loss = weights['lmk'] * lmk_dist + weights['shape'] * shape_reg + weights['expr'] * exp_reg + \
               weights['neck_pose'] * neck_pose_reg + weights['jaw_pose'] * jaw_pose_reg + weights['eyeballs_pose'] * eyeballs_pose_reg

        optimizer = scipy_pt(loss=loss,
                             var_list=vars,
                             method='L-BFGS-B',
                             options={
                                 'disp': 1,
                                 'ftol': 5e-6
                             })
        print('Optimize model parameters')
        optimizer.minimize(session)

        print('Fitting done')

        if show_fitting:
            # Visualize landmark fitting
            mv = MeshViewer()
            mv.set_static_meshes(
                create_lmk_spheres(target_3d_lmks, 0.001, [255.0, 0.0, 0.0]))
            mv.set_dynamic_meshes(
                [Mesh(session.run(tf_model), template_mesh.f)] +
                create_lmk_spheres(session.run(lmks), 0.001,
                                   [0.0, 0.0, 255.0]),
                blocking=True)
            six.moves.input('Press key to continue')

        return Mesh(session.run(tf_model), template_mesh.f)