Пример #1
0
def test_constructors():
    int_row = 10
    int_col = 20
    # int row/col
    m1 = Matrix(int_row, int_col)
    check_dense_mat(m1, int_row, int_col)

    # int row/col w/ name
    m2 = Matrix("m2", int_row, int_col)
    check_dense_mat(m2, int_row, int_col, "m2")

    dim_row = Dimension([3, 2, 1, 4])
    dim_col = Dimension([4, 2, 0, 2])
    # dim row/col (default sym)
    m3 = Matrix("m3", dim_row, dim_col)
    check_block_sparse_mat(m3, 4, dim_row, dim_col, "m3")

    # dim row/col symm specified
    m4 = Matrix("m4", dim_row, dim_col, 2)
    check_block_sparse_mat(m4, 4, dim_row, dim_col, "m4", 2)
Пример #2
0
def test_clone():
    dim = Dimension([1, 2, 3])
    vec = Vector(dim)
    copy = vec.clone()
    assert copy.dimpi() == dim
Пример #3
0
        a_name = "A^T"
    else:
        a_name = "A  "
    if bt:
        b_name = "B^T"
    else:
        b_name = "B  "
    return f"  N(G){gsz} || G(A): {Ga} || G(B): {Gb} || doublet({a_name} x {b_name}) || {sq_or_rec.upper()}"


dim_choices1 = [2, 3, 4, 5, 6, 7, 8, 9]
dim_choices2 = [x + 1 for x in dim_choices1]
doublet_args = []
group_size = 4
for group_size in [1, 2, 4, 8]:
    d1 = Dimension([dim_choices1[x] for x in range(group_size)])
    d2 = Dimension([dim_choices2[x] for x in range(group_size)])

    a11_set = [(d1, d1, H) for H in range(group_size)]
    b11_set = [(d1, d1, H) for H in range(group_size)]

    for aargs, bargs, at, bt in itertools.product(a11_set, b11_set,
                                                  [True, False],
                                                  [True, False]):
        adl, adr, Ga = aargs
        bdl, bdr, Gb = bargs
        doublet_args.append(
            (group_size, adl, adr, Ga, bdl, bdr, Gb, at, bt, 'square'))
    a12_set = [(d1, d2, H) for H in range(group_size)]
    b12_set = [(d1, d2, H) for H in range(group_size)]
    b21_set = [(d2, d1, H) for H in range(group_size)]
Пример #4
0
def array_to_matrix(
        self,
        arr: Union[np.ndarray, List[np.ndarray]],
        name: str = "New Matrix",
        dim1: Union[List, Tuple, core.Dimension] = None,
        dim2: core.Dimension = None) -> Union[core.Matrix, core.Vector]:
    """
    Converts a numpy array or list of numpy arrays into a Psi4 Matrix (irreped if list).

    Parameters
    ----------
    arr
        Numpy array or list of arrays to use as the data for a new core.Matrix
    name
        Name to give the new core.Matrix
    dim1
        If a single dense numpy array is given, a dimension can be supplied to
        apply irreps to this array. Note that this discards all extra information
        given in the matrix besides the diagonal blocks determined by the passed
        dimension.
    dim2
        Same as dim1 only if using a psi4.core.Dimension object.

    Returns
    -------
    Matrix or Vector
       Returns the given Psi4 object

    Notes
    -----
    This is a generalized function to convert a NumPy array to a Psi4 object

    Examples
    --------

    >>> data = np.random.rand(20,1)
    >>> vector = psi4.core.Matrix.from_array(data)

    >>> irrep_data = [np.random.rand(2, 2), np.empty(shape=(0,3)), np.random.rand(4, 4)]
    >>> matrix = psi4.core.Matrix.from_array(irrep_data)
    >>> print(matrix.rowdim().to_tuple())
    (2, 0, 4)
    """

    # What type is it? MRO can help.
    arr_type = self.__mro__[0]

    # Irreped case
    if isinstance(arr, (list, tuple)):
        if (dim1 is not None) or (dim2 is not None):
            raise ValidationError(
                "Array_to_Matrix: If passed input is list of arrays dimension cannot be specified."
            )

        irreps = len(arr)
        if arr_type == core.Matrix:
            sdim1 = core.Dimension(irreps)
            sdim2 = core.Dimension(irreps)

            for i in range(irreps):
                d1, d2 = _find_dim(arr[i], 2)
                sdim1[i] = d1
                sdim2[i] = d2

            ret = self(name, sdim1, sdim2)

        elif arr_type == core.Vector:
            sdim1 = core.Dimension(irreps)

            for i in range(irreps):
                d1 = _find_dim(arr[i], 1)
                sdim1[i] = d1[0]

            ret = self(name, sdim1)
        else:
            raise ValidationError(
                "Array_to_Matrix: type '%s' is not recognized." %
                str(arr_type))

        for view, vals in zip(ret.nph, arr):
            if 0 in view.shape: continue
            view[:] = vals

        return ret

    # No irreps implied by list
    else:
        if arr_type == core.Matrix:

            # Build an irreped array back out
            if dim1 is not None:
                if dim2 is None:
                    raise ValidationError(
                        "Array_to_Matrix: If dim1 is supplied must supply dim2 also"
                    )

                dim1 = core.Dimension.from_list(dim1)
                dim2 = core.Dimension.from_list(dim2)

                if dim1.n() != dim2.n():
                    raise ValidationError(
                        "Array_to_Matrix: Length of passed dim1 must equal length of dim2."
                    )

                ret = self(name, dim1, dim2)

                start1 = 0
                start2 = 0
                for num, interface in enumerate(ret.nph):
                    d1 = dim1[num]
                    d2 = dim2[num]
                    if (d1 == 0) or (d2 == 0):
                        continue

                    view = np.asarray(interface)
                    view[:] = arr[start1:start1 + d1, start2:start2 + d2]
                    start1 += d1
                    start2 += d2

                return ret

            # Simple case without irreps
            else:
                ret = self(name, arr.shape[0], arr.shape[1])
                ret.np[:] = arr
                return ret

        elif arr_type == core.Vector:
            # Build an irreped array back out
            if dim1 is not None:
                if dim2 is not None:
                    raise ValidationError(
                        "Array_to_Matrix: If dim2 should not be supplied for 1D vectors."
                    )

                dim1 = core.Dimension.from_list(dim1)
                ret = self(name, dim1)

                start1 = 0
                for num, interface in enumerate(ret.nph):
                    d1 = dim1[num]
                    if (d1 == 0):
                        continue

                    view = np.asarray(interface)
                    view[:] = arr[start1:start1 + d1]
                    start1 += d1

                return ret

            # Simple case without irreps
            else:
                ret = self(name, arr.shape[0])
                ret.np[:] = arr
                return ret

        else:
            raise ValidationError(
                "Array_to_Matrix: type '%s' is not recognized." %
                str(arr_type))