Пример #1
0
            for ar_id, ar in enumerate(arrays):

                win_T = so_map.read_map(d["window_T_%s_%s" % (sv, ar)])
                win_pol = so_map.read_map(d["window_pol_%s_%s" % (sv, ar)])

                window_tuple = (win_T, win_pol)

                del win_T, win_pol

                # we add fg alms to cmb alms in temperature
                alms_beamed = alms.copy()
                alms_beamed[0] += fglms[id_freq[d["nu_eff_%s_%s" % (sv, ar)]]]

                # we convolve signal + foreground with the beam of the array
                l, bl = pspy_utils.read_beam_file(d["beam_%s_%s" % (sv, ar)])
                alms_beamed = curvedsky.almxfl(alms_beamed, bl)

                if scenario == "noE": alms_beamed[1] *= 0
                if scenario == "noB": alms_beamed[2] *= 0

                # generate our signal only sim
                split = sph_tools.alm2map(alms_beamed, template[sv])

                # compute the alms of the sim

                master_alms[sv, ar, "nofilter"] = sph_tools.get_alms(
                    split, window_tuple, niter, lmax, dtype=sim_alm_dtype)

                # apply the k-space filter
Пример #2
0
                sv2_list += [sv2]
                ar2_list += [ar2]
                n_mcms += 1

print("number of mcm matrices to compute : %s" % n_mcms)
so_mpi.init(True)
subtasks = so_mpi.taskrange(imin=0, imax=n_mcms - 1)
print(subtasks)
for task in subtasks:
    task = int(task)
    sv1, ar1, sv2, ar2 = sv1_list[task], ar1_list[task], sv2_list[
        task], ar2_list[task]

    print("%s_%s x %s_%s" % (sv1, ar1, sv2, ar2))

    l, bl1 = pspy_utils.read_beam_file(d["beam_%s_%s" % (sv1, ar1)])
    win1_T = so_map.read_map(d["window_T_%s_%s" % (sv1, ar1)])
    win1_pol = so_map.read_map(d["window_pol_%s_%s" % (sv1, ar1)])

    l, bl2 = pspy_utils.read_beam_file(d["beam_%s_%s" % (sv2, ar2)])
    win2_T = so_map.read_map(d["window_T_%s_%s" % (sv2, ar2)])
    win2_pol = so_map.read_map(d["window_pol_%s_%s" % (sv2, ar2)])

    mbb_inv, Bbl = so_mcm.mcm_and_bbl_spin0and2(win1=(win1_T, win1_pol),
                                                win2=(win2_T, win2_pol),
                                                bl1=(bl1, bl1),
                                                bl2=(bl2, bl2),
                                                binning_file=d["binning_file"],
                                                niter=d["niter"],
                                                lmax=d["lmax"],
                                                type=d["type"],
Пример #3
0
pspy_utils.create_directory(plot_dir)

spectra = ["TT", "TE", "TB", "ET", "BT", "EE", "EB", "BE", "BB"]
surveys = d["surveys"]
lmax = d["lmax"]
type = d["type"]
binning_file = d["binning_file"]

lth = np.arange(2, lmax + 2)

for sv in surveys:
    arrays = d["arrays_%s" % sv]
    for id_ar1, ar1 in enumerate(arrays):
        for id_ar2, ar2 in enumerate(arrays):
            if id_ar1 > id_ar2: continue
            l, bl_ar1 = pspy_utils.read_beam_file(d["beam_%s_%s" % (sv, ar1)])
            l, bl_ar2 = pspy_utils.read_beam_file(d["beam_%s_%s" % (sv, ar2)])

            lb, bb_ar1 = pspy_utils.naive_binning(l, bl_ar1, binning_file,
                                                  lmax)
            lb, bb_ar2 = pspy_utils.naive_binning(l, bl_ar2, binning_file,
                                                  lmax)

            nsplits = len(d["maps_%s_%s" % (sv, ar1)])

            spec_name_noise = "%s_%s_%sx%s_%s_noise" % (type, sv, ar1, sv, ar2)
            print(spec_name_noise)
            lb, nbs = so_spectra.read_ps("%s/%s.dat" %
                                         (spectra_dir, spec_name_noise),
                                         spectra=spectra)