Пример #1
0
 def new_vector(self, name=""):
     """Build a new object with shape symmetry like a trial vector """
     return [
         core.Matrix(name + 'a', self.occpi[0], self.virpi[0],
                     self.G_trans),
         core.Matrix(name + 'b', self.occpi[1], self.virpi[1], self.G_trans)
     ]
Пример #2
0
    def get_dot_product(self, i, j):
        key = frozenset([i, j])
        try:
            return self.cached_dot_products[key]
        except KeyError:
            if self.storage_policy == StoragePolicy.InCore:
                Ri = self.stored_vectors[i][0]
                Rj = self.stored_vectors[j][0]
                dot_product = sum(Rix.vector_dot(Rjx) for Rix, Rjx in zip(Ri, Rj))
            elif self.storage_policy == StoragePolicy.OnDisk:
                dot_product = 0
                psio = core.IO.shared_object()
                for x, entry_dims in enumerate(self.R_template):
                    if len(entry_dims) == 2:
                        Rix = core.Matrix(self.get_name("R", i, x), *entry_dims)
                        Rjx = core.Matrix(self.get_name("R", j, x), *entry_dims)
                        Rix.load(psio, psif.PSIF_LIBDIIS, core.SaveType.SubBlocks)
                        Rjx.load(psio, psif.PSIF_LIBDIIS, core.SaveType.SubBlocks)
                    elif len(entry_dims) == 1:
                        Rix = core.Vector(self.get_name("R", i, x), *entry_dims)
                        Rjx = core.Vector(self.get_name("R", j, x), *entry_dims)
                        Rix.load(psio, psif.PSIF_LIBDIIS)
                        Rjx.load(psio, psif.PSIF_LIBDIIS)
                    else:
                        raise Exception("R_template may only have 1 or 2 dimensions. This is a bug: contact developers.")
                    dot_product += Rix.vector_dot(Rjx)
            else:
                raise Exception(f"StoragePolicy {self.storage_policy} not recognized. This is a bug: contact developers.")

            self.cached_dot_products[key] = dot_product
            return dot_product
Пример #3
0
    def _init_stack_C(self, calc, oldcalc_m1, oldcalc_m2):
        assert oldcalc_m1.V == 'm1'
        assert oldcalc_m2.V == 'm2'
        # print('Stacking monomer wfns', calc, oldcalc_m1, oldcalc_m2)

        m1_C_fn = self._fmt_mo_fn(oldcalc_m1)
        m2_C_fn = self._fmt_mo_fn(oldcalc_m2)
        m1_wfn = core.Wavefunction.from_file(m1_C_fn)
        m2_wfn = core.Wavefunction.from_file(m2_C_fn)
        m1_Ca_occ = m1_wfn.Ca_subset('SO', 'OCC')
        m1_Cb_occ = m1_wfn.Cb_subset('SO', 'OCC')
        m2_Ca_occ = m2_wfn.Ca_subset('SO', 'OCC')
        m2_Cb_occ = m2_wfn.Cb_subset('SO', 'OCC')

        m1_nso, m1_nalpha = m1_Ca_occ.shape
        m2_nso, m2_nalpha = m2_Ca_occ.shape
        m1_nbeta = m1_Cb_occ.shape[1]
        m2_nbeta = m2_Cb_occ.shape[1]
        d_nalpha = m1_nalpha + m2_nalpha
        d_nbeta = m1_nbeta + m2_nbeta
        assert m1_nso == m2_nso

        Ca_d = core.Matrix('Ca', (m1_nso), (m1_nso))
        Cb_d = core.Matrix('Cb', (m1_nso), (m1_nso))

        Ca_d.np[:, :m1_nalpha] = m1_Ca_occ.np[:, :]
        Ca_d.np[:, m1_nalpha:d_nalpha] = m2_Ca_occ.np[:, :]

        Cb_d.np[:, :m1_nbeta] = m1_Cb_occ.np[:, :]
        Cb_d.np[:, m1_nalpha:d_nbeta:] = m2_Cb_occ.np[:, :]

        assert m1_wfn.molecule().schoenflies_symbol() == m2_wfn.molecule(
        ).schoenflies_symbol() == 'c1'
        assert m1_wfn.name() == m2_wfn.name()
        assert m1_wfn.basisset().name() == m2_wfn.basisset().name()
        assert m1_wfn.basisset().has_puream() == m2_wfn.basisset().has_puream()

        wfn_new = m1_wfn.to_file()

        wfn_new['dimension']['nalphapi'] = (m1_nalpha + m2_nalpha, )
        wfn_new['dimension']['nbetapi'] = (m1_nbeta + m2_nbeta, )
        wfn_new['dimension']['doccpi'] = (m1_wfn.doccpi().to_tuple()[0] +
                                          m2_wfn.doccpi().to_tuple()[0], )
        wfn_new['dimension']['soccpi'] = (m1_wfn.soccpi().to_tuple()[0] +
                                          m2_wfn.soccpi().to_tuple()[0], )
        wfn_new['matrix']['Ca'] = Ca_d
        wfn_new['matrix']['Cb'] = Cb_d

        wfn_new = core.Wavefunction.from_file(wfn_new)
        m1_C_fn = self._fmt_mo_fn(calc)
        wfn_new.to_file(m1_C_fn)

        core.set_local_option('SCF', 'GUESS', 'READ')
Пример #4
0
    def _init_stack_C(self, calc, oldcalc_m1, oldcalc_m2):
        assert oldcalc_m1.V == 'm1'
        assert oldcalc_m2.V == 'm2'
        # print('Stacking monomer wfns', calc, oldcalc_m1, oldcalc_m2)

        m1_C_fn = self._fmt_mo_fn(oldcalc_m1)
        m2_C_fn = self._fmt_mo_fn(oldcalc_m2)
        m1_data = np.load(m1_C_fn)
        m2_data = np.load(m2_C_fn)
        m1_Ca_occ = core.Matrix.np_read(m1_data, "Ca_occ")
        m1_Cb_occ = core.Matrix.np_read(m1_data, "Cb_occ")
        m2_Ca_occ = core.Matrix.np_read(m2_data, "Ca_occ")
        m2_Cb_occ = core.Matrix.np_read(m2_data, "Cb_occ")

        m1_nso, m1_nalpha = m1_Ca_occ.shape
        m2_nso, m2_nalpha = m2_Ca_occ.shape
        m1_nbeta = m1_Cb_occ.shape[1]
        m2_nbeta = m2_Cb_occ.shape[1]
        assert m1_nso == m2_nso

        d_Ca_occ = core.Matrix('Ca_occ', (m1_nso), (m1_nalpha + m2_nalpha))
        d_Cb_occ = core.Matrix('Cb_occ', (m1_nso), (m1_nbeta + m2_nbeta))

        d_Ca_occ.np[:, :m1_nalpha] = m1_Ca_occ.np[:, :]
        d_Ca_occ.np[:, -m2_nalpha:] = m2_Ca_occ.np[:, :]

        d_Cb_occ.np[:, :m1_nbeta] = m1_Cb_occ.np[:, :]
        d_Cb_occ.np[:, -m2_nbeta:] = m2_Cb_occ.np[:, :]

        assert m1_data['symmetry'] == m2_data['symmetry'] == 'c1'
        assert m1_data['reference'] == m2_data['reference']
        assert m1_data['BasisSet'] == m2_data['BasisSet']
        assert m1_data['BasisSet PUREAM'] == m2_data['BasisSet PUREAM']

        data = {
            'symmetry': m1_data['symmetry'],
            'reference': m1_data['reference'],
            'ndoccpi': m1_data['ndoccpi'] + m2_data['ndoccpi'],
            'nsoccpi': m1_data['nsoccpi'] + m2_data['nsoccpi'],
            'nalphapi': m1_data['nalphapi'] + m2_data['nalphapi'],
            'nbetapi': m1_data['nbetapi'] + m2_data['nbetapi'],
            'BasisSet': m1_data['BasisSet'],
            'BasisSet PUREAM': m1_data['BasisSet PUREAM'],
        }

        data.update(d_Ca_occ.np_write(prefix='Ca_occ'))
        data.update(d_Cb_occ.np_write(prefix='Cb_occ'))
        m1_C_fn = self._fmt_mo_fn(calc)
        np.savez(m1_C_fn, **data)

        core.set_local_option('SCF', 'GUESS', 'READ')
Пример #5
0
    def load_quantity(self, name, entry_num, item_num, force_new=True):
        """ Load quantity from wherever it's stored, constructing a new object if needed. """
        template_object = self.template[name][item_num]
        if isinstance(template_object,
                      float) or self.storage_policy == StoragePolicy.InCore:
            quantity = self.stored_vectors[entry_num][name][item_num]
            try:
                quantity = quantity.clone()
            except AttributeError:
                # The quantity must have been a float. No need to clone.
                pass
        elif self.storage_policy == StoragePolicy.OnDisk:
            entry_dims = template_object
            full_name = self.get_name(name, entry_num, item_num)
            psio = core.IO.shared_object()
            if len(entry_dims) == 2:
                quantity = core.Matrix(full_name, *entry_dims)
                quantity.load(psio, psif.PSIF_LIBDIIS, core.SaveType.SubBlocks)
            elif len(entry_dims) == 1:
                quantity = core.Vector(full_name, *entry_dims)
                quantity.load(psio, psif.PSIF_LIBDIIS)
        else:
            raise Exception(
                f"StoragePolicy {self.storage_policy} not recognized. This is a bug: contact developers."
            )

        return quantity
Пример #6
0
def _np_read(self, filename, prefix=""):

    if isinstance(filename, np.lib.npyio.NpzFile):
        data = filename
    elif isinstance(filename, (str, unicode)):
        if not filename.endswith('.npz'):
            filename = filename + '.npz'

        data = np.load(filename)
    else:
        raise Exception("Filename not understood: %s" % filename)

    ret_data = []

    if ((prefix + "Irreps") not in data.keys()) or ((prefix + "Name")
                                                    not in data.keys()):
        raise KeyError("File %s does not appear to be a numpyz save" %
                       filename)

    for h in range(data[prefix + "Irreps"]):
        ret_data.append(data[prefix + "IrrepData" + str(h)])

    arr_type = self.__mro__[0]
    if arr_type == core.Matrix:
        dim1 = core.Dimension.from_list(data[prefix + "Dim1"])
        dim2 = core.Dimension.from_list(data[prefix + "Dim2"])
        ret = core.Matrix(str(data[prefix + "Name"]), dim1, dim2)
    elif arr_type == core.Vector:
        dim1 = core.Dimension.from_list(data[prefix + "Dim"])
        ret = core.Vector(str(data[prefix + "Name"]), dim1)

    for h in range(data[prefix + "Irreps"]):
        ret.nph[h][:] = ret_data[h]

    return ret
Пример #7
0
    def load_quantity(self, name, entry_num, item_num, force_new = True):
        """ Load quantity from wherever it's stored, constructing a new object if needed. """
        template_object = self.template[name][item_num]
        if isinstance(template_object, float) or self.storage_policy == StoragePolicy.InCore:
            quantity = self.stored_vectors[entry_num][name][item_num]
            try:
                quantity = quantity.clone()
            except AttributeError:
                # The quantity must have been a float. No need to clone.
                pass
        elif self.storage_policy == StoragePolicy.OnDisk:
            full_name = self.get_name(name, entry_num, item_num)
            psio = core.IO.shared_object()
            if hasattr(template_object, "__len__"):
                # Looks like we have dimensions.
                if len(template_object) == 2:
                    quantity = core.Matrix(full_name, *template_object)
                    quantity.load(psio, psif.PSIF_LIBDIIS, core.SaveType.SubBlocks)
                elif len(template_object) == 1:
                    quantity = core.Vector(full_name, *template_object)
                    quantity.load(psio, psif.PSIF_LIBDIIS)
            elif which_import("ambit", return_bool=True):
                import ambit
                if template_object == ambit.BlockedTensor:
                    quantity = ambit.BlockedTensor.load_and_build(f"libdiis.{full_name}")
        else:
            raise Exception(f"StoragePolicy {self.storage_policy} not recognized. This is a bug: contact developers.")

        return quantity
Пример #8
0
    def copier(self, x, new_name: str):
        """ Copy the object x and give it a new_name. Save it to disk if needed. """
        if isinstance(x, (core.Matrix, core.Vector)):
            copy = x.clone()
        elif isinstance(x, (core.dpdbuf4, core.dpdfile2)):
            copy = core.Matrix(x)
        elif isinstance(x, float):
            # Never cache a _number_.
            return x
        elif which_import("ambit", return_bool=True):
            import ambit
            if isinstance(x, ambit.BlockedTensor):
                copy = x.clone()
            else:
                raise TypeError("Unrecognized object type for DIIS.")
        else:
            raise TypeError("Unrecognized object type for DIIS.")
        copy.name = new_name

        if self.storage_policy == StoragePolicy.OnDisk:
            psio = core.IO.shared_object()
            if isinstance(copy, core.Vector):
                copy.save(psio, psif.PSIF_LIBDIIS)
            elif isinstance(copy, core.Matrix):
                copy.save(psio, psif.PSIF_LIBDIIS, core.SaveType.SubBlocks)
            elif isinstance(copy, ambit.BlockedTensor):
                filename = f"libdiis.{copy.name}"
                copy.save(filename)
                self.created_files.add(filename)
            else:
                raise TypeError("Unrecognized object type for DIIS. This shouldn't be possible.")
            copy = None

        return copy
Пример #9
0
    def extrapolate(self):
        # Limit size of DIIS vector
        diis_count = len(self.vector)

        if diis_count == 0:
            raise Exception("DIIS: No previous vectors.")
        if diis_count == 1:
            return self.vector[0]

        if diis_count > self.max_vec:
            # Remove oldest vector
            del self.vector[0]
            del self.error[0]
            diis_count -= 1

        # Build error matrix B
        B = np.empty((diis_count + 1, diis_count + 1))
        B[-1, :] = 1
        B[:, -1] = 1
        B[-1, -1] = 0
        for num1, e1 in enumerate(self.error):
            B[num1, num1] = e1.vector_dot(e1)
            for num2, e2 in enumerate(self.error):
                if num2 >= num1: continue
                val = e1.vector_dot(e2)
                B[num1, num2] = B[num2, num1] = val

        # Build residual vector
        resid = np.zeros(diis_count + 1)
        resid[-1] = 1

        # Solve pulay equations

        # Yea, yea this is unstable make it stable
        iszero = np.any(np.diag(B)[:-1] <= 0.0)
        if iszero:
            S = np.ones((diis_count + 1))
        else:
            S = np.ones((diis_count + 1))
            S[:-1] = np.diag(B)[:-1]
            S = S**-0.5
            S[-1] = 1

        # Then we gotta do a custom inverse
        B *= S[:, None] * S

        invB = core.Matrix.from_array(B)
        invB.power(-1.0, 1.e-12)

        ci = np.dot(invB, resid) * S

        # combination of previous fock matrices
        V = core.Matrix("DIIS result", self.vector[0].rowdim(),
                        self.vector[1].coldim())
        for num, c in enumerate(ci[:-1]):
            V.axpy(c, self.vector[num])

        return V
Пример #10
0
    def _init_addghost_C(self, oldcalc, calc):
        # print('Adding ghost %s->%s' % (oldcalc, calc))

        old_filename = self._fmt_mo_fn(oldcalc)
        data = np.load(old_filename)
        Ca_occ = core.Matrix.np_read(data, "Ca_occ")
        Cb_occ = core.Matrix.np_read(data, "Cb_occ")

        m1_nso = self.wfn_cache[('m1', 'm', oldcalc.Z)].nso()
        m2_nso = self.wfn_cache[('m2', 'm', oldcalc.Z)].nso()
        m1_nalpha = self.wfn_cache[('m1', 'm', oldcalc.Z)].nalpha()
        m2_nalpha = self.wfn_cache[('m2', 'm', oldcalc.Z)].nalpha()
        m1_nbeta = self.wfn_cache[('m1', 'm', oldcalc.Z)].nbeta()
        m2_nbeta = self.wfn_cache[('m2', 'm', oldcalc.Z)].nbeta()

        if calc.V == 'm1':
            Ca_occ_d = core.Matrix('Ca_occ', (m1_nso + m2_nso), m1_nalpha)
            Ca_occ_d.np[:m1_nso, :] = Ca_occ.np[:, :]
            Cb_occ_d = core.Matrix('Cb_occ', (m1_nso + m2_nso), m1_nbeta)
            Cb_occ_d.np[:m1_nso, :] = Cb_occ.np[:, :]
        elif calc.V == 'm2':
            Ca_occ_d = core.Matrix('Ca_occ', (m1_nso + m2_nso), m2_nalpha)
            Ca_occ_d.np[-m2_nso:, :] = Ca_occ.np[:, :]

            Cb_occ_d = core.Matrix('Cb_occ', (m1_nso + m2_nso), m2_nbeta)
            Cb_occ_d.np[-m2_nso:, :] = Cb_occ.np[:, :]

        data_dict = dict(data)
        data_dict.update(Ca_occ_d.np_write(prefix='Ca_occ'))
        data_dict.update(Cb_occ_d.np_write(prefix='Cb_occ'))

        psi_scratch = core.IOManager.shared_object().get_default_path()
        write_filename = os.path.join(
            psi_scratch,
            os.path.split(
                os.path.abspath(core.get_writer_file_prefix(
                    self.fmt_ns(calc))))[1] + ".180.npz")
        np.savez(write_filename, **data_dict)
        extras.register_numpy_file(write_filename)
        core.set_local_option('SCF', 'GUESS', 'READ')
Пример #11
0
def orthogonalize(C, S):
    nbf, nocc = C.shape

    eigenvectors = core.Matrix(nocc, nocc)
    eigvals = core.Vector(nocc)
    sqrt_eigvals = core.Vector(nocc)

    CTSC = core.Matrix.triplet(C, S, C, True, False, False)
    CTSC.diagonalize(eigenvectors, eigvals, core.DiagonalizeOrder.Ascending)

    orthonormal = core.Matrix.doublet(C, eigenvectors, False, False)

    sqrt_eigvals.np[:] = np.sqrt(eigvals.np)
    orthonormal.np[:, :] /= sqrt_eigvals.np[np.newaxis, :]

    return orthonormal
Пример #12
0
    def extrapolate(self, *args):

        dim = len(self.stored_vectors) + 1
        B = np.zeros((dim, dim))
        for i in range(len(self.stored_vectors)):
            for j in range(len(self.stored_vectors)):
                B[i, j] = self.get_dot_product(i, j)
        B[-1, :-1] = B[:-1, -1] = -1

        rhs = np.zeros((dim))
        rhs[-1] = -1

        # Trick to improve numerical conditioning.
        # Instead of solving B c = r, we solve D B D^-1 D c = D r, using
        # D r = r. D is the diagonals ^ -1/2 matrix.
        # This improves the conditioning of the problem.
        diagonals = B.diagonal().copy()
        diagonals[-1] = 1
        if np.all(diagonals > 0):
            diagonals = diagonals ** (- 0.5)
            B = np.einsum("i,ij,j -> ij", diagonals, B, diagonals)
            coeffs = np.linalg.lstsq(B, rhs, rcond=None)[0][:-1] * diagonals[:-1]
        else:
            coeffs = np.linalg.lstsq(B, rhs, rcond=None)[0][:-1]

        for j, Tj in enumerate(args):
            Tj.zero()
            if self.storage_policy == StoragePolicy.InCore:
                for ci, (_, Ti) in zip(coeffs, self.stored_vectors):
                    axpy(Tj, ci, Ti[j])
            elif self.storage_policy == StoragePolicy.OnDisk:
                for i, ci in enumerate(coeffs):
                    psio = core.IO.shared_object()
                    if isinstance(Tj, core.Vector):
                        Tij = core.Vector(self.get_name("T", i, j), *self.T_template[j])
                        Tij.load(psio, psif.PSIF_LIBDIIS)
                    elif isinstance(Tj, (core.Matrix, core.dpdfile2, core.dpdbuf4)):
                        Tij = core.Matrix(self.get_name("T", i, j), *self.T_template[j])
                        Tij.load(psio, psif.PSIF_LIBDIIS, core.SaveType.SubBlocks)
                    else:
                        raise TypeError("Unrecognized object type for DIIS.")
                    axpy(Tj, ci, Tij)
            else:
                raise Exception(f"StoragePolicy {self.storage_policy} not recognized. This is a bug: contact developers.")

        return True
Пример #13
0
def _compute_fxc(PQrho, half_Saux, halfp_Saux, rho_thresh=1.e-8):
    """
    Computes the gridless (P|fxc|Q) ALDA tensor.
    """

    naux = PQrho.shape[0]

    # Level it out
    PQrho_lvl = core.Matrix.triplet(half_Saux, PQrho, half_Saux, False, False,
                                    False)

    # Rotate into a diagonal basis
    rho = core.Vector("rho eigenvalues", naux)
    U = core.Matrix("rho eigenvectors", naux, naux)
    PQrho_lvl.diagonalize(U, rho, core.DiagonalizeOrder.Ascending)

    # "Gridless DFT"
    mask = rho.np < rho_thresh  # Values too small cause singularities
    rho.np[mask] = rho_thresh

    dft_size = rho.shape[0]

    inp = {"RHO_A": rho}
    out = {
        "V": core.Vector(dft_size),
        "V_RHO_A": core.Vector(dft_size),
        "V_RHO_A_RHO_A": core.Vector(dft_size)
    }

    func_x = core.LibXCFunctional('XC_LDA_X', True)
    func_x.compute_functional(inp, out, dft_size, 2)

    func_c = core.LibXCFunctional('XC_LDA_C_VWN', True)
    func_c.compute_functional(inp, out, dft_size, 2)

    out["V_RHO_A_RHO_A"].np[mask] = 0

    # Rotate back
    Ul = U.clone()
    Ul.np[:] *= out["V_RHO_A_RHO_A"].np
    tmp = core.Matrix.doublet(Ul, U, False, True)

    # Undo the leveling
    return core.Matrix.triplet(halfp_Saux, tmp, halfp_Saux, False, False,
                               False)
Пример #14
0
    def copier(self, x, new_name):
        if isinstance(x, (core.Matrix, core.Vector)):
            copy = x.clone()
        elif isinstance(x, (core.dpdbuf4, core.dpdfile2)):
            copy = core.Matrix(x)
        else:
            raise TypeError("Unrecognized object type for DIIS.")

        copy.name = new_name

        if self.storage_policy == StoragePolicy.OnDisk:
            psio = core.IO.shared_object()
            if isinstance(x, core.Vector):
                copy.save(psio, psif.PSIF_LIBDIIS)
            else:
                copy.save(psio, psif.PSIF_LIBDIIS, core.SaveType.SubBlocks)
            copy = None

        return copy
Пример #15
0
    def __call__(self, mol1_wfn, mol2_wfn):
        nbf = self.p.dimer_basis.nbf()
        nocc = mol1_wfn.nalpha() + mol2_wfn.nalpha()

        # Take the occupied orbitals from the two HF monomer wavefunctions
        # and pack them (block diagonal) into the dimer basis set.
        m1_OCC = mol1_wfn.Ca_subset('SO', 'OCC')
        m2_OCC = mol2_wfn.Ca_subset('SO', 'OCC')

        C = core.Matrix(nbf, nocc)
        C.np[:mol1_wfn.nso(), :mol1_wfn.nalpha()] = m1_OCC.np[:, :]
        C.np[-mol2_wfn.nso():, -mol2_wfn.nalpha():] = m2_OCC.np[:, :]

        C = orthogonalize(C, self.p.dimer_S)

        # At this point, it should be the case that
        # C.T * S * C == I
        np.testing.assert_array_almost_equal(
            core.Matrix.triplet(C, self.p.dimer_S, C, True, False, False),
            np.eye(nocc))

        self.jk.C_clear()
        self.jk.C_left_add(C)
        self.jk.compute()

        J = self.jk.J()[0]
        K = self.jk.K()[0]
        D = self.jk.D()[0]

        # 2T + 2V + 2J - K

        FH = J.clone()
        FH.zero()
        FH.axpy(2, self.p.dimer_T)
        FH.axpy(2, self.p.dimer_V)
        FH.axpy(2, J)
        FH.axpy(-1, K)

        energy = FH.vector_dot(
            D) + self.p.dimer_basis.molecule().nuclear_repulsion_energy()
        hl = energy - (mol1_wfn.energy() + mol2_wfn.energy())
        return hl
Пример #16
0
    def copier(self, x, new_name: str):
        """ Copy the object x and give it a new_name. Save it to disk if needed. """
        if isinstance(x, (core.Matrix, core.Vector)):
            copy = x.clone()
        elif isinstance(x, (core.dpdbuf4, core.dpdfile2)):
            copy = core.Matrix(x)
        elif isinstance(x, float):
            # Never cache a _number_.
            return x
        else:
            raise TypeError("Unrecognized object type for DIIS.")
        copy.name = new_name

        if self.storage_policy == StoragePolicy.OnDisk:
            psio = core.IO.shared_object()
            if isinstance(x, core.Vector):
                copy.save(psio, psif.PSIF_LIBDIIS)
            else:
                copy.save(psio, psif.PSIF_LIBDIIS, core.SaveType.SubBlocks)
            copy = None

        return copy
Пример #17
0
def fcidump(wfn, fname='INTDUMP', oe_ints=None):
    """Save integrals to file in FCIDUMP format as defined in Comp. Phys. Commun. 54 75 (1989)
    Additional one-electron integrals, including orbital energies, can also be saved.
    This latter format can be used with the HANDE QMC code but is not standard.

    :returns: None

    :raises: ValidationError when SCF wavefunction is not RHF

    :type wfn: :py:class:`~psi4.core.Wavefunction`

    :param wfn: set of molecule, basis, orbitals from which to generate cube files
    :param fname: name of the integrals file, defaults to INTDUMP
    :param oe_ints: list of additional one-electron integrals to save to file. So far only EIGENVALUES is a valid option.

    :examples:

    >>> # [1] Save one- and two-electron integrals to standard FCIDUMP format
    >>> E, wfn = energy('scf', return_wfn=True)
    >>> fcidump(wfn)

    >>> # [2] Save orbital energies, one- and two-electron integrals.
    >>> E, wfn = energy('scf', return_wfn=True)
    >>> fcidump(wfn, oe_ints=['EIGENVALUES'])

    """
    # Get some options
    reference = core.get_option('SCF', 'REFERENCE')
    ints_tolerance = core.get_global_option('INTS_TOLERANCE')
    # Some sanity checks
    if reference not in ['RHF', 'UHF']:
        raise ValidationError(
            'FCIDUMP not implemented for {} references\n'.format(reference))
    if oe_ints is None:
        oe_ints = []

    molecule = wfn.molecule()
    docc = wfn.doccpi()
    frzcpi = wfn.frzcpi()
    frzvpi = wfn.frzvpi()
    active_docc = docc - frzcpi
    active_socc = wfn.soccpi()
    active_mopi = wfn.nmopi() - frzcpi - frzvpi

    nbf = active_mopi.sum() if wfn.same_a_b_orbs() else 2 * active_mopi.sum()
    nirrep = wfn.nirrep()
    nelectron = 2 * active_docc.sum() + active_socc.sum()
    irrep_map = _irrep_map(wfn)

    wfn_irrep = 0
    for h, n_socc in enumerate(active_socc):
        if n_socc % 2 == 1:
            wfn_irrep ^= h

    core.print_out('Writing integrals in FCIDUMP format to ' + fname + '\n')
    # Generate FCIDUMP header
    header = '&FCI\n'
    header += 'NORB={:d},\n'.format(nbf)
    header += 'NELEC={:d},\n'.format(nelectron)
    header += 'MS2={:d},\n'.format(wfn.nalpha() - wfn.nbeta())
    header += 'UHF=.{}.,\n'.format(not wfn.same_a_b_orbs()).upper()
    orbsym = ''
    for h in range(active_mopi.n()):
        for n in range(frzcpi[h], frzcpi[h] + active_mopi[h]):
            orbsym += '{:d},'.format(irrep_map[h])
            if not wfn.same_a_b_orbs():
                orbsym += '{:d},'.format(irrep_map[h])
    header += 'ORBSYM={}\n'.format(orbsym)
    header += 'ISYM={:d},\n'.format(irrep_map[wfn_irrep])
    header += '&END\n'
    with open(fname, 'w') as intdump:
        intdump.write(header)

    # Get an IntegralTransform object
    check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), wfn)
    spaces = [core.MOSpace.all()]
    trans_type = core.IntegralTransform.TransformationType.Restricted
    if not wfn.same_a_b_orbs():
        trans_type = core.IntegralTransform.TransformationType.Unrestricted
    ints = core.IntegralTransform(wfn, spaces, trans_type)
    ints.transform_tei(core.MOSpace.all(), core.MOSpace.all(),
                       core.MOSpace.all(), core.MOSpace.all())
    core.print_out('Integral transformation complete!\n')

    DPD_info = {
        'instance_id': ints.get_dpd_id(),
        'alpha_MO': ints.DPD_ID('[A>=A]+'),
        'beta_MO': 0
    }
    if not wfn.same_a_b_orbs():
        DPD_info['beta_MO'] = ints.DPD_ID("[a>=a]+")
    # Write TEI to fname in FCIDUMP format
    core.fcidump_tei_helper(nirrep, wfn.same_a_b_orbs(), DPD_info,
                            ints_tolerance, fname)

    # Read-in OEI and write them to fname in FCIDUMP format
    # Indexing functions to translate from zero-based (C and Python) to
    # one-based (Fortran)
    mo_idx = lambda x: x + 1
    alpha_mo_idx = lambda x: 2 * x + 1
    beta_mo_idx = lambda x: 2 * (x + 1)

    with open(fname, 'a') as intdump:
        core.print_out('Writing frozen core operator in FCIDUMP format to ' +
                       fname + '\n')
        if reference == 'RHF':
            PSIF_MO_FZC = 'MO-basis Frozen-Core Operator'
            moH = core.Matrix(PSIF_MO_FZC, wfn.nmopi(), wfn.nmopi())
            moH.load(core.IO.shared_object(), psif.PSIF_OEI)
            mo_slice = core.Slice(frzcpi, active_mopi)
            MO_FZC = moH.get_block(mo_slice, mo_slice)
            offset = 0
            for h, block in enumerate(MO_FZC.nph):
                il = np.tril_indices(block.shape[0])
                for index, x in np.ndenumerate(block[il]):
                    row = mo_idx(il[0][index] + offset)
                    col = mo_idx(il[1][index] + offset)
                    if (abs(x) > ints_tolerance):
                        intdump.write('{:29.20E}{:4d}{:4d}{:4d}{:4d}\n'.format(
                            x, row, col, 0, 0))
                offset += block.shape[0]
            # Additional one-electron integrals as requested in oe_ints
            # Orbital energies
            core.print_out('Writing orbital energies in FCIDUMP format to ' +
                           fname + '\n')
            if 'EIGENVALUES' in oe_ints:
                eigs_dump = write_eigenvalues(
                    wfn.epsilon_a().get_block(mo_slice).to_array(), mo_idx)
                intdump.write(eigs_dump)
        else:
            PSIF_MO_A_FZC = 'MO-basis Alpha Frozen-Core Oper'
            moH_A = core.Matrix(PSIF_MO_A_FZC, wfn.nmopi(), wfn.nmopi())
            moH_A.load(core.IO.shared_object(), psif.PSIF_OEI)
            mo_slice = core.Slice(frzcpi, active_mopi)
            MO_FZC_A = moH_A.get_block(mo_slice, mo_slice)
            offset = 0
            for h, block in enumerate(MO_FZC_A.nph):
                il = np.tril_indices(block.shape[0])
                for index, x in np.ndenumerate(block[il]):
                    row = alpha_mo_idx(il[0][index] + offset)
                    col = alpha_mo_idx(il[1][index] + offset)
                    if (abs(x) > ints_tolerance):
                        intdump.write('{:29.20E}{:4d}{:4d}{:4d}{:4d}\n'.format(
                            x, row, col, 0, 0))
                offset += block.shape[0]
            PSIF_MO_B_FZC = 'MO-basis Beta Frozen-Core Oper'
            moH_B = core.Matrix(PSIF_MO_B_FZC, wfn.nmopi(), wfn.nmopi())
            moH_B.load(core.IO.shared_object(), psif.PSIF_OEI)
            mo_slice = core.Slice(frzcpi, active_mopi)
            MO_FZC_B = moH_B.get_block(mo_slice, mo_slice)
            offset = 0
            for h, block in enumerate(MO_FZC_B.nph):
                il = np.tril_indices(block.shape[0])
                for index, x in np.ndenumerate(block[il]):
                    row = beta_mo_idx(il[0][index] + offset)
                    col = beta_mo_idx(il[1][index] + offset)
                    if (abs(x) > ints_tolerance):
                        intdump.write('{:29.20E}{:4d}{:4d}{:4d}{:4d}\n'.format(
                            x, row, col, 0, 0))
                offset += block.shape[0]
            # Additional one-electron integrals as requested in oe_ints
            # Orbital energies
            core.print_out('Writing orbital energies in FCIDUMP format to ' +
                           fname + '\n')
            if 'EIGENVALUES' in oe_ints:
                alpha_eigs_dump = write_eigenvalues(
                    wfn.epsilon_a().get_block(mo_slice).to_array(),
                    alpha_mo_idx)
                beta_eigs_dump = write_eigenvalues(
                    wfn.epsilon_b().get_block(mo_slice).to_array(),
                    beta_mo_idx)
                intdump.write(alpha_eigs_dump + beta_eigs_dump)
        # Dipole integrals
        #core.print_out('Writing dipole moment OEI in FCIDUMP format to ' + fname + '\n')
        # Traceless quadrupole integrals
        #core.print_out('Writing traceless quadrupole moment OEI in FCIDUMP format to ' + fname + '\n')
        # Frozen core + nuclear repulsion energy
        core.print_out(
            'Writing frozen core + nuclear repulsion energy in FCIDUMP format to '
            + fname + '\n')
        e_fzc = ints.get_frozen_core_energy()
        e_nuc = molecule.nuclear_repulsion_energy(
            wfn.get_dipole_field_strength())
        intdump.write('{:29.20E}{:4d}{:4d}{:4d}{:4d}\n'.format(
            e_fzc + e_nuc, 0, 0, 0, 0))
    core.print_out(
        'Done generating {} with integrals in FCIDUMP format.\n'.format(fname))
Пример #18
0
    def extrapolate(self, out=None):
        """
        Extrapolates next state vector from the current set of state and error vectors.

        Parameters
        ----------
        out : :py:class:`~psi4.core.Matrix`, optional
            A array in which to place the next state vector.

        Returns
        -------
        ret : :py:class:`~psi4.core.Matrix`
            Returns the next state vector.

        """

        # Limit size of DIIS vector
        diis_count = len(self.state)

        if diis_count == 0:
            raise ValidationError("DIIS: No previous vectors.")
        if diis_count == 1:
            return self.state[0]

        if diis_count > self.max_vec:

            if self.removal_policy == "OLDEST":
                pos = 0
            else:
                pos = np.argmax([x.rms() for x in self.error])

            del self.state[pos]
            del self.error[pos]
            diis_count -= 1

        # Build error matrix B
        B = np.empty((diis_count + 1, diis_count + 1))
        B[-1, :] = 1
        B[:, -1] = 1
        B[-1, -1] = 0
        for num1, e1 in enumerate(self.error):
            B[num1, num1] = e1.vector_dot(e1)
            for num2, e2 in enumerate(self.error):
                if num2 >= num1:
                    continue
                val = e1.vector_dot(e2)
                B[num1, num2] = B[num2, num1] = val

        # Build residual vector
        resid = np.zeros(diis_count + 1)
        resid[-1] = 1

        # Solve pulay equations

        # Yea, yea this is unstable make it stable
        iszero = np.any(np.diag(B)[:-1] <= 0.0)
        if iszero:
            S = np.ones((diis_count + 1))
        else:
            S = np.diag(B).copy()
            S[:-1] **= -0.5
            S[-1] = 1

        # Then we gotta do a custom inverse
        B *= S[:, None] * S
        invB = core.Matrix.from_array(B)
        invB.power(-1.0, 1.e-12)

        ci = np.dot(invB, resid)
        ci *= S

        # combination of previous fock matrices
        if out is None:
            out = core.Matrix("DIIS result", self.state[0].rowdim(), self.state[1].coldim())
        else:
            out.zero()

        for num, c in enumerate(ci[:-1]):
            out.axpy(c, self.state[num])

        return out
Пример #19
0
def run_gcp(self,
            func=None,
            dertype=None,
            verbose=False):  # dashlvl=None, dashparam=None
    """Function to call Grimme's dftd3 program (http://toc.uni-muenster.de/DFTD3/)
    to compute the -D correction of level *dashlvl* using parameters for
    the functional *func*. The dictionary *dashparam* can be used to supply
    a full set of dispersion parameters in the absense of *func* or to supply
    individual overrides in the presence of *func*. Returns energy if *dertype* is 0,
    gradient if *dertype* is 1, else tuple of energy and gradient if *dertype*
    unspecified. The dftd3 executable must be independently compiled and found in
    :envvar:`PATH` or :envvar:`PSIPATH`.
    *self* may be either a qcdb.Molecule (sensibly) or a psi4.Molecule
    (works b/c psi4.Molecule has been extended by this method py-side and
    only public interface fns used) or a string that can be instantiated
    into a qcdb.Molecule.

    """
    # Create (if necessary) and update qcdb.Molecule
    if isinstance(self, Molecule):
        # called on a qcdb.Molecule
        pass
    elif isinstance(self, core.Molecule):
        # called on a python export of a psi4.core.Molecule (py-side through Psi4's driver)
        self.create_psi4_string_from_molecule()
    elif isinstance(self, basestring):
        # called on a string representation of a psi4.Molecule (c-side through psi4.Dispersion)
        self = Molecule(self)
    else:
        raise ValidationError(
            """Argument mol must be psi4string or qcdb.Molecule""")
    self.update_geometry()

    #    # Validate arguments
    #    dashlvl = dashlvl.lower()
    #    dashlvl = dash_alias['-' + dashlvl][1:] if ('-' + dashlvl) in dash_alias.keys() else dashlvl
    #    if dashlvl not in dashcoeff.keys():
    #        raise ValidationError("""-D correction level %s is not available. Choose among %s.""" % (dashlvl, dashcoeff.keys()))

    if dertype is None:
        dertype = -1
    elif der0th.match(str(dertype)):
        dertype = 0
    elif der1st.match(str(dertype)):
        dertype = 1
#    elif der2nd.match(str(dertype)):
#        raise ValidationError('Requested derivative level \'dertype\' %s not valid for run_dftd3.' % (dertype))
    else:
        raise ValidationError(
            'Requested derivative level \'dertype\' %s not valid for run_dftd3.'
            % (dertype))

#    if func is None:
#        if dashparam is None:
#            # defunct case
#            raise ValidationError("""Parameters for -D correction missing. Provide a func or a dashparam kwarg.""")
#        else:
#            # case where all param read from dashparam dict (which must have all correct keys)
#            func = 'custom'
#            dashcoeff[dashlvl][func] = {}
#            dashparam = dict((k.lower(), v) for k, v in dashparam.iteritems())
#            for key in dashcoeff[dashlvl]['b3lyp'].keys():
#                if key in dashparam.keys():
#                    dashcoeff[dashlvl][func][key] = dashparam[key]
#                else:
#                    raise ValidationError("""Parameter %s is missing from dashparam dict %s.""" % (key, dashparam))
#    else:
#        func = func.lower()
#        if func not in dashcoeff[dashlvl].keys():
#            raise ValidationError("""Functional %s is not available for -D level %s.""" % (func, dashlvl))
#        if dashparam is None:
#            # (normal) case where all param taken from dashcoeff above
#            pass
#        else:
#            # case where items in dashparam dict can override param taken from dashcoeff above
#            dashparam = dict((k.lower(), v) for k, v in dashparam.iteritems())
#            for key in dashcoeff[dashlvl]['b3lyp'].keys():
#                if key in dashparam.keys():
#                    dashcoeff[dashlvl][func][key] = dashparam[key]

# TODO temp until figure out paramfile
    allowed_funcs = [
        'HF/MINIS',
        'DFT/MINIS',
        'HF/MINIX',
        'DFT/MINIX',
        'HF/SV',
        'DFT/SV',
        'HF/def2-SV(P)',
        'DFT/def2-SV(P)',
        'HF/def2-SVP',
        'DFT/def2-SVP',
        'HF/DZP',
        'DFT/DZP',
        'HF/def-TZVP',
        'DFT/def-TZVP',
        'HF/def2-TZVP',
        'DFT/def2-TZVP',
        'HF/631Gd',
        'DFT/631Gd',
        'HF/def2-TZVP',
        'DFT/def2-TZVP',
        'HF/cc-pVDZ',
        'DFT/cc-pVDZ',
        'HF/aug-cc-pVDZ',
        'DFT/aug-cc-pVDZ',
        'DFT/SV(P/h,c)',
        'DFT/LANL',
        'DFT/pobTZVP',
        'TPSS/def2-SVP',
        'PW6B95/def2-SVP',
        # specials
        'hf3c',
        'pbeh3c'
    ]
    allowed_funcs = [f.lower() for f in allowed_funcs]
    if func.lower() not in allowed_funcs:
        raise Dftd3Error("""bad gCP func: %s. need one of: %r""" %
                         (func, allowed_funcs))

    # Move ~/.dftd3par.<hostname> out of the way so it won't interfere
    defaultfile = os.path.expanduser(
        '~') + '/.dftd3par.' + socket.gethostname()
    defmoved = False
    if os.path.isfile(defaultfile):
        os.rename(defaultfile, defaultfile + '_hide')
        defmoved = True

    # Find environment by merging PSIPATH and PATH environment variables
    lenv = {
        'PATH': ':'.join([os.path.abspath(x) for x in os.environ.get('PSIPATH', '').split(':') if x != '']) + \
                ':' + os.environ.get('PATH'),
        'LD_LIBRARY_PATH': os.environ.get('LD_LIBRARY_PATH')
        }
    #   Filter out None values as subprocess will fault on them
    lenv = {k: v for k, v in lenv.items() if v is not None}

    # Find out if running from Psi4 for scratch details and such
    try:
        import psi4
    except ImportError as err:
        isP4regime = False
    else:
        isP4regime = True

    # Setup unique scratch directory and move in
    current_directory = os.getcwd()
    if isP4regime:
        psioh = core.IOManager.shared_object()
        psio = core.IO.shared_object()
        os.chdir(psioh.get_default_path())
        gcp_tmpdir = 'psi.' + str(os.getpid()) + '.' + psio.get_default_namespace() + \
            '.gcp.' + str(uuid.uuid4())[:8]
    else:
        gcp_tmpdir = os.environ['HOME'] + os.sep + 'gcp_' + str(
            uuid.uuid4())[:8]
    if os.path.exists(gcp_tmpdir) is False:
        os.mkdir(gcp_tmpdir)
    os.chdir(gcp_tmpdir)

    # Write gcp_parameters file that governs cp correction
    #    paramcontents = gcp_server(func, dashlvl, 'dftd3')
    #    paramfile1 = 'dftd3_parameters'  # older patched name
    #    with open(paramfile1, 'w') as handle:
    #        handle.write(paramcontents)
    #    paramfile2 = '.gcppar'
    #    with open(paramfile2, 'w') as handle:
    #        handle.write(paramcontents)

    ###Two kinds of parameter files can be read in: A short and an extended version. Both are read from
    ###$HOME/.gcppar.$HOSTNAME by default. If the option -local is specified the file is read in from
    ###the current working directory: .gcppar
    ###The short version reads in: basis-keywo

    # Write dftd3_geometry file that supplies geometry to dispersion calc
    numAtoms = self.natom()
    geom = self.save_string_xyz()
    reals = []
    for line in geom.splitlines():
        lline = line.split()
        if len(lline) != 4:
            continue
        if lline[0] == 'Gh':
            numAtoms -= 1
        else:
            reals.append(line)

    geomtext = str(numAtoms) + '\n\n'
    for line in reals:
        geomtext += line.strip() + '\n'
    geomfile = './gcp_geometry.xyz'
    with open(geomfile, 'w') as handle:
        handle.write(geomtext)
    # TODO somehow the variations on save_string_xyz and
    #   whether natom and chgmult does or doesn't get written
    #   have gotten all tangled. I fear this doesn't work
    #   the same btwn libmints and qcdb or for ghosts

    # Call gcp program
    command = ['gcp', geomfile]
    command.extend(['-level', func])
    if dertype != 0:
        command.append('-grad')
    try:
        #print('command', command)
        dashout = subprocess.Popen(command, stdout=subprocess.PIPE, env=lenv)
    except OSError as e:
        raise ValidationError('Program gcp not found in path. %s' % e)
    out, err = dashout.communicate()

    # Parse output
    success = False
    for line in out.splitlines():
        line = line.decode('utf-8')
        if re.match('  Egcp:', line):
            sline = line.split()
            dashd = float(sline[1])
        if re.match('     normal termination of gCP', line):
            success = True

    if not success:
        os.chdir(current_directory)
        raise Dftd3Error("""Unsuccessful gCP run.""")

    # Parse grad output
    if dertype != 0:
        derivfile = './gcp_gradient'
        dfile = open(derivfile, 'r')
        dashdderiv = []
        for line in geom.splitlines():
            lline = line.split()
            if len(lline) != 4:
                continue
            if lline[0] == 'Gh':
                dashdderiv.append([0.0, 0.0, 0.0])
            else:
                dashdderiv.append([
                    float(x.replace('D', 'E'))
                    for x in dfile.readline().split()
                ])
        dfile.close()

        if len(dashdderiv) != self.natom():
            raise ValidationError('Program gcp gradient file has %d atoms- %d expected.' % \
                (len(dashdderiv), self.natom()))

    # Prepare results for Psi4
    if isP4regime and dertype != 0:
        core.set_variable('GCP CORRECTION ENERGY', dashd)
        psi_dashdderiv = core.Matrix(self.natom(), 3)
        psi_dashdderiv.set(dashdderiv)

    # Print program output to file if verbose
    if not verbose and isP4regime:
        verbose = True if core.get_option('SCF', 'PRINT') >= 3 else False
    if verbose:

        text = '\n  ==> GCP Output <==\n'
        text += out.decode('utf-8')
        if dertype != 0:
            with open(derivfile, 'r') as handle:
                text += handle.read().replace('D', 'E')
            text += '\n'
        if isP4regime:
            core.print_out(text)
        else:
            print(text)


#    # Clean up files and remove scratch directory
#    os.unlink(paramfile1)
#    os.unlink(paramfile2)
#    os.unlink(geomfile)
#    if dertype != 0:
#        os.unlink(derivfile)
#    if defmoved is True:
#        os.rename(defaultfile + '_hide', defaultfile)

    os.chdir('..')
    #    try:
    #        shutil.rmtree(dftd3_tmpdir)
    #    except OSError as e:
    #        ValidationError('Unable to remove dftd3 temporary directory %s' % e)
    os.chdir(current_directory)

    # return -D & d(-D)/dx
    if dertype == -1:
        return dashd, dashdderiv
    elif dertype == 0:
        return dashd
    elif dertype == 1:
        return psi_dashdderiv
Пример #20
0
 def new_vector(self, name=""):
     """Obtain a blank matrix object with the correct symmetry"""
     return core.Matrix(name, self.occpi, self.virpi, self.G_trans)
Пример #21
0
def mcscf_solver(ref_wfn):

    # Build CIWavefunction
    core.prepare_options_for_module("DETCI")
    ciwfn = core.CIWavefunction(ref_wfn)

    # Hush a lot of CI output
    ciwfn.set_print(0)

    # Begin with a normal two-step
    step_type = 'Initial CI'
    total_step = core.Matrix("Total step", ciwfn.get_dimension('OA'),
                             ciwfn.get_dimension('AV'))
    start_orbs = ciwfn.get_orbitals("ROT").clone()
    ciwfn.set_orbitals("ROT", start_orbs)

    # Grab da options
    mcscf_orb_grad_conv = core.get_option("DETCI", "MCSCF_R_CONVERGENCE")
    mcscf_e_conv = core.get_option("DETCI", "MCSCF_E_CONVERGENCE")
    mcscf_max_macroiteration = core.get_option("DETCI", "MCSCF_MAXITER")
    mcscf_type = core.get_option("DETCI", "MCSCF_TYPE")
    mcscf_d_file = core.get_option("DETCI", "CI_FILE_START") + 3
    mcscf_nroots = core.get_option("DETCI", "NUM_ROOTS")
    mcscf_wavefunction_type = core.get_option("DETCI", "WFN")
    mcscf_ndet = ciwfn.ndet()
    mcscf_nuclear_energy = ciwfn.molecule().nuclear_repulsion_energy()
    mcscf_steplimit = core.get_option("DETCI", "MCSCF_MAX_ROT")
    mcscf_rotate = core.get_option("DETCI", "MCSCF_ROTATE")

    # DIIS info
    mcscf_diis_start = core.get_option("DETCI", "MCSCF_DIIS_START")
    mcscf_diis_freq = core.get_option("DETCI", "MCSCF_DIIS_FREQ")
    mcscf_diis_error_type = core.get_option("DETCI", "MCSCF_DIIS_ERROR_TYPE")
    mcscf_diis_max_vecs = core.get_option("DETCI", "MCSCF_DIIS_MAX_VECS")

    # One-step info
    mcscf_target_conv_type = core.get_option("DETCI", "MCSCF_ALGORITHM")
    mcscf_so_start_grad = core.get_option("DETCI", "MCSCF_SO_START_GRAD")
    mcscf_so_start_e = core.get_option("DETCI", "MCSCF_SO_START_E")
    mcscf_current_step_type = 'Initial CI'

    # Start with SCF energy and other params
    scf_energy = ciwfn.variable("HF TOTAL ENERGY")
    eold = scf_energy
    norb_iter = 1
    converged = False
    ah_step = False
    qc_step = False
    approx_integrals_only = True

    # Fake info to start with the initial diagonalization
    ediff = 1.e-4
    orb_grad_rms = 1.e-3

    # Grab needed objects
    diis_obj = solvers.DIIS(mcscf_diis_max_vecs)
    mcscf_obj = ciwfn.mcscf_object()

    # Execute the rotate command
    for rot in mcscf_rotate:
        if len(rot) != 4:
            raise p4util.PsiException(
                "Each element of the MCSCF rotate command requires 4 arguements (irrep, orb1, orb2, theta)."
            )

        irrep, orb1, orb2, theta = rot
        if irrep > ciwfn.Ca().nirrep():
            raise p4util.PsiException(
                "MCSCF_ROTATE: Expression %s irrep number is larger than the number of irreps"
                % (str(rot)))

        if max(orb1, orb2) > ciwfn.Ca().coldim()[irrep]:
            raise p4util.PsiException(
                "MCSCF_ROTATE: Expression %s orbital number exceeds number of orbitals in irrep"
                % (str(rot)))

        theta = np.deg2rad(theta)

        x = ciwfn.Ca().nph[irrep][:, orb1].copy()
        y = ciwfn.Ca().nph[irrep][:, orb2].copy()

        xp = np.cos(theta) * x - np.sin(theta) * y
        yp = np.sin(theta) * x + np.cos(theta) * y

        ciwfn.Ca().nph[irrep][:, orb1] = xp
        ciwfn.Ca().nph[irrep][:, orb2] = yp

    # Limited RAS functionality
    if core.get_local_option(
            "DETCI", "WFN") == "RASSCF" and mcscf_target_conv_type != "TS":
        core.print_out(
            "\n  Warning! Only the TS algorithm for RASSCF wavefunction is currently supported.\n"
        )
        core.print_out("             Switching to the TS algorithm.\n\n")
        mcscf_target_conv_type = "TS"

    # Print out headers
    if mcscf_type == "CONV":
        mtype = "   @MCSCF"
        core.print_out("\n   ==> Starting MCSCF iterations <==\n\n")
        core.print_out(
            "        Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n"
        )
    elif mcscf_type == "DF":
        mtype = "   @DF-MCSCF"
        core.print_out("\n   ==> Starting DF-MCSCF iterations <==\n\n")
        core.print_out(
            "           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n"
        )
    else:
        mtype = "   @AO-MCSCF"
        core.print_out("\n   ==> Starting AO-MCSCF iterations <==\n\n")
        core.print_out(
            "           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n"
        )

    # Iterate !
    for mcscf_iter in range(1, mcscf_max_macroiteration + 1):

        # Transform integrals, diagonalize H
        ciwfn.transform_mcscf_integrals(approx_integrals_only)
        nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3)

        # After the first diag we need to switch to READ
        ciwfn.set_ci_guess("DFILE")

        ciwfn.form_opdm()
        ciwfn.form_tpdm()
        ci_grad_rms = core.variable("DETCI AVG DVEC NORM")

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        current_energy = core.variable("MCSCF TOTAL ENERGY")

        orb_grad_rms = mcscf_obj.gradient_rms()
        ediff = current_energy - eold

        # Print iterations
        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms,
                        ci_grad_rms, nci_iter, norb_iter,
                        mcscf_current_step_type)
        eold = current_energy

        if mcscf_current_step_type == 'Initial CI':
            mcscf_current_step_type = 'TS'

        # Check convergence
        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)) and\
            (mcscf_iter > 3) and not qc_step:

            core.print_out("\n       %s has converged!\n\n" % mtype)
            converged = True
            break

        # Which orbital convergence are we doing?
        if ah_step:
            converged, norb_iter, step = ah_iteration(mcscf_obj,
                                                      print_micro=False)
            norb_iter += 1

            if converged:
                mcscf_current_step_type = 'AH'
            else:
                core.print_out(
                    "      !Warning. Augmented Hessian did not converge. Taking an approx step.\n"
                )
                step = mcscf_obj.approx_solve()
                mcscf_current_step_type = 'TS, AH failure'

        else:
            step = mcscf_obj.approx_solve()
            step_type = 'TS'

        maxstep = step.absmax()
        if maxstep > mcscf_steplimit:
            core.print_out(
                '      Warning! Maxstep = %4.2f, scaling to %4.2f\n' %
                (maxstep, mcscf_steplimit))
            step.scale(mcscf_steplimit / maxstep)

        xstep = total_step.clone()
        total_step.add(step)

        # Do or add DIIS
        if (mcscf_iter >= mcscf_diis_start) and ("TS"
                                                 in mcscf_current_step_type):

            # Figure out DIIS error vector
            if mcscf_diis_error_type == "GRAD":
                error = core.Matrix.triplet(ciwfn.get_orbitals("OA"),
                                            mcscf_obj.gradient(),
                                            ciwfn.get_orbitals("AV"), False,
                                            False, True)
            else:
                error = step

            diis_obj.add(total_step, error)

            if not (mcscf_iter % mcscf_diis_freq):
                total_step = diis_obj.extrapolate()
                mcscf_current_step_type = 'TS, DIIS'

        # Build the rotation by continuous updates
        if mcscf_iter == 1:
            totalU = mcscf_obj.form_rotation_matrix(total_step)
        else:
            xstep.axpy(-1.0, total_step)
            xstep.scale(-1.0)
            Ustep = mcscf_obj.form_rotation_matrix(xstep)
            totalU = core.Matrix.doublet(totalU, Ustep, False, False)

        # Build the rotation directly (not recommended)
        # orbs_mat = mcscf_obj.Ck(start_orbs, total_step)

        # Finally rotate and set orbitals
        orbs_mat = core.Matrix.doublet(start_orbs, totalU, False, False)
        ciwfn.set_orbitals("ROT", orbs_mat)

        # Figure out what the next step should be
        if (orb_grad_rms < mcscf_so_start_grad) and (abs(ediff) < abs(mcscf_so_start_e)) and\
                (mcscf_iter >= 2):

            if mcscf_target_conv_type == 'AH':
                approx_integrals_only = False
                ah_step = True
            elif mcscf_target_conv_type == 'OS':
                approx_integrals_only = False
                mcscf_current_step_type = 'OS, Prep'
                break
            else:
                continue
        #raise p4util.PsiException("")

    # If we converged do not do onestep
    if converged or (mcscf_target_conv_type != 'OS'):
        one_step_iters = []

    # If we are not converged load in Dvec and build iters array
    else:
        one_step_iters = range(mcscf_iter + 1, mcscf_max_macroiteration + 1)
        dvec = ciwfn.D_vector()
        dvec.init_io_files(True)
        dvec.read(0, 0)
        dvec.symnormalize(1.0, 0)

        ci_grad = ciwfn.new_civector(1, mcscf_d_file + 1, True, True)
        ci_grad.set_nvec(1)
        ci_grad.init_io_files(True)

    # Loop for onestep
    for mcscf_iter in one_step_iters:

        # Transform integrals and update the MCSCF object
        ciwfn.transform_mcscf_integrals(ciwfn.H(), False)
        ciwfn.form_opdm()
        ciwfn.form_tpdm()

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        orb_grad_rms = mcscf_obj.gradient_rms()

        # Warning! Does not work for SA-MCSCF
        current_energy = mcscf_obj.current_total_energy()
        current_energy += mcscf_nuclear_energy

        core.set_variable("CI ROOT %d TOTAL ENERGY" % 1, current_energy)
        core.set_variable("CURRENT ENERGY", current_energy)

        docc_energy = mcscf_obj.current_docc_energy()
        ci_energy = mcscf_obj.current_ci_energy()

        # Compute CI gradient
        ciwfn.sigma(dvec, ci_grad, 0, 0)
        ci_grad.scale(2.0, 0)
        ci_grad.axpy(-2.0 * ci_energy, dvec, 0, 0)

        ci_grad_rms = ci_grad.norm(0)
        orb_grad_rms = mcscf_obj.gradient().rms()

        ediff = current_energy - eold

        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms,
                        ci_grad_rms, nci_iter, norb_iter,
                        mcscf_current_step_type)
        mcscf_current_step_type = 'OS'

        eold = current_energy

        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) <
                                                     abs(mcscf_e_conv)):

            core.print_out("\n       %s has converged!\n\n" % mtype)
            converged = True
            break

        # Take a step
        converged, norb_iter, nci_iter, step = qc_iteration(
            dvec, ci_grad, ciwfn, mcscf_obj)

        # Rotate integrals to new frame
        total_step.add(step)
        orbs_mat = mcscf_obj.Ck(ciwfn.get_orbitals("ROT"), step)
        ciwfn.set_orbitals("ROT", orbs_mat)

    core.print_out(mtype + " Final Energy: %20.15f\n" % current_energy)

    # Die if we did not converge
    if (not converged):
        if core.get_global_option("DIE_IF_NOT_CONVERGED"):
            raise p4util.PsiException("MCSCF: Iterations did not converge!")
        else:
            core.print_out("\nWarning! MCSCF iterations did not converge!\n\n")

    # Print out CI vector information
    if mcscf_target_conv_type == 'OS':
        dvec.close_io_files()
        ci_grad.close_io_files()

    # For orbital invariant methods we transform the orbitals to the natural or
    # semicanonical basis. Frozen doubly occupied and virtual orbitals are not
    # modified.
    if core.get_option("DETCI", "WFN") == "CASSCF":
        # Do we diagonalize the opdm?
        if core.get_option("DETCI", "NAT_ORBS"):
            ciwfn.ci_nat_orbs()
        else:
            ciwfn.semicanonical_orbs()

        # Retransform intragrals and update CI coeffs., OPDM, and TPDM
        ciwfn.transform_mcscf_integrals(approx_integrals_only)
        nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3)

        ciwfn.set_ci_guess("DFILE")

        ciwfn.form_opdm()
        ciwfn.form_tpdm()

    proc_util.print_ci_results(ciwfn,
                               "MCSCF",
                               scf_energy,
                               current_energy,
                               print_opdm_no=True)

    # Set final energy
    core.set_variable("CURRENT ENERGY", core.variable("MCSCF TOTAL ENERGY"))

    # What do we need to cleanup?
    if core.get_option("DETCI", "MCSCF_CI_CLEANUP"):
        ciwfn.cleanup_ci()
    if core.get_option("DETCI", "MCSCF_DPD_CLEANUP"):
        ciwfn.cleanup_dpd()

    del diis_obj
    del mcscf_obj
    return ciwfn
Пример #22
0
def _write_molden(
    self: core.Wavefunction,
    filename: Optional[str] = None,
    do_virtual: Optional[bool] = None,
    use_natural: bool = False,
):
    """Writes wavefunction information in *wfn* to *filename* in
    molden format. Will write natural orbitals from *density* (MO basis) if supplied.
    Warning! most post-SCF wavefunctions do not build the density as this is often
    much more costly than the energy. In addition, the wavefunction density attributes
    (Da and Db) return the SO density and must be transformed to the MO basis
    to use with this function.

    .. versionadded:: 0.5
       *wfn* parameter passed explicitly

    :returns: None

    :type filename:
    :param filename:

        Destination file name for MOLDEN file. If unspecified (None), a file
        name will be generated from the molecule name.

    :type do_virtual:
    :param do_virtual:

        Do write all the MOs to the MOLDEN file (True) or discard the unoccupied
        MOs (False). Not valid for NO's. If unspecified (None), value taken from
        :term:`MOLDEN_WITH_VIRTUAL <MOLDEN_WITH_VIRTUAL (GLOBALS)>`.

    :type use_natural:
    :param use_natural:

        Write natural orbitals determined from density on wavefunction.

    :examples:

    1. Molden file with the Kohn-Sham orbitals of a DFT calculation.

       >>> E, wfn = energy('b3lyp', return_wfn=True)
       >>> wfn.molden('mycalc.molden')

    2. Molden file with the natural orbitals of a CCSD computation. For correlated methods, an energy call will not compute the density.
       "properties" or "gradient" must be called.

       >>> E, wfn = properties('ccsd', return_wfn=True)
       >>> wfn.molden('ccsd_no.molden', use_natural=True)

    3. To supply a custom density matrix, manually set the Da and Db of the wavefunction.
       This is used, for example, to write natural orbitals coming from a root computed
       by a ``CIWavefunction`` computation, e.g., ``detci``, ``fci``, ``casscf``.
       The first two arguments of :py:meth:`~psi4.core.CIWavefunction.get_opdm`
       can be set to ``n, n`` where n => 0 selects the root to
       write out, provided these roots were computed, see :term:`NUM_ROOTS <NUM_ROOTS (DETCI)>`. The
       third argument controls the spin (``"A"``, ``"B"`` or ``"SUM"``) and the final
       boolean option determines whether inactive orbitals are included.

       >>> E, wfn = energy('detci', return_wfn=True)
       >>> wfn.Da() = wfn.get_opdm(0, 0, "A", True)
       >>> wfn.Db() = wfn.get_opdm(0, 0, "B", True)
       >>> molden(wfn, 'no_root1.molden', use_natural=True)

    """

    if filename is None:
        filename = core.get_writer_file_prefix(
            self.molecule().name()) + ".molden"

    if do_virtual is None:
        do_virtual = bool(core.get_option("SCF", "MOLDEN_WITH_VIRTUAL"))

    basisset = self.basisset()
    mol = self.molecule()
    # Header and geometry (Atom, Atom #, Z, x, y, z)
    mol_string = '[Molden Format]\n[Atoms] (AU)\n'
    for atom in range(mol.natom()):
        mol_string += f"{mol.symbol(atom):2s}  {atom+1:2d}  {int(mol.Z(atom)):3d}   {mol.x(atom):20.10f} {mol.y(atom):20.10f} {mol.z(atom):20.10f}\n"

    # Dump basis set
    mol_string += '[GTO]\n'
    for atom in range(mol.natom()):
        mol_string += f"  {atom+1:d} 0\n"
        for rel_shell_idx in range(basisset.nshell_on_center(atom)):
            abs_shell_idx = basisset.shell_on_center(atom, rel_shell_idx)
            shell = basisset.shell(abs_shell_idx)
            mol_string += f" {shell.amchar:s}{shell.nprimitive:5d}  1.00\n"
            for prim in range(shell.nprimitive):
                mol_string += f"{shell.exp(prim):20.10f} {shell.original_coef(prim):20.10f}\n"
        mol_string += '\n'

    #
    if use_natural:
        # Alphas
        nmopi = self.nmopi()
        #MO_Da = core.Matrix("MO Alpha Density Matrix", nmopi, nmopi)
        #MO_Da.transform(self.Da(), self.Ca().transpose())
        MO_Da = self.Da_subset("MO")  #MO_Da.transform(self.Da(), self.Ca())
        NO_Ra = core.Matrix("NO Alpha Rotation Matrix", nmopi, nmopi)
        occupation_a = core.Vector(nmopi)
        MO_Da.diagonalize(NO_Ra, occupation_a,
                          core.DiagonalizeOrder.Descending)
        Ca = core.doublet(self.Ca(), NO_Ra, False, False)
        epsilon_a = occupation_a
        # Betas
        #MO_Db = core.Matrix("MO Beta Density Matrix", nmopi, nmopi)
        #MO_Db.transform(self.Db(), self.Cb().transpose())
        MO_Db = self.Db_subset("MO")
        NO_Rb = core.Matrix("NO Beta Rotation Matrix", nmopi, nmopi)
        occupation_b = core.Vector(nmopi)
        MO_Db.diagonalize(NO_Rb, occupation_b,
                          core.DiagonalizeOrder.Descending)
        Cb = core.doublet(self.Cb(), NO_Rb, False, False)
        epsilon_b = occupation_b

    else:
        Ca = self.Ca()
        Cb = self.Cb()
        occupation_a = self.occupation_a()
        occupation_b = self.occupation_b()
        epsilon_a = self.epsilon_a()
        epsilon_b = self.epsilon_b()

    # Convert C matrices to AO MO basis. Ca_subset costs information about which symmetry an orbital originally had, which is why we can't use it.
    aotoso = self.aotoso()
    Ca_ao_mo = core.doublet(aotoso, Ca, False, False).nph
    Cb_ao_mo = core.doublet(aotoso, Cb, False, False).nph
    ao_overlap = self.mintshelper().ao_overlap().np
    # Convert from Psi4 internal normalization to the unit normalization expected by Molden
    ao_normalizer = ao_overlap.diagonal()**(-1 / 2)
    Ca_ao_mo = core.Matrix.from_array([(i.T / ao_normalizer).T
                                       for i in Ca_ao_mo])
    Cb_ao_mo = core.Matrix.from_array([(i.T / ao_normalizer).T
                                       for i in Cb_ao_mo])

    # Reorder AO x MO matrix to fit Molden conventions
    '''
    Reordering expected by Molden
    P: x, y, z
    5D: D 0, D+1, D-1, D+2, D-2
    6D: xx, yy, zz, xy, xz, yz
    7F: F 0, F+1, F-1, F+2, F-2, F+3, F-3
    10F: xxx, yyy, zzz, xyy, xxy, xxz, xzz, yzz, yyz, xyz
    9G: G 0, G+1, G-1, G+2, G-2, G+3, G-3, G+4, G-4
    15G: xxxx, yyyy, zzzz, xxxy, xxxz, yyyz, zzzx, zzzy, xxyy, xxzz, yyzz, xxyz, yyxz, zzxy
    
    Molden does not handle angular momenta higher than G
    '''
    molden_cartesian_order = [
        [2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],  # p
        [0, 3, 4, 1, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0],  # d
        [0, 4, 5, 3, 9, 6, 1, 8, 7, 2, 0, 0, 0, 0, 0],  # f
        [0, 3, 4, 9, 12, 10, 5, 13, 14, 7, 1, 6, 11, 8, 2]  # g
    ]
    nirrep = self.nirrep()
    count = 0  # Keeps track of count for reordering
    temp_a = Ca_ao_mo.clone()  # Placeholders for original AO x MO matrices
    temp_b = Cb_ao_mo.clone()

    for i in range(basisset.nshell()):
        am = basisset.shell(i).am
        if (am == 1 and basisset.has_puream()) or (
                am > 1 and am < 5 and basisset.shell(i).is_cartesian()):
            for j in range(basisset.shell(i).nfunction):
                for h in range(nirrep):
                    for k in range(Ca_ao_mo.coldim()[h]):
                        Ca_ao_mo.set(h,
                                     count + molden_cartesian_order[am - 1][j],
                                     k, temp_a.get(h, count + j, k))
                        Cb_ao_mo.set(h,
                                     count + molden_cartesian_order[am - 1][j],
                                     k, temp_b.get(h, count + j, k))
        count += basisset.shell(i).nfunction

    # Dump MO information
    if basisset.has_puream():
        # For historical reasons, D and F can go on the same line, but setting D without F implicitly sets F. G must be on its own.
        mol_string += '[5D7F]\n[9G]\n\n'
    ct = mol.point_group().char_table()
    mol_string += '[MO]\n'
    mo_dim = self.nmopi() if do_virtual else (self.doccpi() + self.soccpi())

    # Alphas. If Alphas and Betas are the same, then only Alphas with double occupation will be written (see line marked "***")
    mos = []
    for h in range(nirrep):
        for n in range(mo_dim[h]):
            mos.append((epsilon_a.get(h, n), (h, n)))

    # Sort mos based on energy
    def mosSort(element):
        return element[0]

    mos.sort(key=mosSort)

    for i in range(len(mos)):
        h, n = mos[i][1]
        mol_string += f" Sym= {ct.gamma(h).symbol():s}\n Ene= {epsilon_a.get(h, n):24.10e}\n Spin= Alpha\n"
        if self.same_a_b_orbs() and self.epsilon_a() == self.epsilon_b(
        ) and self.same_a_b_dens():
            mol_string += f" Occup= {occupation_a.get(h, n) + occupation_b.get(h, n):24.10e}\n"
        else:
            mol_string += f" Occup= {occupation_a.get(h, n):24.10e}\n"
        for so in range(self.nso()):
            mol_string += f"{so+1:3d} {Ca_ao_mo.get(h, so, n):24.10e}\n"

    # Betas
    mos = []
    if not self.same_a_b_orbs(
    ) or self.epsilon_a() != self.epsilon_b() or not self.same_a_b_dens():
        for h in range(nirrep):
            for n in range(mo_dim[h]):
                mos.append((self.epsilon_b().get(h, n), (h, n)))
        mos.sort(key=mosSort)
        for i in range(len(mos)):
            h, n = mos[i][1]
            mol_string += f" Sym= {ct.gamma(h).symbol():s}\n Ene= {epsilon_b.get(h, n):24.10e}\n Spin= Beta\n " \
                          f"Occup= {occupation_b.get(h, n):24.10e}\n"
            for so in range(self.nso()):
                mol_string += f"{so+1:3d} {Cb_ao_mo.get(h, so, n):24.10e}\n"

    # Write Molden string to file
    with open(filename, 'w') as fn:
        fn.write(mol_string)
Пример #23
0
def run_dftd3(self,
              func=None,
              dashlvl=None,
              dashparam=None,
              dertype=None,
              verbose=False):
    """Function to call Grimme's dftd3 program (http://toc.uni-muenster.de/DFTD3/)
    to compute the -D correction of level *dashlvl* using parameters for
    the functional *func*. The dictionary *dashparam* can be used to supply
    a full set of dispersion parameters in the absense of *func* or to supply
    individual overrides in the presence of *func*. Returns energy if *dertype* is 0,
    gradient if *dertype* is 1, else tuple of energy and gradient if *dertype*
    unspecified. The dftd3 executable must be independently compiled and found in
    :envvar:`PATH` or :envvar:`PSIPATH`.
    *self* may be either a qcdb.Molecule (sensibly) or a psi4.Molecule
    (works b/c psi4.Molecule has been extended by this method py-side and
    only public interface fns used) or a string that can be instantiated
    into a qcdb.Molecule.

    func - functional alias or None
    dashlvl - functional type d2gr/d3zero/d3bj/d3mzero/d3mbj
    dashparam - dictionary
    dertype = derivative level

    """
    # Create (if necessary) and update qcdb.Molecule
    if isinstance(self, Molecule):
        # called on a qcdb.Molecule
        pass
    elif isinstance(self, core.Molecule):
        # called on a python export of a psi4.Molecule (py-side through Psi4's driver)
        self.create_psi4_string_from_molecule()
    elif isinstance(self, basestring):
        # called on a string representation of a psi4.Molecule (c-side through psi4.Dispersion)
        self = Molecule(self)
    else:
        raise ValidationError(
            """Argument mol must be psi4string or qcdb.Molecule""")
    self.update_geometry()

    # Validate arguments
    if dertype is None:
        dertype = -1
    elif der0th.match(str(dertype)):
        dertype = 0
    elif der1st.match(str(dertype)):
        dertype = 1
    elif der2nd.match(str(dertype)):
        raise ValidationError(
            'Requested derivative level \'dertype\' %s not valid for run_dftd3.'
            % (dertype))
    else:
        raise ValidationError(
            'Requested derivative level \'dertype\' %s not valid for run_dftd3.'
            % (dertype))

    if dashlvl is not None:
        dashlvl = dashlvl.lower()
        dashlvl = dash_alias['-' + dashlvl][1:] if (
            '-' + dashlvl) in dash_alias.keys() else dashlvl
        if dashlvl not in dashcoeff.keys():
            raise ValidationError(
                """-D correction level %s is not available. Choose among %s."""
                % (dashlvl, dashcoeff.keys()))
    else:
        raise ValidationError("""Must specify a dashlvl""")

    if func is not None:
        dftd3_params = dash_server(func, dashlvl)
    else:
        dftd3_params = {}

    if dashparam is not None:
        dftd3_params.update(dashparam)

    # Move ~/.dftd3par.<hostname> out of the way so it won't interfere
    defaultfile = os.path.expanduser(
        '~') + '/.dftd3par.' + socket.gethostname()
    defmoved = False
    if os.path.isfile(defaultfile):
        os.rename(defaultfile, defaultfile + '_hide')
        defmoved = True

    # Find environment by merging PSIPATH and PATH environment variables
    lenv = {
        'PATH': ':'.join([os.path.abspath(x) for x in os.environ.get('PSIPATH', '').split(':') if x != '']) + \
                ':' + os.environ.get('PATH'),
        'LD_LIBRARY_PATH': os.environ.get('LD_LIBRARY_PATH')
        }
    #   Filter out None values as subprocess will fault on them
    lenv = {k: v for k, v in lenv.items() if v is not None}

    # Find out if running from Psi4 for scratch details and such
    # try:
    #     import psi4
    # except ImportError as err:
    #     isP4regime = False
    # else:
    #     isP4regime = True

    # Setup unique scratch directory and move in
    current_directory = os.getcwd()
    if isP4regime:
        psioh = core.IOManager.shared_object()
        psio = core.IO.shared_object()
        os.chdir(psioh.get_default_path())
        dftd3_tmpdir = 'psi.' + str(os.getpid()) + '.' + psio.get_default_namespace() + \
            '.dftd3.' + str(uuid.uuid4())[:8]
    else:
        dftd3_tmpdir = os.environ['HOME'] + os.sep + 'dftd3_' + str(
            uuid.uuid4())[:8]
    if os.path.exists(dftd3_tmpdir) is False:
        os.mkdir(dftd3_tmpdir)
    os.chdir(dftd3_tmpdir)

    # Write dftd3_parameters file that governs dispersion calc
    paramcontents = dftd3_coeff_formatter(dashlvl, dftd3_params)
    paramfile1 = 'dftd3_parameters'  # older patched name
    with open(paramfile1, 'w') as handle:
        handle.write(paramcontents)
    paramfile2 = '.dftd3par.local'  # new mainline name
    with open(paramfile2, 'w') as handle:
        handle.write(paramcontents)

    # Write dftd3_geometry file that supplies geometry to dispersion calc
    numAtoms = self.natom()

    # We seem to have a problem with one atom, force the correct result
    if numAtoms == 1:
        dashd = 0.0
        dashdderiv = core.Matrix(1, 3)

        if dertype == -1:
            return dashd, dashdderiv
        elif dertype == 0:
            return dashd
        elif dertype == 1:
            return dashdderiv

    geom = self.save_string_xyz()
    reals = []
    for line in geom.splitlines():
        lline = line.split()
        if len(lline) != 4:
            continue
        if lline[0] == 'Gh':
            numAtoms -= 1
        else:
            reals.append(line)

    geomtext = str(numAtoms) + '\n\n'
    for line in reals:
        geomtext += line.strip() + '\n'
    geomfile = './dftd3_geometry.xyz'
    with open(geomfile, 'w') as handle:
        handle.write(geomtext)
    # TODO somehow the variations on save_string_xyz and
    #   whether natom and chgmult does or doesn't get written
    #   have gotten all tangled. I fear this doesn't work
    #   the same btwn libmints and qcdb or for ghosts

    # Call dftd3 program
    command = ['dftd3', geomfile]
    if dertype != 0:
        command.append('-grad')
    try:
        dashout = subprocess.Popen(command, stdout=subprocess.PIPE, env=lenv)
    except OSError as e:
        raise ValidationError('Program dftd3 not found in path. %s' % e)
    out, err = dashout.communicate()

    # Parse output (could go further and break into E6, E8, E10 and Cn coeff)
    success = False
    for line in out.splitlines():
        line = line.decode('utf-8')
        if re.match(' Edisp /kcal,au', line):
            sline = line.split()
            dashd = float(sline[3])
        if re.match(' normal termination of dftd3', line):
            success = True

    if not success:
        os.chdir(current_directory)
        raise Dftd3Error(
            """Unsuccessful run. Possibly -D variant not available in dftd3 version."""
        )

    # Parse grad output
    if dertype != 0:
        derivfile = './dftd3_gradient'
        dfile = open(derivfile, 'r')
        dashdderiv = []
        for line in geom.splitlines():
            lline = line.split()
            if len(lline) != 4:
                continue
            if lline[0] == 'Gh':
                dashdderiv.append([0.0, 0.0, 0.0])
            else:
                dashdderiv.append([
                    float(x.replace('D', 'E'))
                    for x in dfile.readline().split()
                ])
        dfile.close()

        if len(dashdderiv) != self.natom():
            raise ValidationError('Program dftd3 gradient file has %d atoms- %d expected.' % \
                (len(dashdderiv), self.natom()))

    # Prepare results for Psi4
    if isP4regime and dertype != 0:
        core.set_variable('DISPERSION CORRECTION ENERGY', dashd)
        psi_dashdderiv = core.Matrix(self.natom(), 3)
        psi_dashdderiv.set(dashdderiv)

    # Print program output to file if verbose
    if not verbose and isP4regime:
        verbose = True if core.get_option('SCF', 'PRINT') >= 3 else False
    if verbose:

        text = '\n  ==> DFTD3 Output <==\n'
        text += out.decode('utf-8')
        if dertype != 0:
            with open(derivfile, 'r') as handle:
                text += handle.read().replace('D', 'E')
            text += '\n'
        if isP4regime:
            core.print_out(text)
        else:
            print(text)

    # Clean up files and remove scratch directory
    os.unlink(paramfile1)
    os.unlink(paramfile2)
    os.unlink(geomfile)
    if dertype != 0:
        os.unlink(derivfile)
    if defmoved is True:
        os.rename(defaultfile + '_hide', defaultfile)

    os.chdir('..')
    try:
        shutil.rmtree(dftd3_tmpdir)
    except OSError as e:
        ValidationError('Unable to remove dftd3 temporary directory %s' % e)
    os.chdir(current_directory)

    # return -D & d(-D)/dx
    if dertype == -1:
        return dashd, dashdderiv
    elif dertype == 0:
        return dashd
    elif dertype == 1:
        return psi_dashdderiv
Пример #24
0
def orig_run_dftd3(mol,
                   func=None,
                   dashlvl=None,
                   dashparam=None,
                   dertype=None,
                   verbose=False):
    """Compute dispersion correction using Grimme's DFTD3 executable.

    Function to call Grimme's dftd3 program to compute the -D correction
    of level `dashlvl` using parameters for the functional `func`.
    `dashparam` can supply a full set of dispersion parameters in the
    absence of `func` or individual overrides in the presence of `func`.

    The DFTD3 executable must be independently compiled and found in
    :envvar:`PATH` or :envvar:`PSIPATH`.

    Parameters
    ----------
    mol : qcdb.Molecule or psi4.core.Molecule or str
	    Molecule on which to run dispersion calculation. Both qcdb and
	    psi4.core Molecule classes have been extended by this method, so
	    either allowed. Alternately, a string that can be instantiated
	    into a qcdb.Molecule.
    func : str or None
	    Density functional (Psi4, not Turbomole, names) for which to
	    load parameters from dashcoeff[dashlvl][func]. This is not
	    passed to DFTD3 and thus may be a dummy or `None`. Any or all
	    parameters initialized can be overwritten via `dashparam`.
    dashlvl : {'d2p4', 'd2gr', 'd3zero', 'd3bj', 'd3mzero', d3mbj', 'd', 'd2', 'd3', 'd3m'}
	    Flavor of a posteriori dispersion correction for which to load
	    parameters and call procedure in DFTD3. Must be a keys in
	    dashcoeff dict (or a key in dashalias that resolves to one).
    dashparam : dict, optional
	    Dictionary of the same keys as dashcoeff[dashlvl] used to
	    override any or all values initialized by
	    dashcoeff[dashlvl][func].
    dertype : {None, 0, 'none', 'energy', 1, 'first', 'gradient'}, optional
	    Maximum derivative level at which to run DFTD3. For large
	    `mol`, energy-only calculations can be significantly more
	    efficient. Also controls return values, see below.
    verbose : bool, optional
        When `True`, additionally include DFTD3 output in output.

    Returns
    -------
    energy : float, optional
        When `dertype` is 0, energy [Eh].
    gradient : list of lists of floats or psi4.core.Matrix, optional
        When `dertype` is 1, (nat, 3) gradient [Eh/a0].
    (energy, gradient) : float and list of lists of floats or psi4.core.Matrix, optional
        When `dertype` is unspecified, both energy [Eh] and (nat, 3) gradient [Eh/a0].

    Notes
    -----
    research site: https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3
    Psi4 mode: When `psi4` the python module is importable at `import qcdb`
               time, Psi4 mode is activated, with the following alterations:
               * output goes to output file
               * gradient returned as psi4.core.Matrix, not list o'lists
               * scratch is written to randomly named subdirectory of psi scratch
               * psivar "DISPERSION CORRECTION ENERGY" is set
               * `verbose` triggered when PRINT keywork of SCF module >=3

    """
    # Create (if necessary) and update qcdb.Molecule
    if isinstance(mol, (Molecule, core.Molecule)):
        # 1st: called on a qcdb.Molecule
        # 2nd: called on a python export of a psi4.Molecule (py-side through Psi4's driver)
        pass
    elif isinstance(mol, basestring):
        # called on a string representation of a psi4.Molecule (c-side through psi4.Dispersion)
        mol = Molecule(mol)
    else:
        raise ValidationError(
            """Argument mol must be psi4string or qcdb.Molecule""")
    mol.update_geometry()

    # Validate arguments
    if dertype is None:
        dertype = -1
    elif der0th.match(str(dertype)):
        dertype = 0
    elif der1st.match(str(dertype)):
        dertype = 1
    elif der2nd.match(str(dertype)):
        raise ValidationError(
            """Requested derivative level 'dertype' %s not valid for run_dftd3."""
            % (dertype))
    else:
        raise ValidationError(
            """Requested derivative level 'dertype' %s not valid for run_dftd3."""
            % (dertype))

    if dashlvl is not None:
        dashlvl = dashlvl.lower()
        dashlvl = dash_alias['-' + dashlvl][1:] if (
            '-' + dashlvl) in dash_alias.keys() else dashlvl
        if dashlvl not in dashcoeff.keys():
            raise ValidationError(
                """-D correction level %s is not available. Choose among %s."""
                % (dashlvl, dashcoeff.keys()))
    else:
        raise ValidationError("""Must specify a dashlvl""")

    if func is not None:
        dftd3_params = dash_server(func, dashlvl)
    else:
        dftd3_params = {}

    if dashparam is not None:
        dftd3_params.update(dashparam)

    # Move ~/.dftd3par.<hostname> out of the way so it won't interfere
    defaultfile = os.path.expanduser(
        '~') + '/.dftd3par.' + socket.gethostname()
    defmoved = False
    if os.path.isfile(defaultfile):
        os.rename(defaultfile, defaultfile + '_hide')
        defmoved = True

    # Find environment by merging PSIPATH and PATH environment variables
    lenv = {
        'PATH': ':'.join([os.path.abspath(x) for x in os.environ.get('PSIPATH', '').split(':') if x != '']) + \
                ':' + os.environ.get('PATH'),
        'LD_LIBRARY_PATH': os.environ.get('LD_LIBRARY_PATH')
        }
    #   Filter out None values as subprocess will fault on them
    lenv = {k: v for k, v in lenv.items() if v is not None}

    # Find out if running from Psi4 for scratch details and such
    # try:
    #     import psi4
    # except ImportError as err:
    #     isP4regime = False
    # else:
    #     isP4regime = True

    # Setup unique scratch directory and move in
    current_directory = os.getcwd()
    if isP4regime:
        psioh = core.IOManager.shared_object()
        psio = core.IO.shared_object()
        os.chdir(psioh.get_default_path())
        dftd3_tmpdir = 'psi.' + str(os.getpid()) + '.' + psio.get_default_namespace() + \
            '.dftd3.' + str(uuid.uuid4())[:8]
    else:
        dftd3_tmpdir = os.environ['HOME'] + os.sep + 'dftd3_' + str(
            uuid.uuid4())[:8]
    if os.path.exists(dftd3_tmpdir) is False:
        os.mkdir(dftd3_tmpdir)
    os.chdir(dftd3_tmpdir)

    # Write dftd3_parameters file that governs dispersion calc
    paramcontents = dftd3_coeff_formatter(dashlvl, dftd3_params)
    paramfile1 = 'dftd3_parameters'  # older patched name
    with open(paramfile1, 'w') as handle:
        handle.write(paramcontents)
    paramfile2 = '.dftd3par.local'  # new mainline name
    with open(paramfile2, 'w') as handle:
        handle.write(paramcontents)

    # Write dftd3_geometry file that supplies geometry to dispersion calc
    numAtoms = mol.natom()

    # We seem to have a problem with one atom, force the correct result
    if numAtoms == 1:
        dashd = 0.0
        dashdderiv = core.Matrix(1, 3)

        if dertype == -1:
            return dashd, dashdderiv
        elif dertype == 0:
            return dashd
        elif dertype == 1:
            return dashdderiv

    geom = mol.save_string_xyz()
    reals = []
    for line in geom.splitlines():
        lline = line.split()
        if len(lline) != 4:
            continue
        if lline[0] == 'Gh':
            numAtoms -= 1
        else:
            reals.append(line)

    geomtext = str(numAtoms) + '\n\n'
    for line in reals:
        geomtext += line.strip() + '\n'
    geomfile = './dftd3_geometry.xyz'
    with open(geomfile, 'w') as handle:
        handle.write(geomtext)
    # TODO somehow the variations on save_string_xyz and
    #   whether natom and chgmult does or doesn't get written
    #   have gotten all tangled. I fear this doesn't work
    #   the same btwn libmints and qcdb or for ghosts

    # Call dftd3 program
    command = ['dftd3', geomfile]
    if dertype != 0:
        command.append('-grad')
    try:
        dashout = subprocess.Popen(command, stdout=subprocess.PIPE, env=lenv)
    except OSError as e:
        raise ValidationError('Program dftd3 not found in path. %s' % e)
    out, err = dashout.communicate()

    # Parse output (could go further and break into E6, E8, E10 and Cn coeff)
    success = False
    for line in out.splitlines():
        line = line.decode('utf-8')
        if re.match(' Edisp /kcal,au', line):
            sline = line.split()
            dashd = float(sline[3])
        if re.match(' normal termination of dftd3', line):
            success = True

    if not success:
        os.chdir(current_directory)
        raise Dftd3Error(
            """Unsuccessful run. Possibly -D variant not available in dftd3 version."""
        )

    # Parse grad output
    if dertype != 0:
        derivfile = './dftd3_gradient'
        dfile = open(derivfile, 'r')
        dashdderiv = []
        for line in geom.splitlines():
            lline = line.split()
            if len(lline) != 4:
                continue
            if lline[0] == 'Gh':
                dashdderiv.append([0.0, 0.0, 0.0])
            else:
                dashdderiv.append([
                    float(x.replace('D', 'E'))
                    for x in dfile.readline().split()
                ])
        dfile.close()

        if len(dashdderiv) != mol.natom():
            raise ValidationError('Program dftd3 gradient file has %d atoms- %d expected.' % \
                (len(dashdderiv), mol.natom()))

    # Prepare results for Psi4
    if isP4regime and dertype != 0:
        core.set_variable('DISPERSION CORRECTION ENERGY', dashd)
        psi_dashdderiv = core.Matrix.from_list(dashdderiv)

    # Print program output to file if verbose
    if not verbose and isP4regime:
        verbose = True if core.get_option('SCF', 'PRINT') >= 3 else False
    if verbose:

        text = '\n  ==> DFTD3 Output <==\n'
        text += out.decode('utf-8')
        if dertype != 0:
            with open(derivfile, 'r') as handle:
                text += handle.read().replace('D', 'E')
            text += '\n'
        if isP4regime:
            core.print_out(text)
        else:
            print(text)

    # Clean up files and remove scratch directory
    os.unlink(paramfile1)
    os.unlink(paramfile2)
    os.unlink(geomfile)
    if dertype != 0:
        os.unlink(derivfile)
    if defmoved is True:
        os.rename(defaultfile + '_hide', defaultfile)

    os.chdir('..')
    try:
        shutil.rmtree(dftd3_tmpdir)
    except OSError as e:
        ValidationError('Unable to remove dftd3 temporary directory %s' % e)
    os.chdir(current_directory)

    # return -D & d(-D)/dx
    if dertype == -1:
        return dashd, dashdderiv
    elif dertype == 0:
        return dashd
    elif dertype == 1:
        return psi_dashdderiv
Пример #25
0
def _sapt_cpscf_solve(cache, jk, rhsA, rhsB, maxiter, conv):
    """
    Solve the SAPT CPHF (or CPKS) equations.
    """

    # Make a preconditioner function
    P_A = core.Matrix(cache["eps_occ_A"].shape[0], cache["eps_vir_A"].shape[0])
    P_A.np[:] = (cache["eps_occ_A"].np.reshape(-1, 1) - cache["eps_vir_A"].np)

    P_B = core.Matrix(cache["eps_occ_B"].shape[0], cache["eps_vir_B"].shape[0])
    P_B.np[:] = (cache["eps_occ_B"].np.reshape(-1, 1) - cache["eps_vir_B"].np)

    # Preconditioner function
    def apply_precon(x_vec, act_mask):
        if act_mask[0]:
            pA = x_vec[0].clone()
            pA.apply_denominator(P_A)
        else:
            pA = False

        if act_mask[1]:
            pB = x_vec[1].clone()
            pB.apply_denominator(P_B)
        else:
            pB = False

        return [pA, pB]

    # Hx function
    def hessian_vec(x_vec, act_mask):
        if act_mask[0]:
            xA = cache["wfn_A"].cphf_Hx([x_vec[0]])[0]
        else:
            xA = False

        if act_mask[1]:
            xB = cache["wfn_B"].cphf_Hx([x_vec[1]])[0]
        else:
            xB = False

        return [xA, xB]

    # Manipulate the printing
    sep_size = 51
    core.print_out("   " + ("-" * sep_size) + "\n")
    core.print_out("   " + "SAPT Coupled Induction Solver".center(sep_size) + "\n")
    core.print_out("   " + ("-" * sep_size) + "\n")
    core.print_out("    Maxiter             = %11d\n" % maxiter)
    core.print_out("    Convergence         = %11.3E\n" % conv)
    core.print_out("   " + ("-" * sep_size) + "\n")

    tstart = time.time()
    core.print_out("     %4s %12s     %12s     %9s\n" % ("Iter", "(A<-B)", "(B->A)", "Time [s]"))
    core.print_out("   " + ("-" * sep_size) + "\n")

    start_resid = [rhsA.sum_of_squares(), rhsB.sum_of_squares()]

    # print function
    def pfunc(niter, x_vec, r_vec):
        if niter == 0:
            niter = "Guess"
        else:
            niter = ("%5d" % niter)

        # Compute IndAB
        valA = (r_vec[0].sum_of_squares() / start_resid[0]) ** 0.5
        if valA < conv:
            cA = "*"
        else:
            cA = " "

        # Compute IndBA
        valB = (r_vec[1].sum_of_squares() / start_resid[1]) ** 0.5
        if valB < conv:
            cB = "*"
        else:
            cB = " "

        core.print_out("    %5s %15.6e%1s %15.6e%1s %9d\n" %
                       (niter, valA, cA, valB, cB, time.time() - tstart))
        return [valA, valB]

    # Compute the solver
    vecs, resid = solvers.cg_solver(
        [rhsA, rhsB], hessian_vec, apply_precon, maxiter=maxiter, rcond=conv, printlvl=0, printer=pfunc)
    core.print_out("   " + ("-" * sep_size) + "\n")

    return vecs
Пример #26
0
    def __call__(self, mol1_wfn, mol2_wfn):
        nbf = self.p.dimer_basis.nbf()
        nbf1 = mol1_wfn.nso()
        nbf2 = mol2_wfn.nso()

        U, S, VT = np.linalg.svd(mol1_wfn.Da())
        C_left = np.dot(U, np.diag(np.sqrt(S)))
        C_right = np.dot(VT.T, np.diag(np.sqrt(S)))

        C_left_ = core.Matrix(nbf, max(nbf1, nbf2))
        C_right_ = core.Matrix(nbf, max(nbf1, nbf2))

        C_left_.np[:nbf1, :nbf1] = C_left[:, :]
        C_right_.np[:nbf1, :nbf1] = C_right[:, :]

        self.jk.C_clear()
        self.jk.C_left_add(C_left_)
        self.jk.C_right_add(C_right_)
        self.jk.compute()

        J = self.jk.J()[0]
        D1 = self.jk.D()[0]
        assert np.max(np.abs(D1.np[:nbf1, :nbf1] - mol1_wfn.Da().np)) < 1e-10

        J_1to2 = J.np[nbf1:, nbf1:]
        elel_1to2 = 2 * np.sum(J_1to2 * mol2_wfn.Da())
        nuel_1to2 = 2 * (self.p.dimer_V.vector_dot(D1) -
                         self.p.monomer1_V.vector_dot(mol1_wfn.Da()))
        ovlp1 = core.Matrix.doublet(self.p.dimer_S, D1, False, False)

        #######################################################################

        U, S, VT = np.linalg.svd(mol2_wfn.Da())
        C_left = np.dot(U, np.diag(np.sqrt(S)))
        C_right = np.dot(VT.T, np.diag(np.sqrt(S)))

        C_left_ = core.Matrix(nbf, max(nbf1, nbf2))
        C_right_ = core.Matrix(nbf, max(nbf1, nbf2))

        C_left_.np[-nbf2:, -nbf2:] = C_left[:, :]
        C_right_.np[-nbf2:, -nbf2:] = C_right[:, :]

        self.jk.C_clear()
        self.jk.C_left_add(C_left_)
        self.jk.C_right_add(C_right_)
        self.jk.compute()

        J = self.jk.J()[0]
        D2 = self.jk.D()[0]
        assert np.max(np.abs(D2.np[nbf1:, nbf1:] - mol2_wfn.Da().np)) < 1e-10

        J_2to1 = J.np[:nbf1, :nbf1]
        elel_2to1 = 2 * np.sum(J_2to1 * mol1_wfn.Da())
        nuel_2to1 = 2 * (self.p.dimer_V.vector_dot(D2) -
                         self.p.monomer2_V.vector_dot(mol2_wfn.Da()))

        ovlp2 = core.Matrix.doublet(self.p.dimer_S, D2, False, False)

        overlap = 4 * np.sum(ovlp1.np * ovlp2.np.T)
        #assert abs(elel_1to2 - elel_2to1) < 1e-10

        electrostatic = self.p.nuclear_interaction_energy + nuel_1to2 + nuel_2to1 + elel_1to2 + elel_2to1
        return electrostatic, overlap
Пример #27
0
def exchange(cache, jk, do_print=True):
    """
    Computes the E10 exchange (S^2 and S^inf) from a build_sapt_jk_cache datacache.
    """

    if do_print:
        core.print_out("\n  ==> E10 Exchange <== \n\n")

    # Build potenitals
    h_A = cache["V_A"].clone()
    h_A.axpy(2.0, cache["J_A"])
    h_A.axpy(-1.0, cache["K_A"])

    h_B = cache["V_B"].clone()
    h_B.axpy(2.0, cache["J_B"])
    h_B.axpy(-1.0, cache["K_B"])

    w_A = cache["V_A"].clone()
    w_A.axpy(2.0, cache["J_A"])

    w_B = cache["V_B"].clone()
    w_B.axpy(2.0, cache["J_B"])

    # Build inverse exchange metric
    nocc_A = cache["Cocc_A"].shape[1]
    nocc_B = cache["Cocc_B"].shape[1]
    SAB = core.Matrix.triplet(
        cache["Cocc_A"], cache["S"], cache["Cocc_B"], True, False, False)
    num_occ = nocc_A + nocc_B

    Sab = core.Matrix(num_occ, num_occ)
    Sab.np[:nocc_A, nocc_A:] = SAB.np
    Sab.np[nocc_A:, :nocc_A] = SAB.np.T
    Sab.np[np.diag_indices_from(Sab.np)] += 1
    Sab.power(-1.0, 1.e-14)
    Sab.np[np.diag_indices_from(Sab.np)] -= 1.0

    Tmo_AA = core.Matrix.from_array(Sab.np[:nocc_A, :nocc_A])
    Tmo_BB = core.Matrix.from_array(Sab.np[nocc_A:, nocc_A:])
    Tmo_AB = core.Matrix.from_array(Sab.np[:nocc_A, nocc_A:])

    T_A = np.dot(cache["Cocc_A"], Tmo_AA).dot(cache["Cocc_A"].np.T)
    T_B = np.dot(cache["Cocc_B"], Tmo_BB).dot(cache["Cocc_B"].np.T)
    T_AB = np.dot(cache["Cocc_A"], Tmo_AB).dot(cache["Cocc_B"].np.T)

    S = cache["S"]

    D_A = cache["D_A"]
    P_A = cache["P_A"]

    D_B = cache["D_B"]
    P_B = cache["P_B"]

    # Compute the J and K matrices
    jk.C_clear()

    jk.C_left_add(cache["Cocc_A"])
    jk.C_right_add(core.Matrix.doublet(cache["Cocc_A"], Tmo_AA, False, False))

    jk.C_left_add(cache["Cocc_B"])
    jk.C_right_add(core.Matrix.doublet(cache["Cocc_A"], Tmo_AB, False, False))

    jk.C_left_add(cache["Cocc_A"])
    jk.C_right_add(core.Matrix.chain_dot(P_B, S, cache["Cocc_A"]))

    jk.compute()

    JT_A, JT_AB, Jij = jk.J()
    KT_A, KT_AB, Kij = jk.K()

    # Start S^2
    Exch_s2 = 0.0

    tmp = core.Matrix.chain_dot(D_A, S, D_B, S, P_A)
    Exch_s2 -= 2.0 * w_B.vector_dot(tmp)

    tmp = core.Matrix.chain_dot(D_B, S, D_A, S, P_B)
    Exch_s2 -= 2.0 * w_A.vector_dot(tmp)

    tmp = core.Matrix.chain_dot(P_A, S, D_B)
    Exch_s2 -= 2.0 * Kij.vector_dot(tmp)

    if do_print:
        core.print_out(print_sapt_var("Exch10(S^2) ", Exch_s2, short=True))
        core.print_out("\n")

    # Start Sinf
    Exch10 = 0.0
    Exch10 -= 2.0 * np.vdot(cache["D_A"], cache["K_B"])
    Exch10 += 2.0 * np.vdot(T_A, h_B.np)
    Exch10 += 2.0 * np.vdot(T_B, h_A.np)
    Exch10 += 2.0 * np.vdot(T_AB, h_A.np + h_B.np)
    Exch10 += 4.0 * np.vdot(T_B, JT_AB.np - 0.5 * KT_AB.np)
    Exch10 += 4.0 * np.vdot(T_A, JT_AB.np - 0.5 * KT_AB.np)
    Exch10 += 4.0 * np.vdot(T_B, JT_A.np - 0.5 * KT_A.np)
    Exch10 += 4.0 * np.vdot(T_AB, JT_AB.np - 0.5 * KT_AB.np.T)

    if do_print:
        core.set_variable("Exch10", Exch10)
        core.print_out(print_sapt_var("Exch10", Exch10, short=True))
        core.print_out("\n")

    return {"Exch10(S^2)": Exch_s2, "Exch10": Exch10}
Пример #28
0
def induction(cache, jk, do_print=True, maxiter=12, conv=1.e-8, do_response=True, Sinf=False):
    """
    Compute Ind20 and Exch-Ind20 quantities from a SAPT cache and JK object.
    """

    if do_print:
        core.print_out("\n  ==> E20 Induction <== \n\n")

    # Build Induction and Exchange-Induction potentials
    S = cache["S"]

    D_A = cache["D_A"]
    V_A = cache["V_A"]
    J_A = cache["J_A"]
    K_A = cache["K_A"]

    D_B = cache["D_B"]
    V_B = cache["V_B"]
    J_B = cache["J_B"]
    K_B = cache["K_B"]

    K_O = cache["K_O"]
    J_O = cache["J_O"]

    jk.C_clear()

    jk.C_left_add(core.Matrix.chain_dot(D_B, S, cache["Cocc_A"]))
    jk.C_right_add(cache["Cocc_A"])

    jk.C_left_add(core.Matrix.chain_dot(D_B, S, D_A, S, cache["Cocc_B"]))
    jk.C_right_add(cache["Cocc_B"])

    jk.C_left_add(core.Matrix.chain_dot(D_A, S, D_B, S, cache["Cocc_A"]))
    jk.C_right_add(cache["Cocc_A"])

    jk.compute()

    J_Ot, J_P_B, J_P_A = jk.J()
    K_Ot, K_P_B, K_P_A = jk.K()

    # Exch-Ind Potential A
    EX_A = K_B.clone()
    EX_A.scale(-1.0)
    EX_A.axpy(-2.0, core.Matrix.chain_dot(S, D_B, J_A))
    EX_A.axpy(1.0, K_O)
    EX_A.axpy(-2.0, J_O)

    EX_A.axpy(1.0, core.Matrix.chain_dot(S, D_B, K_A))
    EX_A.axpy(-2.0, core.Matrix.chain_dot(J_B, D_B, S))
    EX_A.axpy(1.0, core.Matrix.chain_dot(K_B, D_B, S))

    EX_A.axpy(2.0, core.Matrix.chain_dot(S, D_B, J_A, D_B, S))
    EX_A.axpy(2.0, core.Matrix.chain_dot(J_B, D_A, S, D_B, S))
    EX_A.axpy(-1.0, core.Matrix.chain_dot(K_O, D_B, S))
    EX_A.axpy(2.0, J_P_B)

    EX_A.axpy(2.0, core.Matrix.chain_dot(S, D_B, S, D_A, J_B))
    EX_A.axpy(-1.0, core.Matrix.chain_dot(S, D_B,
                                          K_O, trans=[False, False, True]))
    EX_A.axpy(-1.0, core.Matrix.chain_dot(S, D_B, V_A))
    EX_A.axpy(-1.0, core.Matrix.chain_dot(V_B, D_B, S))
    EX_A.axpy(1.0, core.Matrix.chain_dot(S, D_B, V_A, D_B, S))
    EX_A.axpy(1.0, core.Matrix.chain_dot(V_B, D_A, S, D_B, S))
    EX_A.axpy(1.0, core.Matrix.chain_dot(S, D_B, S, D_A, V_B))

    EX_A = core.Matrix.chain_dot(
        cache["Cocc_A"], EX_A, cache["Cvir_A"], trans=[True, False, False])

    # Exch-Ind Potential B
    EX_B = K_A.clone()
    EX_B.scale(-1.0)
    EX_B.axpy(-2.0, core.Matrix.chain_dot(S, D_A, J_B))
    EX_B.axpy(1.0, K_O.transpose())
    EX_B.axpy(-2.0, J_O)

    EX_B.axpy(1.0, core.Matrix.chain_dot(S, D_A, K_B))
    EX_B.axpy(-2.0, core.Matrix.chain_dot(J_A, D_A, S))
    EX_B.axpy(1.0, core.Matrix.chain_dot(K_A, D_A, S))

    EX_B.axpy(2.0, core.Matrix.chain_dot(S, D_A, J_B, D_A, S))
    EX_B.axpy(2.0, core.Matrix.chain_dot(J_A, D_B, S, D_A, S))
    EX_B.axpy(-1.0, core.Matrix.chain_dot(K_O,
                                          D_A, S, trans=[True, False, False]))
    EX_B.axpy(2.0, J_P_A)

    EX_B.axpy(2.0, core.Matrix.chain_dot(S, D_A, S, D_B, J_A))
    EX_B.axpy(-1.0, core.Matrix.chain_dot(S, D_A, K_O))
    EX_B.axpy(-1.0, core.Matrix.chain_dot(S, D_A, V_B))
    EX_B.axpy(-1.0, core.Matrix.chain_dot(V_A, D_A, S))
    EX_B.axpy(1.0, core.Matrix.chain_dot(S, D_A, V_B, D_A, S))
    EX_B.axpy(1.0, core.Matrix.chain_dot(V_A, D_B, S, D_A, S))
    EX_B.axpy(1.0, core.Matrix.chain_dot(S, D_A, S, D_B, V_A))

    EX_B = core.Matrix.chain_dot(
        cache["Cocc_B"], EX_B, cache["Cvir_B"], trans=[True, False, False])

    # Build electrostatic potenital
    w_A = cache["V_A"].clone()
    w_A.axpy(2.0, cache["J_A"])

    w_B = cache["V_B"].clone()
    w_B.axpy(2.0, cache["J_B"])

    w_B_MOA = core.Matrix.triplet(
        cache["Cocc_A"], w_B, cache["Cvir_A"], True, False, False)
    w_A_MOB = core.Matrix.triplet(
        cache["Cocc_B"], w_A, cache["Cvir_B"], True, False, False)

    # Do uncoupled
    core.print_out("   => Uncoupled Induction <= \n\n")
    unc_x_B_MOA = w_B_MOA.clone()
    unc_x_B_MOA.np[
        :] /= (cache["eps_occ_A"].np.reshape(-1, 1) - cache["eps_vir_A"].np)
    unc_x_A_MOB = w_A_MOB.clone()
    unc_x_A_MOB.np[
        :] /= (cache["eps_occ_B"].np.reshape(-1, 1) - cache["eps_vir_B"].np)

    unc_ind_ab = 2.0 * unc_x_B_MOA.vector_dot(w_B_MOA)
    unc_ind_ba = 2.0 * unc_x_A_MOB.vector_dot(w_A_MOB)
    unc_indexch_ab = 2.0 * unc_x_B_MOA.vector_dot(EX_A)
    unc_indexch_ba = 2.0 * unc_x_A_MOB.vector_dot(EX_B)

    ret = {}
    ret["Ind20,u (A<-B)"] = unc_ind_ab
    ret["Ind20,u (A->B)"] = unc_ind_ba
    ret["Ind20,u"] = unc_ind_ab + unc_ind_ba
    ret["Exch-Ind20,u (A<-B)"] = unc_indexch_ab
    ret["Exch-Ind20,u (A->B)"] = unc_indexch_ba
    ret["Exch-Ind20,u"] = unc_indexch_ba + unc_indexch_ab

    plist = ["Ind20,u (A<-B)", "Ind20,u (A->B)", "Ind20,u", "Exch-Ind20,u (A<-B)",
             "Exch-Ind20,u (A->B)", "Exch-Ind20,u"]

    if do_print:
        for name in plist:
            # core.set_variable(name, ret[name])
            core.print_out(print_sapt_var(name, ret[name], short=True))
            core.print_out("\n")

    # Exch-Ind without S^2
    if Sinf:
        nocc_A = cache["Cocc_A"].shape[1]
        nocc_B = cache["Cocc_B"].shape[1]
        SAB = core.Matrix.triplet(
            cache["Cocc_A"], cache["S"], cache["Cocc_B"], True, False, False)
        num_occ = nocc_A + nocc_B

        Sab = core.Matrix(num_occ, num_occ)
        Sab.np[:nocc_A, nocc_A:] = SAB.np
        Sab.np[nocc_A:, :nocc_A] = SAB.np.T
        Sab.np[np.diag_indices_from(Sab.np)] += 1
        Sab.power(-1.0, 1.e-14)

        Tmo_AA = core.Matrix.from_array(Sab.np[:nocc_A, :nocc_A])
        Tmo_BB = core.Matrix.from_array(Sab.np[nocc_A:, nocc_A:])
        Tmo_AB = core.Matrix.from_array(Sab.np[:nocc_A, nocc_A:])

        T_A = core.Matrix.triplet(cache["Cocc_A"], Tmo_AA, cache["Cocc_A"], False, False, True)
        T_B = core.Matrix.triplet(cache["Cocc_B"], Tmo_BB, cache["Cocc_B"], False, False, True)
        T_AB = core.Matrix.triplet(cache["Cocc_A"], Tmo_AB, cache["Cocc_B"], False, False, True)

        sT_A = core.Matrix.chain_dot(cache["Cvir_A"], unc_x_B_MOA, Tmo_AA, cache["Cocc_A"], 
            trans=[False, True, False, True])
        sT_B = core.Matrix.chain_dot(cache["Cvir_B"], unc_x_A_MOB, Tmo_BB, cache["Cocc_B"], 
            trans=[False, True, False, True])
        sT_AB = core.Matrix.chain_dot(cache["Cvir_A"], unc_x_B_MOA, Tmo_AB, cache["Cocc_B"], 
            trans=[False, True, False, True])
        sT_BA = core.Matrix.chain_dot(cache["Cvir_B"], unc_x_A_MOB, Tmo_AB, cache["Cocc_A"], 
            trans=[False, True, True, True])
        
        jk.C_clear()
    
        jk.C_left_add(core.Matrix.chain_dot(cache["Cocc_A"], Tmo_AA))
        jk.C_right_add(cache["Cocc_A"])
    
        jk.C_left_add(core.Matrix.chain_dot(cache["Cocc_B"], Tmo_BB))
        jk.C_right_add(cache["Cocc_B"])
    
        jk.C_left_add(core.Matrix.chain_dot(cache["Cocc_A"], Tmo_AB))
        jk.C_right_add(cache["Cocc_B"])
    
        jk.compute()
    
        J_AA_inf, J_BB_inf, J_AB_inf = jk.J()
        K_AA_inf, K_BB_inf, K_AB_inf = jk.K()

        # A <- B
        EX_AA_inf = V_B.clone()
        EX_AA_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_AB, V_B, trans=[False, True, False]))
        EX_AA_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_B, V_B))
        EX_AA_inf.axpy(2.00, J_AB_inf)
        EX_AA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AB_inf, trans=[False, True, False]))
        EX_AA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_B, J_AB_inf))
        EX_AA_inf.axpy(2.00, J_BB_inf)
        EX_AA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_BB_inf, trans=[False, True, False]))
        EX_AA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_B, J_BB_inf))
        EX_AA_inf.axpy(-1.00, K_AB_inf.transpose())
        EX_AA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AB_inf, trans=[False, True, True]))
        EX_AA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_B, K_AB_inf, trans=[False, False, True]))
        EX_AA_inf.axpy(-1.00, K_BB_inf)
        EX_AA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_BB_inf, trans=[False, True, False]))
        EX_AA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_B, K_BB_inf))

        EX_AB_inf = V_A.clone()
        EX_AB_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_AB, V_A, trans=[False, True, False]))
        EX_AB_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_B, V_A))
        EX_AB_inf.axpy(2.00, J_AA_inf)
        EX_AB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AA_inf, trans=[False, True, False]))
        EX_AB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_B, J_AA_inf))
        EX_AB_inf.axpy(2.00, J_AB_inf)
        EX_AB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AB_inf, trans=[False, True, False]))
        EX_AB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_B, J_AB_inf))
        EX_AB_inf.axpy(-1.00, K_AA_inf)
        EX_AB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AA_inf, trans=[False, True, False]))
        EX_AB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_B, K_AA_inf))
        EX_AB_inf.axpy(-1.00, K_AB_inf)
        EX_AB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AB_inf, trans=[False, True, False]))
        EX_AB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_B, K_AB_inf))

        # B <- A
        EX_BB_inf = V_A.clone()
        EX_BB_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_AB, V_A))
        EX_BB_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_A, V_A))
        EX_BB_inf.axpy(2.00, J_AB_inf)
        EX_BB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AB_inf))
        EX_BB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_A, J_AB_inf))
        EX_BB_inf.axpy(2.00, J_AA_inf)
        EX_BB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AA_inf))
        EX_BB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_A, J_AA_inf))
        EX_BB_inf.axpy(-1.00, K_AB_inf)
        EX_BB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AB_inf))
        EX_BB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_A, K_AB_inf))
        EX_BB_inf.axpy(-1.00, K_AA_inf)
        EX_BB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AA_inf))
        EX_BB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_A, K_AA_inf))

        EX_BA_inf = V_B.clone()
        EX_BA_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_AB, V_B))
        EX_BA_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_A, V_B))
        EX_BA_inf.axpy(2.00, J_BB_inf)
        EX_BA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_BB_inf))
        EX_BA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_A, J_BB_inf))
        EX_BA_inf.axpy(2.00, J_AB_inf)
        EX_BA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AB_inf))
        EX_BA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_A, J_AB_inf))
        EX_BA_inf.axpy(-1.00, K_BB_inf)
        EX_BA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_BB_inf))
        EX_BA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_A, K_BB_inf))
        EX_BA_inf.axpy(-1.00, K_AB_inf.transpose())
        EX_BA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AB_inf, trans=[False, False, True]))
        EX_BA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_A, K_AB_inf, trans=[False, False, True]))
        
        unc_ind_ab_total = 2.0 * (sT_A.vector_dot(EX_AA_inf) + sT_AB.vector_dot(EX_AB_inf))
        unc_ind_ba_total = 2.0 * (sT_B.vector_dot(EX_BB_inf) + sT_BA.vector_dot(EX_BA_inf))
        unc_indexch_ab_inf = unc_ind_ab_total - unc_ind_ab
        unc_indexch_ba_inf = unc_ind_ba_total - unc_ind_ba
        
        ret["Exch-Ind20,u (A<-B) (S^inf)"] = unc_indexch_ab_inf
        ret["Exch-Ind20,u (A->B) (S^inf)"] = unc_indexch_ba_inf
        ret["Exch-Ind20,u (S^inf)"] = unc_indexch_ba_inf + unc_indexch_ab_inf

        if do_print:
            for name in plist[3:]:
                name = name + ' (S^inf)'

                core.print_out(print_sapt_var(name, ret[name], short=True))
                core.print_out("\n")

    # Do coupled
    if do_response:
        core.print_out("\n   => Coupled Induction <= \n\n")

        x_B_MOA, x_A_MOB = _sapt_cpscf_solve(
            cache, jk, w_B_MOA, w_A_MOB, 20, 1.e-6)

        ind_ab = 2.0 * x_B_MOA.vector_dot(w_B_MOA)
        ind_ba = 2.0 * x_A_MOB.vector_dot(w_A_MOB)
        indexch_ab = 2.0 * x_B_MOA.vector_dot(EX_A)
        indexch_ba = 2.0 * x_A_MOB.vector_dot(EX_B)

        ret["Ind20,r (A<-B)"] = ind_ab
        ret["Ind20,r (A->B)"] = ind_ba
        ret["Ind20,r"] = ind_ab + ind_ba
        ret["Exch-Ind20,r (A<-B)"] = indexch_ab
        ret["Exch-Ind20,r (A->B)"] = indexch_ba
        ret["Exch-Ind20,r"] = indexch_ba + indexch_ab

        if do_print:
            core.print_out("\n")
            for name in plist:
                name = name.replace(",u", ",r")

                # core.set_variable(name, ret[name])
                core.print_out(print_sapt_var(name, ret[name], short=True))
                core.print_out("\n")

        # Exch-Ind without S^2
        if Sinf:
            cT_A = core.Matrix.chain_dot(cache["Cvir_A"], x_B_MOA, Tmo_AA, cache["Cocc_A"], 
                trans=[False, True, False, True])
            cT_B = core.Matrix.chain_dot(cache["Cvir_B"], x_A_MOB, Tmo_BB, cache["Cocc_B"], 
                trans=[False, True, False, True])
            cT_AB = core.Matrix.chain_dot(cache["Cvir_A"], x_B_MOA, Tmo_AB, cache["Cocc_B"], 
                trans=[False, True, False, True])
            cT_BA = core.Matrix.chain_dot(cache["Cvir_B"], x_A_MOB, Tmo_AB, cache["Cocc_A"], 
                trans=[False, True, True, True])

            ind_ab_total = 2.0 * (cT_A.vector_dot(EX_AA_inf) + cT_AB.vector_dot(EX_AB_inf))
            ind_ba_total = 2.0 * (cT_B.vector_dot(EX_BB_inf) + cT_BA.vector_dot(EX_BA_inf))
            indexch_ab_inf = ind_ab_total - ind_ab
            indexch_ba_inf = ind_ba_total - ind_ba
        
            ret["Exch-Ind20,r (A<-B) (S^inf)"] = indexch_ab_inf
            ret["Exch-Ind20,r (A->B) (S^inf)"] = indexch_ba_inf
            ret["Exch-Ind20,r (S^inf)"] = indexch_ba_inf + indexch_ab_inf

            if do_print:
                for name in plist[3:]:
                    name = name.replace(",u", ",r") + ' (S^inf)'

                    core.print_out(print_sapt_var(name, ret[name], short=True))
                    core.print_out("\n")

    return ret
Пример #29
0
    def extrapolate(self):
        # Limit size of DIIS vector
        diis_count = len(self.vector)

        if diis_count == 0:
            raise Exception("DIIS: No previous vectors.")
        if diis_count == 1:
            return self.vector[0]

        if diis_count > self.max_vec:
            # Remove oldest vector
            del self.vector[0]
            del self.error[0]
            diis_count -= 1

        # Build error matrix B
        B = np.empty((diis_count + 1, diis_count + 1))
        B[-1, :] = 1
        B[:, -1] = 1
        B[-1, -1] = 0
        for num1, e1 in enumerate(self.error):
            B[num1, num1] = e1.vector_dot(e1)
            for num2, e2 in enumerate(self.error):
                if num2 >= num1: continue
                val = e1.vector_dot(e2)
                B[num1, num2] = B[num2, num1] = val

        # Build residual vector
        resid = np.zeros(diis_count + 1)
        resid[-1] = 1

        # Solve pulay equations

        # Yea, yea this is unstable make it stable
        iszero = np.any(np.diag(B)[:-1] <= 0.0)
        if iszero:
            S = np.ones((diis_count + 1))
        else:
            S = np.ones((diis_count + 1))
            S[:-1] = np.diag(B)[:-1]
            S = S**-0.5
            S[-1] = 1

        # Then we gotta do a custom inverse
        B *= S[:, None] * S

        eigvals, eigvecs = np.linalg.eigh(B)
        maxval = np.max(np.abs(eigvals[[0, -1]])) * 1.e-12

        # If the relative is too small, zero it out
        eigvals[(np.abs(eigvals) < maxval)] = 0

        # Make sure we dont invert actual zeros!
        eigvals[np.abs(eigvals) > 1.e-16] = eigvals[
            np.abs(eigvals) > 1.e-16]**-1

        invB = np.dot(eigvecs * eigvals, eigvecs.T)
        ci = np.dot(invB, resid) * S

        # combination of previous fock matrices
        V = core.Matrix("DIIS result", self.vector[0].rowdim(),
                        self.vector[1].coldim())
        for num, c in enumerate(ci[:-1]):
            V.axpy(c, self.vector[num])

        return V