Пример #1
0
    def find_jobs_torun(self, max_njobs):
        """
        Find entries whose results have not been yet calculated.

        Args:
            select_formulas:
        """
        jobs, got = [], 0
        for struct_type, formula, data in self.iter_struct_formula_data():
            if got == max_njobs: break
            if data in ("scheduled", "failed"): continue
            if data is None:
                symbols = list(set(species_from_formula(formula)))
                pseudos = self.table.pseudos_with_symbols(symbols)

                job = dict2namedtuple(formula=formula,
                                      struct_type=struct_type,
                                      pseudos=pseudos)
                self[struct_type][formula] = "scheduled"
                jobs.append(job)
                got += 1

        # Update the database.
        if jobs: self.json_write()
        return jobs
Пример #2
0
    def plot_errors_for_elements(self, ax=None, **kwargs):
        """
        Plot the relative errors associated to the chemical elements.
        """
        dict_list = []
        for idx, row in self.iterrows():
            rerr = 100 * (row["this"] - row["ae"]) / row["ae"]
            for symbol in set(species_from_formula(row.formula)):
                dict_list.append(dict(
                    element=symbol,
                    rerr=rerr,
                    formula=row.formula,
                    struct_type=row.struct_type,
                    ))

        frame = DataFrame(dict_list)
        order = sort_symbols_by_Z(set(frame["element"]))
        #print_frame(frame)

        import seaborn as sns
        ax, fig, plt = get_ax_fig_plt(ax=ax)

        # Draw violinplot
        #sns.violinplot(x="element", y="rerr", order=order, data=frame, ax=ax, orient="v")

        # Box plot
        ax = sns.boxplot(x="element", y="rerr", data=frame, ax=ax, order=order, whis=np.inf, color="c")
        # Add in points to show each observation
        sns.stripplot(x="element", y="rerr", data=frame, ax=ax, order=order,
                      jitter=True, size=5, color=".3", linewidth=0)

        sns.despine(left=True)
        ax.set_ylabel("Relative error %")
        ax.grid(True)
        return fig
Пример #3
0
    def select_bad_guys(self, reltol=0.4):
        new = self[abs(100 * (self["this"] - self["ae"]) / self["ae"]) > reltol].copy()
        new["rel_err"] = 100 * (self["this"] - self["ae"]) / self["ae"]
        new.__class__ = self.__class__
        count = Counter()
        for idx, row in new.iterrows():
            for symbol in set(species_from_formula(row.formula)):
                count[symbol] += 1

        return new, count
Пример #4
0
    def plot_errors_for_elements(self, ax=None, **kwargs):
        """
        Plot the relative errors associated to the chemical elements.
        """
        dict_list = []
        for idx, row in self.iterrows():
            rerr = 100 * (row["this"] - row["ae"]) / row["ae"]
            for symbol in set(species_from_formula(row.formula)):
                dict_list.append(dict(
                    element=symbol,
                    rerr=rerr,
                    formula=row.formula,
                    struct_type=row.struct_type,
                    ))

        frame = DataFrame(dict_list)
        order = sort_symbols_by_Z(set(frame["element"]))
        #print_frame(frame)

        import seaborn as sns
        ax, fig, plt = get_ax_fig_plt(ax=ax)

        # Draw violinplot
        #sns.violinplot(x="element", y="rerr", order=order, data=frame, ax=ax, orient="v")

        # Box plot
        ax = sns.boxplot(x="element", y="rerr", data=frame, ax=ax, order=order, whis=np.inf, color="c")
        # Add in points to show each observation
        sns.stripplot(x="element", y="rerr", data=frame, ax=ax, order=order, hue='struct_type',
        #              jitter=True, size=5, color=".3", linewidth=0)
                      jitter=0, size=4, color=".3", linewidth=0, palette=sns.color_palette("muted"))

        sns.despine(left=True)
        ax.set_ylabel("Relative error %")

        labels = ax.get_xticklabels()
        ticks = ax.get_xticks()
        ticks1 = range(min(ticks), max(ticks)+1, 2)
        ticks2 = range(min(ticks) + 1, max(ticks)+1, 2)
        labels1 = [labels[i].get_text() for i in ticks1]
        labels2 = [labels[i].get_text() for i in ticks2]

        #       ax.tick_params(which='both', direction='out')
        #ax.set_ylim(-1, 1)
        ax.set_xticks(ticks1)
        ax.set_xticklabels(labels1, rotation=90)
        ax2 = ax.twiny()
        ax2.set_zorder(-1)
        ax2.set_xticks(ticks2)
        ax2.set_xticklabels(labels2, rotation=90)
        ax2.set_xlim(ax.get_xlim())

        ax.grid(True)
        return fig
Пример #5
0
    def select_symbol(self, symbol):
        """
        Extract the rows whose formula contain the given element symbol.
        Return new `GbrvCompoundDataFrame`.
        """
        rows = []
        for idx, row in self.iterrows():
            if symbol not in species_from_formula(row.formula): continue
            rows.append(row)

        return self.__class__(rows)
Пример #6
0
    def select_symbol(self, symbol):
        """
        Extract the rows whose formula contain the given element symbol.
        Return new `GbrvCompoundDataFrame`.
        """
        rows = []
        for idx, row in self.iterrows():
            if symbol not in species_from_formula(row.formula): continue
            rows.append(row)

        return self.__class__(rows)
Пример #7
0
    def select_bad_guys(self, reltol=0.4, struct_type=None):
        """Return new frame with the entries whose relative errors is > reltol."""
        new = self[abs(100 * (self["this"] - self["ae"]) / self["ae"]) > reltol].copy()
        new["rel_err"] = 100 * (self["this"] - self["ae"]) / self["ae"]
        if struct_type is not None:
            new = new[new.struct_type == struct_type]

        new.__class__ = self.__class__
        count = Counter()
        for idx, row in new.iterrows():
            for symbol in set(species_from_formula(row.formula)):
                count[symbol] += 1
        new.symbol_counter = count

        return new
Пример #8
0
    def select_bad_guys(self, reltol=0.4, struct_type=None):
        """Return new frame with the entries whose relative errors is > reltol."""
        new = self[abs(100 * (self["this"] - self["ae"]) /
                       self["ae"]) > reltol].copy()
        new["rel_err"] = 100 * (self["this"] - self["ae"]) / self["ae"]
        if struct_type is not None:
            new = new[new.struct_type == struct_type]

        new.__class__ = self.__class__
        count = Counter()
        for idx, row in new.iterrows():
            for symbol in set(species_from_formula(row.formula)):
                count[symbol] += 1
        new.symbol_counter = count

        return new
Пример #9
0
    def find_jobs_torun(self, max_njobs):
        """
        Find entries whose results have not been yet calculated.

        Args:
            select_formulas:
        """
        jobs, got = [], 0
        for struct_type, formula, data in self.iter_struct_formula_data():
            if got == max_njobs: break
            if data in ("scheduled", "failed"): continue
            if data is None:
                symbols = list(set(species_from_formula(formula)))
                pseudos = self.table.pseudos_with_symbols(symbols)

                job = dict2namedtuple(formula=formula, struct_type=struct_type, pseudos=pseudos)
                self[struct_type][formula] = "scheduled"
                jobs.append(job)
                got += 1

        # Update the database.
        if jobs: self.json_write()
        return jobs
Пример #10
0
    def plot_errors_for_elements(self, ax=None, **kwargs):
        """
        Plot the relative errors associated to the chemical elements.
        """
        dict_list = []
        for idx, row in self.iterrows():
            rerr = 100 * (row["this"] - row["ae"]) / row["ae"]
            for symbol in set(species_from_formula(row.formula)):
                dict_list.append(
                    dict(
                        element=symbol,
                        rerr=rerr,
                        formula=row.formula,
                        struct_type=row.struct_type,
                    ))

        frame = DataFrame(dict_list)
        order = sort_symbols_by_Z(set(frame["element"]))
        #print_frame(frame)

        import seaborn as sns
        ax, fig, plt = get_ax_fig_plt(ax=ax)

        # Draw violinplot
        #sns.violinplot(x="element", y="rerr", order=order, data=frame, ax=ax, orient="v")

        # Box plot
        ax = sns.boxplot(x="element",
                         y="rerr",
                         data=frame,
                         ax=ax,
                         order=order,
                         whis=np.inf,
                         color="c")
        # Add in points to show each observation
        sns.stripplot(
            x="element",
            y="rerr",
            data=frame,
            ax=ax,
            order=order,
            hue='struct_type',
            #              jitter=True, size=5, color=".3", linewidth=0)
            jitter=0,
            size=4,
            color=".3",
            linewidth=0,
            palette=sns.color_palette("muted"))

        sns.despine(left=True)
        ax.set_ylabel("Relative error %")

        labels = ax.get_xticklabels()
        ticks = ax.get_xticks()
        ticks1 = range(min(ticks), max(ticks) + 1, 2)
        ticks2 = range(min(ticks) + 1, max(ticks) + 1, 2)
        labels1 = [labels[i].get_text() for i in ticks1]
        labels2 = [labels[i].get_text() for i in ticks2]

        #       ax.tick_params(which='both', direction='out')
        #ax.set_ylim(-1, 1)
        ax.set_xticks(ticks1)
        ax.set_xticklabels(labels1, rotation=90)
        ax2 = ax.twiny()
        ax2.set_zorder(-1)
        ax2.set_xticks(ticks2)
        ax2.set_xticklabels(labels2, rotation=90)
        ax2.set_xlim(ax.get_xlim())

        ax.grid(True)
        return fig
Пример #11
0
def gbrv_runform(options):
    """
    Run GBRV compound tests given a chemical formula.
    """
    # Extract chemical symbols from formula
    formula = options.formula
    symbols = set(species_from_formula(formula))

    # Init pseudo table and construct all possible combinations for the given formula.
    table = DojoTable.from_dir(top=options.pseudo_dir,
                               exts=("psp8", "xml"),
                               exclude_dirs="_*")
    pseudo_list = table.all_combinations_for_elements(symbols)

    #print("Removing relativistic pseudos from list")
    #pseudo_list = [plist for plist in pseudo_list if not any("_r" in p.basename for p in plist)]

    # This is hard-coded since we GBRV results are PBE-only.
    # There's a check between xc and pseudo.xc below.
    xc = "PBE"
    gbrv_factory = GbrvCompoundsFactory(xc=xc)
    db = gbrv_factory.db

    # Consistency check
    entry = db.match_symbols(symbols)
    if entry is None:
        cprint("Cannot find entry for %s! Returning" % str(symbols), "red")
        return 1

    workdir = "GBRVCOMP_" + formula
    print("Working in:", workdir)
    flow = GbrvCompoundsFlow(workdir=workdir)

    accuracy = "high"
    for pseudos in pseudo_list:
        if any(xc != p.xc for p in pseudos):
            raise ValueError("Pseudos with different XC functional")
        ecut = max(p.hint_for_accuracy(accuracy).ecut for p in pseudos)
        pawecutdg = max(
            p.hint_for_accuracy(accuracy).pawecutdg for p in pseudos)
        if ecut <= 0.0: raise RuntimeError("Pseudos do not have hints")
        #ecut = ecut_from_pseudos(pseudos, accuracy)
        print("Adding work for pseudos:", pseudos)
        print("    formula:", entry.symbol, ", structure:", entry.struct_type,
              ", ecut:", ecut)

        work = gbrv_factory.relax_and_eos_work(accuracy,
                                               pseudos,
                                               entry.symbol,
                                               entry.struct_type,
                                               ecut=ecut,
                                               pawecutdg=None)
        flow.register_work(work)

    if options.dry_run:
        flow.build_and_pickle_dump()
        return 0

    # Run the flow with the scheduler (enable smart_io)
    flow.use_smartio()
    return flow.make_scheduler().start()