Пример #1
0
    def select_channel(self, signal_list):
        psspy.delete_all_plot_channels()

        for i in signal_list.keys():
            bus_list = signal_list.get(i)[0]
            if bus_list:
                psspy.bsys(sid=i, numbus=len(bus_list), buses=bus_list)
            variable_list = signal_list.get(i)[1]
            for variable in variable_list:
                f = None
                if variable == 'STATE':
                    f = psspy.state_channel
                elif variable == 'VAR':
                    f = psspy.var_channel

                if f is not None:
                    for j in bus_list:
                        f(status=[-1, j], ident=variable + str(j))
                else:
                    list_ = [
                        -1, -1, -1, 1,
                        map_Signal2Channel.get(variable), 1
                    ]
                    if bus_list:
                        psspy.chsb(i, 0, list_)
                    else:
                        psspy.chsb(0, 1, list_)
        psspy.strt(0, self.out_file)
Пример #2
0
        print "\n Reading dyr file:", settings['dyr_file']

        ierr = psspy.dyre_new([1, 1, 1, 1], settings['dyr_file'])
        ierr = psspy.docu(
            0, 1, [0, 3, 1])  #print the starting point of state variables

        # select time step ##############################################################
        ierr = psspy.dynamics_solution_params(
            [_i, _i, _i, _i, _i, _i, _i, _i],
            [_f, _f, 0.00833333333333333, _f, _f, _f, _f, _f],
            'out_file')  # the number here is the time step
        ################################################################################

        ##### select channels
        ierr = psspy.delete_all_plot_channels()  # clear channels

        BusDataDict = getBusData(rawFile)
        # get all the bus voltages, angles and frequencies
        for bus in BusDataDict:
            bus = int(bus)
            ierr = psspy.voltage_and_angle_channel([-1, -1, -1, bus])
            ierr = psspy.bus_frequency_channel([-1, bus])

    print 'Event: {}'.format(event)

    # get the nominal voltages as well as the fault impedance in ohms
    FaultBusNomVolt = float(BusDataDict[str(FaultBus)].NominalVolt)
    Zbase = FaultBusNomVolt**2 / Sbase  # float since Sbase is a float
    Rohm = FaultRpu * Zbase  # fault impedance in ohms
Пример #3
0
def Run_SIM(x,dyr_file,out_file): #inputs are strings\
	dyre = r"""C:\Users\psse\Desktop\Phylicia\Error and Accuracy Tracking Project Sp18\RTS96\%s""" %dyr_file
	out = r"""C:\Users\psse\Desktop\Phylicia\Error and Accuracy Tracking Project Sp18\RTS96\Channels\opt_%s.out""" %out_file
	print dyr_file
	ierr = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] #checking for errors
	output = StringIO.StringIO()
	with silence(output):
		ierr[0] = psspy.psseinit(200000) #need to have this high, otherwise there are not enough output channels
		ierr[1] = psspy.case(r"""C:\Users\psse\Desktop\Phylicia\Error and Accuracy Tracking Project Sp18\RTS96\RTS96DYN.sav""")
		ierr[2] = psspy.fdns([0,0,0,1,1,0,99,0])
		ierr[3] = psspy.cong(0)
		ierr[4] = psspy.conl(0,1,1,[0,0],[ 100.0,0.0,0.0, 100.0])
		ierr[5] = psspy.conl(0,1,2,[0,0],[ 100.0,0.0,0.0, 100.0])
		ierr[6] = psspy.conl(0,1,3,[0,0],[ 100.0,0.0,0.0, 100.0])
		ierr[7] = psspy.ordr(0)
		ierr[8] = psspy.fact()
		ierr[9] = psspy.tysl(0)
		ierr[10] = psspy.dyre_new([1,1,1,1],dyre,"","","") 
		ierr[11] = psspy.chsb(0,1,[-1,-1,-1,1,13,0]) #record voltage
		ierr[12] = psspy.chsb(0,1,[-1,-1,-1,1,12,0]) #record frequency
		ierr[13] = psspy.chsb(0,1,[-1,-1,-1,1,1,0]) #angle
		ierr[14] = psspy.chsb(0,1,[-1,-1,-1,1,16,0]) #line P & Q
		ierr[15] = psspy.strt_2([0,0],out)
		ierr[16] = psspy.run(0, 0.1,1,1,0)
		#ierr[17] = psspy.dist_branch_fault(217,218,r"""1""",1, 230.0,[0.0,-0.2E+10]) #Line Fault, NaN (network no good)
		#ierr[17] = psspy.dist_bus_fault(211,1, 230.0,[0.0,-0.2E+10]) #bus Fault, NaN (network no good)
		#a = int(x[0])
		#b = int(x[1])
		#ierr[17] = psspy.branch_chng_3(a,b,r"""1""",[0,_i,_i,_i,_i,_i],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],"") #Line Outage
		x = int(x)
		print "before machine change"
		ierr[17] = psspy.machine_chng_2(x,r"""1""",[0,_i,_i,_i,_i,_i],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f]) #Generator Outage
		print "after machine change"
		ierr[18] = psspy.change_channel_out_file(out)
		ierr[19] = psspy.run(0, 0.5,1,1,0) #this was 10
		psspy.dist_clear_fault(1)
		psspy.change_channel_out_file(out)
		psspy.run(1, 10.0,1,1,0)
		ierr[20] = psspy.delete_all_plot_channels()
		print "completed simulation"
	
	print ierr 
	run_output = output.getvalue()
	
	current_error = 0
	
	if "Network not converged" in run_output:
		print "Network not converged" #need to have something in if statement otherwise you get an indentation error
		result = 0 #this will go out to a if condition to rerun the program with a different selection of buses at this accuracy
		current_error = 1
		#raise SystemExit #this will quit the program
	elif "NaN" in run_output:
		print "NaN, network is no good"
		result = 0 #this will go out to a if condition to rerun the program with a different selection of buses at this accuracy
		current_error = 1
		#raise SystemExit #this will quit the program
	if current_error == 0 and "INITIAL CONDITIONS CHECK O.K." in run_output:
		print "continuing with study..."
	
        #Gather the data and output to excel
		data = dyntools.CHNF(out) #getting data from channel.out file
		d,e,z=data.get_data() #gathering data from data in dictionary format
	
        #Concatenate data so all data from one simulation is in one file
		c = 1 #must start at 1, not zero
        #Save Frequency and Voltage
		while c < 726: 
			if c < 100: #Record Angle
				v=z[c]
				new_v = ", ".join(str(i) for i in v) #this removes the brackets at the beginning and end of the list so can be processed in matlab 
				a = np.matrix(new_v) #make it into a matrix
				if c ==1:
					ang_all = np.copy(a)
				else: 
					ang_all = np.concatenate((ang_all,a),axis=0) #changed to concatenate vertically to test them all individually
			if c > 99 and c < 173: #Record Frequency
				v=z[c]
				new_v = ", ".join(str(i) for i in v) #this removes the brackets at the beginning and end of the list so can be processed in matlab 
				f = np.matrix(new_v) #make it into a matrix
				if c ==100:
					f_all = np.copy(f)
				else: 
					f_all = np.concatenate((f_all,f),axis=0) #changed to concatenate vertically to test them all individually
			if c > 172 and c < 246: #Record voltage magnitude
				v=z[c]
				new_v = ", ".join(str(i) for i in v) #this removes the brackets at the beginning and end of the list so can be processed in matlab 
				f = np.matrix(new_v) #make it into a matrix
				if c == 173:
					all = np.copy(f)
				else:
					all = np.concatenate((all,f),axis=0) #changed to concatenate vertically to test them all individually
			if c > 245 and c < 726: #Record P and Q
				if float(c/2) == int(c/2): #P , even numbers
					v=z[c]
					new_v = ", ".join(str(i) for i in v) #this removes the brackets at the beginning and end of the list so can be processed in matlab 
					f = np.matrix(new_v) #make it into a matrix
					if c == 246:
						P_all = np.copy(f)
					else:
						P_all = np.concatenate((P_all,f),axis=0) #changed to concatenate vertically to test them all individually
				else: #Q, odd numbers
					v=z[c]
					new_v = ", ".join(str(i) for i in v) #this removes the brackets at the beginning and end of the list so can be processed in matlab 
					f = np.matrix(new_v) #make it into a matrix
					if c == 247:
						Q_all = np.copy(f)
					else:
						Q_all = np.concatenate((Q_all,f),axis=0) #changed to concatenate vertically to test them all individually
			c = c+1
		result = [all, f_all, ang_all, P_all, Q_all] #0 is voltage, 1 is frequency
	return result
def main():
    try:
        ''' Drives a PSS/E Dynamic simulation and returns values '''

        ##### Get everything set up on the PSSE side
        redirect.psse2py()

        #output = StringIO.StringIO()
        with silence():
            psspy.psseinit(buses=80000)
            _i = psspy.getdefaultint()
            _f = psspy.getdefaultreal()
            _s = psspy.getdefaultchar()
        """
        # Redirect any psse outputs to psse_log
        psspy.report_output(2,psse_log,[0,0])
        psspy.progress_output(2,psse_log,[0,0]) #ignored
        psspy.alert_output(2,psse_log,[0,0]) #ignored
        psspy.prompt_output(2,psse_log,[0,0]) #ignored
        """

        k = 1
        for rawFile in RawFileList:

            # get the percentage loading from the raw file name
            if rawFile == 'savnw_conp.raw':
                PL = '100'
            else:
                rawFileName = rawFile.replace('.raw', '')
                PL = rawFileName[-3:]

            #Parameters. CONFIGURE THIS
            settings = {
                # use the same raw data in PSS/E and TS3ph #####################################
                'filename':
                rawFile,  #use the same raw data in PSS/E and TS3ph
                ################################################################################
                'dyr_file':
                dyrFile,
                'out_file':
                'output2.out',
                'pf_options': [
                    0,  #disable taps
                    0,  #disable area exchange
                    0,  #disable phase-shift
                    0,  #disable dc-tap
                    0,  #disable switched shunts
                    0,  #do not flat start
                    0,  #apply var limits immediately
                    0,  #disable non-div solution
                ]
            }

            ##### Load Raw Datafile and do power flow

            print "\n Reading raw file:", settings['filename']
            #    " Reading raw file: {0:s}".format('text')

            FaultRpu = 1e-06
            Sbase = 100.0

            #FaultBusNomVolt = float(BusDataDict[FaultBus].NominalVolt)

            #Zbase = FaultBusNomVolt**2/Sbase  # float since Sbase is a float
            #Rohm = FaultRpu*Zbase # fault impedance in ohms
            ##########################

            # run nested loops to see if there are any abnormal low voltages
            simCount = 0  # to keep track of how many simulations are already done
            croppedHVLineSet = list(HVLineSet)

            for line1 in croppedHVLineSet:
                for line2 in croppedHVLineSet:
                    # stability_indicator = 1
                    # Bus_issues = [] # list of buses where issues (low voltage or high dv_dt) are reported
                    # the lines cannot be the same
                    if line1 == line2:
                        continue
                    # part to ensure there is no duplication of events
                    currentSet = line1 + ';' + line2
                    currentSetReverse = line2 + ';' + line1
                    # if case causes topology inconsistencies, continue
                    if currentSet in topology_inconsistent_set or currentSetReverse in topology_inconsistent_set:
                        continue

                    line1Elements = line1.split(',')
                    line2Elements = line2.split(',')

                    # Line 1 params
                    L1Bus1 = int(line1Elements[0])
                    L1Bus2 = int(line1Elements[1])
                    L1cktID = line1Elements[2].strip("'").strip()

                    # Line 2 params
                    L2Bus1 = int(line2Elements[0])
                    L2Bus2 = int(line2Elements[1])
                    L2cktID = line2Elements[2].strip("'").strip()

                    FaultBusList = [L2Bus1,
                                    L2Bus2]  # apply faults at both buses

                    for FaultBus in FaultBusList:

                        output = StringIO.StringIO()
                        with silence():
                            ierr = psspy.read(0, settings['filename'])
                            #This is for the power flow. I'll use the solved case instead
                            ierr = psspy.fnsl(settings['pf_options'])

                            ##### Prepare case for dynamic simulation
                            # Load conversion (multiple-step)
                            psspy.conl(_i, _i, 1, [0, _i], [_f, _f, _f, _f])
                            # all constant power load to constant current, constant reactive power load to constant admittance
                            # standard practice for dynamic simulations, constant MVA load is not acceptable
                            psspy.conl(1, 1, 2, [_i, _i],
                                       [100.0, 0.0, 0.0, 100.0])
                            psspy.conl(_i, _i, 3, [_i, _i], [_f, _f, _f, _f])

                            ierr = psspy.cong(0)  #converting generators
                            ierr = psspy.ordr(
                                0
                            )  #order the network nodes to maintain sparsity
                            ierr = psspy.fact(
                            )  #factorise the network admittance matrix
                            ierr = psspy.tysl(0)  #solving the converted case
                            ierr = psspy.dynamicsmode(0)  #enter dynamics mode

                            print "\n Reading dyr file:", settings['dyr_file']

                            ierr = psspy.dyre_new([1, 1, 1, 1],
                                                  settings['dyr_file'])
                            ierr = psspy.docu(0, 1, [
                                0, 3, 1
                            ])  #print the starting point of state variables

                            # select time step ##############################################################
                            ierr = psspy.dynamics_solution_params(
                                [_i, _i, _i, _i, _i, _i, _i, _i], [
                                    _f, _f, 0.00833333333333333, _f, _f, _f,
                                    _f, _f
                                ],
                                'out_file')  # the number here is the time step
                            ################################################################################

                            ##### select channels
                            ierr = psspy.delete_all_plot_channels(
                            )  # clear channels

                            # get all the bus voltages, angles and frequencies
                            for bus in BusDataDict:
                                bus = int(bus)
                                ierr = psspy.voltage_and_angle_channel(
                                    [-1, -1, -1, bus])
                                ierr = psspy.bus_frequency_channel([-1, bus])

                        eventStr = PL + '/' + line1 + ';' + line2 + '/F' + str(
                            FaultBus)
                        print 'Event: {}'.format(eventStr)
                        # get the nominal voltages as well as the fault impedance in ohms
                        FaultBusNomVolt = float(
                            BusDataDict[str(FaultBus)].NominalVolt)
                        Zbase = FaultBusNomVolt**2 / Sbase  # float since Sbase is a float
                        Rohm = FaultRpu * Zbase  # fault impedance in ohms

                        # run simulation till just before the fault
                        ResultsDict = {}

                        #output = StringIO.StringIO()
                        with silence(output):
                            ierr = psspy.strt(0, settings['out_file'])
                            ierr = psspy.run(0, 0.1, 1, 1, 1)
                            ierr = psspy.dist_branch_trip(
                                L1Bus1, L1Bus2, L1cktID)

                        #output = StringIO.StringIO()
                        with silence(output):
                            ierr = psspy.run(0, 0.2, 1, 1, 1)  #fault on time

                        outputStr = output.getvalue()
                        if "Network not converged" in outputStr:
                            print 'For ' + eventStr + ':'
                            print 'Network did not converge between branch 1 trip and fault application, skipping...'
                            continue
                        #######

                        # check for convergence during fault
                        #output = StringIO.StringIO()
                        with silence(output):
                            ierr = psspy.dist_bus_fault(
                                FaultBus, 3, 0.0, [Rohm, 0.0])
                            ierr = psspy.run(0, 0.3, 1, 1, 1)  #fault off time
                            ierr = psspy.dist_clear_fault(1)

                        outputStr = output.getvalue()
                        if "Network not converged" in outputStr:
                            print 'For ' + eventStr + ':'
                            print 'Network did not converge during fault, skipping...'
                            continue

                        # check for convergence between fault clearance and second branch trip
                        #output = StringIO.StringIO()
                        with silence(output):
                            ierr = psspy.run(0, 0.31, 1, 1, 1)  #fault off time
                            ierr = psspy.dist_branch_trip(
                                L2Bus1, L2Bus2, L2cktID)
                            ierr = psspy.run(0, 0.35, 1, 1, 1)  #fault off time

                        # check for non-convergence
                        #output = StringIO.StringIO()
                        outputStr = output.getvalue()
                        if "Network not converged" in outputStr:
                            print 'For ' + eventStr + ':'
                            print 'Network did not converge between fault clearance and branch 2 trip, skipping...'
                            continue

                        # select run time ##############################################################
                        output = StringIO.StringIO()
                        with silence(output):
                            ierr = psspy.run(
                                0, 10.0, 1, 1, 1
                            )  #exit time (second argument is the end time)
                        ################################################################################
                        # check for non-convergence

                        outputStr = output.getvalue()
                        if "Network not converged" in outputStr:
                            print 'For ' + eventStr + ':'
                            print 'Network did not converge sometime after 2nd branch trip, skipping...'
                            continue

                        outputData = dyntools.CHNF(settings['out_file'])

                        data = outputData.get_data()

                        channelDict = data[
                            1]  # dictionary where the value is the channel description
                        valueDict = data[
                            2]  # dictionary where the values are the signal values, keys match that of channelDict

                        tme = valueDict['time']  # get time
                        ResultsDict['time'] = tme
                        for key in channelDict:
                            if key == 'time':
                                continue

                            signalDescr = channelDict[key]
                            words = signalDescr.split()
                            signalType = words[0].strip()
                            bus = words[1].strip()
                            #print Bus + ' ' + signalType
                            if bus not in ResultsDict:
                                ResultsDict[bus] = Results()

                            if signalType == 'VOLT':
                                ResultsDict[bus].volt = valueDict[key]

                            elif signalType == 'ANGL':
                                ResultsDict[bus].angle = valueDict[key]
                            elif signalType == 'FREQ':
                                ResultsDict[bus].freq = valueDict[key]

                        EventsDict[eventStr] = ResultsDict
                        simCount += 1
                        print 'Simulation ' + str(simCount) + ' out of ' + str(
                            totalSims)

                        # Uncomment next two lines if you want to see the output
                        #with open('output'+str(k) + '.txt','w') as f:
                        #    f.write(outputStr)
                        k += 1

        save_obj(EventsDict, 'EventData')
    except Exception:
        traceback.print_exc(file=logfile)
    sys.exit(0)
Пример #5
0
def runPSSESimBatches(simList, dyrFile, objName):
    import sys, os
    # add psspy to the system path
    sys.path.append(r"C:\Program Files (x86)\PTI\PSSE33\PSSBIN")
    os.environ['PATH'] = (r"C:\Program Files (x86)\PTI\PSSE33\PSSBIN;" +
                          os.environ['PATH'])

    from contextlib import contextmanager
    import StringIO
    from getBusDataFn import getBusData

    @contextmanager
    def silence(file_object=None):

        #Discard stdout (i.e. write to null device) or
        #optionally write to given file-like object.

        if file_object is None:
            file_object = open(os.devnull, 'w')

        old_stdout = sys.stdout
        try:
            sys.stdout = file_object
            yield
        finally:
            sys.stdout = old_stdout
            if file_object is None:
                file_object.close()

    # Local imports
    import redirect
    import psspy
    import dyntools

    # getting the raw file

    ##### Get everything set up on the PSSE side
    redirect.psse2py()

    #output = StringIO.StringIO()
    with silence():
        psspy.psseinit(buses=80000)
        _i = psspy.getdefaultint()
        _f = psspy.getdefaultreal()
        _s = psspy.getdefaultchar()

    # some important parameters
    FaultRpu = 1e-06
    Sbase = 100.0
    EventsDict = {}
    for event in simList:
        eventWords = event.split('/')
        RawFileIndicator = eventWords[0].strip()
        linesOutage = eventWords[1].strip()
        FaultBus = eventWords[2].strip()[
            1:]  # exclude the 'F' at the beginning

        # get the raw file
        if RawFileIndicator == '100':
            rawFile = 'savnw_conp.raw'
        else:
            rawFile = 'savnw_conp{}.raw'.format(RawFileIndicator)

        #Parameters. CONFIGURE THIS
        settings = {
            # use the same raw data in PSS/E and TS3ph #####################################
            'filename':
            rawFile,  #use the same raw data in PSS/E and TS3ph
            ################################################################################
            'dyr_file':
            dyrFile,
            'out_file':
            'output2.out',
            'pf_options': [
                0,  #disable taps
                0,  #disable area exchange
                0,  #disable phase-shift
                0,  #disable dc-tap
                0,  #disable switched shunts
                0,  #do not flat start
                0,  #apply var limits immediately
                0,  #disable non-div solution
            ]
        }

        output = StringIO.StringIO()
        with silence(output):
            ierr = psspy.read(0, settings['filename'])
            #This is for the power flow. I'll use the solved case instead
            ierr = psspy.fnsl(settings['pf_options'])

            ##### Prepare case for dynamic simulation
            # Load conversion (multiple-step)
            psspy.conl(_i, _i, 1, [0, _i], [_f, _f, _f, _f])
            # all constant power load to constant current, constant reactive power load to constant admittance
            # standard practice for dynamic simulations, constant MVA load is not acceptable
            psspy.conl(1, 1, 2, [_i, _i], [100.0, 0.0, 0.0, 100.0])
            psspy.conl(_i, _i, 3, [_i, _i], [_f, _f, _f, _f])

            ierr = psspy.cong(0)  #converting generators
            ierr = psspy.ordr(0)  #order the network nodes to maintain sparsity
            ierr = psspy.fact()  #factorise the network admittance matrix
            ierr = psspy.tysl(0)  #solving the converted case
            ierr = psspy.dynamicsmode(0)  #enter dynamics mode

            print "\n Reading dyr file:", settings['dyr_file']

            ierr = psspy.dyre_new([1, 1, 1, 1], settings['dyr_file'])
            ierr = psspy.docu(
                0, 1, [0, 3, 1])  #print the starting point of state variables

            # select time step ##############################################################
            ierr = psspy.dynamics_solution_params(
                [_i, _i, _i, _i, _i, _i, _i, _i],
                [_f, _f, 0.00833333333333333, _f, _f, _f, _f, _f],
                'out_file')  # the number here is the time step
            ################################################################################

            ##### select channels
            ierr = psspy.delete_all_plot_channels()  # clear channels

            BusDataDict = getBusData(rawFile)
            # get all the bus voltages, angles and frequencies
            for bus in BusDataDict:
                bus = int(bus)
                ierr = psspy.voltage_and_angle_channel([-1, -1, -1, bus])
                ierr = psspy.bus_frequency_channel([-1, bus])

        print 'Event: {}'.format(event)

        # get the nominal voltages as well as the fault impedance in ohms
        FaultBusNomVolt = float(BusDataDict[str(FaultBus)].NominalVolt)
        Zbase = FaultBusNomVolt**2 / Sbase  # float since Sbase is a float
        Rohm = FaultRpu * Zbase  # fault impedance in ohms

        # run simulation till just before the fault
        ResultsDict = {}

        # get the line params
        line1Elements = linesOutage.split(';')[0].strip()
        line2Elements = linesOutage.split(';')[1].strip()

        # Line 1 params
        line1 = line1Elements.split(',')
        L1Bus1 = int(line1[0].strip())
        L1Bus2 = int(line1[1].strip())
        L1cktID = line1[2].strip("'").strip()
        #print L1Bus1
        #print L1Bus2
        #print L1cktID

        # Line 2 params
        line2 = line2Elements.split(',')
        L2Bus1 = int(line2[0].strip())
        L2Bus2 = int(line2[1].strip())
        L2cktID = line2[2].strip("'").strip()
        #print L2Bus1
        #print L2Bus2
        #print L2cktID

        #output = StringIO.StringIO()
        with silence(output):
            ierr = psspy.strt(0, settings['out_file'])
            ierr = psspy.run(0, 0.1, 1, 1, 1)
            ierr = psspy.dist_branch_trip(L1Bus1, L1Bus2, L1cktID)

        #output = StringIO.StringIO()
        with silence(output):
            ierr = psspy.run(0, 0.2, 1, 1, 1)  #fault on time

        outputStr = output.getvalue()
        if "Network not converged" in outputStr:
            print 'For ' + event + ':'
            print 'Network did not converge between branch 1 trip and fault application, skipping...'
            continue
        #######

        # check for convergence during fault
        #output = StringIO.StringIO()
        with silence(output):
            ierr = psspy.dist_bus_fault(int(FaultBus), 3, 0.0, [Rohm, 0.0])
            ierr = psspy.run(0, 0.3, 1, 1, 1)  #fault off time
            ierr = psspy.dist_clear_fault(1)

        outputStr = output.getvalue()
        if "Network not converged" in outputStr:
            print 'For ' + event + ':'
            print 'Network did not converge during fault, skipping...'
            continue

        # check for convergence between fault clearance and second branch trip
        #output = StringIO.StringIO()
        with silence(output):
            ierr = psspy.run(0, 0.31, 1, 1, 1)  #fault off time
            ierr = psspy.dist_branch_trip(L2Bus1, L2Bus2, L2cktID)
            ierr = psspy.run(0, 0.35, 1, 1, 1)  #fault off time

        # check for non-convergence
        #output = StringIO.StringIO()
        outputStr = output.getvalue()
        if "Network not converged" in outputStr:
            print 'For ' + event + ':'
            print 'Network did not converge between fault clearance and branch 2 trip, skipping...'
            continue

        # select run time ##############################################################
        #output = StringIO.StringIO()
        with silence(output):
            ierr = psspy.run(0, 10.0, 1, 1,
                             1)  #exit time (second argument is the end time)
        ################################################################################
        # check for non-convergence

        outputStr = output.getvalue()
        if "Network not converged" in outputStr:
            print 'For ' + event + ':'
            print 'Network did not converge sometime after 2nd branch trip, skipping...'
            continue

        # write to output file
        #with open('outputTmp.txt','w') as f:
        #   f.write(outputStr)

        outputData = dyntools.CHNF(settings['out_file'])

        data = outputData.get_data()

        channelDict = data[
            1]  # dictionary where the value is the channel description
        valueDict = data[
            2]  # dictionary where the values are the signal values, keys match that of channelDict

        tme = valueDict['time']  # get time
        ResultsDict['time'] = tme
        for key in channelDict:
            if key == 'time':
                continue

            signalDescr = channelDict[key]
            words = signalDescr.split()
            signalType = words[0].strip()
            bus = words[1].strip()
            #print Bus + ' ' + signalType
            if bus not in ResultsDict:
                ResultsDict[bus] = Results()

            if signalType == 'VOLT':
                ResultsDict[bus].volt = valueDict[key]

            elif signalType == 'ANGL':
                ResultsDict[bus].angle = valueDict[key]
            elif signalType == 'FREQ':
                ResultsDict[bus].freq = valueDict[key]

        EventsDict[event] = ResultsDict

    return EventsDict
Пример #6
0
# Order Network for matrix operation
psspy.ordr(0)

# Factorize Admittance maatrix
psspy.fact()

# Solve switching study network solutions
psspy.tysl()

# Save sav file after conversion

trans_file = raw_file[0:raw_file.find(".")] + "_trans.sav"
psspy.save(trans_file)

# Select Channels
psspy.delete_all_plot_channels()
psspy.chsb(0, 1, [-1, -1, -1, 1, 1, 0])
psspy.chsb(0, 1, [-1, -1, -1, 1, 2, 0])
psspy.voltage_and_angle_channel([-1, -1, -1, 6], ["", ""])
psspy.voltage_and_angle_channel([-1, -1, -1, 7], ["", ""])
psspy.voltage_and_angle_channel([-1, -1, -1, 9], ["", ""])
psspy.voltage_and_angle_channel([-1, -1, -1, 13], ["", ""])
psspy.voltage_and_angle_channel([-1, -1, -1, 14], ["", ""])
psspy.voltage_and_angle_channel([-1, -1, -1, 39], ["", ""])
psspy.branch_p_channel([-1, -1, -1, 6, 7], r"""1""", "")
psspy.branch_p_channel([-1, -1, -1, 13, 14], r"""1""", "")
psspy.branch_p_channel([-1, -1, -1, 39, 9], r"""1""", "")
psspy.branch_mva_channel([-1, -1, -1, 5, 8], r"""1""", "")
psspy.branch_mva_channel([-1, -1, -1, 6, 5], r"""1""", "")
psspy.branch_mva_channel([-1, -1, -1, 4, 5], r"""1""", "")
psspy.load_array_channel([-1, 1, 71], r"""1""", "")