def test_defaults(self): G = LCA(integrator_mode=True, leak=-1.0, noise=0.0, time_step_size=0.02, function=Linear, self_excitation=1.0, competition=-1.0) # - - - - - LCA integrator functions - - - - - # X = previous_value + (rate * previous_value + variable) * self.time_step_size + noise # f(X) = 1.0*X + 0 np.testing.assert_allclose(G.execute(), np.array([[0.0]])) # X = 0.0 + (0.0 + 0.0)*0.02 + 0.0 # X = 0.0 <--- previous value 0.0 # f(X) = 1.0*0.0 <--- return 0.0, recurrent projection 0.0 np.testing.assert_allclose(G.execute(1.0), np.array([[0.02]])) # X = 0.0 + (0.0 + 1.0)*0.02 + 0.0 # X = 0.02 <--- previous value 0.02 # f(X) = 1.0*0.02 <--- return 0.02, recurrent projection 0.02 # Outside of a system, previous value works (integrator) but recurrent projection does NOT np.testing.assert_allclose(G.execute(1.0), np.array([[0.0396]]))
def test_reinitialize_run(self): L = LCA(name="L", function=Linear, initial_value=0.5, integrator_mode=True, leak=0.1, competition=0, self_excitation=1.0, time_step_size=1.0, noise=0.0) P = Process(name="P", pathway=[L]) S = System(name="S", processes=[P]) assert np.allclose(L.previous_value, 0.5) assert np.allclose(L.initial_value, 0.5) assert np.allclose(L.integrator_function.initializer, 0.5) S.run(inputs={L: 1.0}, num_trials=2, initialize=True, initial_values={L: 0.0}) # Integrator fn: previous_value + (rate*previous_value + new_value)*time_step_size + noise*(time_step_size**0.5) # Trial 1 | variable = 1.0 + 0.0 # integration: 0.5 + (0.1*0.5 + 1.0)*1.0 + 0.0 = 1.55 # linear fn: 1.55*1.0 = 1.55 # Trial 2 | variable = 1.0 + 1.55 # integration: 1.55 + (0.1*1.55 + 2.55)*1.0 + 0.0 = 4.255 # linear fn: 4.255*1.0 = 4.255 assert np.allclose(L.previous_value, 4.255) assert np.allclose(L.initial_value, 0.5) assert np.allclose(L.integrator_function.initializer, 0.5) L.integrator_function.reinitialize(0.9) assert np.allclose(L.previous_value, 0.9) assert np.allclose(L.initial_value, 0.5) assert np.allclose(L.integrator_function.initializer, 0.9) assert np.allclose(L.value, 4.255) L.reinitialize(0.5) assert np.allclose(L.previous_value, 0.5) assert np.allclose(L.initial_value, 0.5) assert np.allclose(L.integrator_function.initializer, 0.5) assert np.allclose(L.value, 0.5) S.run(inputs={L: 1.0}, num_trials=2) # Trial 3 | variable = 1.0 + 0.5 # integration: 0.5 + (0.1*0.5 + 1.5)*1.0 + 0.0 = 2.05 # linear fn: 2.05*1.0 = 2.05 # Trial 4 | variable = 1.0 + 2.05 # integration: 2.05 + (0.1*2.05 + 3.05)*1.0 + 0.0 = 5.305 # linear fn: 5.305*1.0 = 5.305 assert np.allclose(L.previous_value, 5.305) assert np.allclose(L.initial_value, 0.5) assert np.allclose(L.integrator_function.initializer, 0.5)
def test_clip_2d_array(self): L = LCA(default_variable=[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], clip=[-2.0, 2.0], function=Linear, integrator_mode=False) assert np.allclose( L.execute([[-5.0, -1.0, 5.0], [5.0, -5.0, 1.0], [1.0, 5.0, 5.0]]), [[-2.0, -1.0, 2.0], [2.0, -2.0, 1.0], [1.0, 2.0, 2.0]])
def test_LCA_length_1(self): T = TransferMechanism(function=Linear(slope=1.0)) L = LCA( function=Linear(slope=2.0), self_excitation=3.0, leak=0.5, competition= 1.0, # competition does not matter because we only have one unit time_step_size=0.1) P = Process(pathway=[T, L]) S = System(processes=[P]) L.reinitialize_when = Never() # - - - - - - - Equations to be executed - - - - - - - # new_transfer_input = # previous_transfer_input # + (leak * previous_transfer_input_1 + self_excitation * result1 + competition * result2 + outside_input1) * dt # + noise # result = new_transfer_input*2.0 # recurrent_matrix = [[3.0]] # - - - - - - - - - - - - - - - - - - - - - - - - - - results = [] def record_execution(): results.append(L.value[0][0]) S.run(inputs={T: [1.0]}, num_trials=3, call_after_trial=record_execution) # - - - - - - - TRIAL 1 - - - - - - - # new_transfer_input = 0.0 + ( 0.5 * 0.0 + 3.0 * 0.0 + 0.0 + 1.0)*0.1 + 0.0 = 0.1 # f(new_transfer_input) = 0.1 * 2.0 = 0.2 # - - - - - - - TRIAL 2 - - - - - - - # new_transfer_input = 0.1 + ( 0.5 * 0.1 + 3.0 * 0.2 + 0.0 + 1.0)*0.1 + 0.0 = 0.265 # f(new_transfer_input) = 0.265 * 2.0 = 0.53 # - - - - - - - TRIAL 3 - - - - - - - # new_transfer_input = 0.265 + ( 0.5 * 0.265 + 3.0 * 0.53 + 0.0 + 1.0)*0.1 + 0.0 = 0.53725 # f(new_transfer_input) = 0.53725 * 2.0 = 1.0745 assert np.allclose(results, [0.2, 0.53, 1.0745])
def test_previous_value_stored(self): G = LCA(integrator_mode=True, leak=-1.0, noise=0.0, time_step_size=0.02, function=Linear(slope=2.0), self_excitation=1.0, competition=-1.0, initial_value=np.array([[1.0]])) P = Process(pathway=[G]) S = System(processes=[P]) G.output_state.value = [0.0] # - - - - - LCA integrator functions - - - - - # X = previous_value + (rate * previous_value + variable) * self.time_step_size + noise # f(X) = 2.0*X + 0 # - - - - - starting values - - - - - # variable = G.output_state.value + stimulus = 0.0 + 1.0 = 1.0 # previous_value = initial_value = 1.0 # single_run = S.execute([[1.0]]) # np.testing.assert_allclose(single_run, np.array([[2.0]])) np.testing.assert_allclose(S.execute([[1.0]]), np.array([[2.0]])) # X = 1.0 + (-1.0 + 1.0)*0.02 + 0.0 # X = 1.0 + 0.0 + 0.0 = 1.0 <--- previous value 1.0 # f(X) = 2.0*1.0 <--- return 2.0, recurrent projection 2.0 np.testing.assert_allclose(S.execute([[1.0]]), np.array([[2.08]])) # X = 1.0 + (-1.0 + 3.0)*0.02 + 0.0 # X = 1.0 + 0.04 = 1.04 <--- previous value 1.04 # f(X) = 2.0*1.04 <--- return 2.08 np.testing.assert_allclose(S.execute([[1.0]]), np.array([[2.1616]]))
def test_LCA_length_2(self): T = TransferMechanism(function=Linear(slope=1.0), size=2) L = LCA(function=Linear(slope=2.0), size=2, self_excitation=3.0, leak=0.5, competition=1.0, time_step_size=0.1) P = Process(pathway=[T, L]) S = System(processes=[P]) # - - - - - - - Equations to be executed - - - - - - - # new_transfer_input = # previous_transfer_input # + (leak * previous_transfer_input_1 + self_excitation * result1 + competition * result2 + outside_input1) * dt # + noise # result = new_transfer_input*2.0 # recurrent_matrix = [[3.0]] # - - - - - - - - - - - - - - - - - - - - - - - - - - results = [] def record_execution(): results.append(L.value[0]) S.run(inputs={T: [1.0, 2.0]}, num_trials=3, call_after_trial=record_execution) # - - - - - - - TRIAL 1 - - - - - - - # new_transfer_input_1 = 0.0 + ( 0.5 * 0.0 + 3.0 * 0.0 - 1.0*0.0 + 1.0)*0.1 + 0.0 = 0.1 # f(new_transfer_input_1) = 0.1 * 2.0 = 0.2 # new_transfer_input_2 = 0.0 + ( 0.5 * 0.0 + 3.0 * 0.0 - 1.0*0.0 + 2.0)*0.1 + 0.0 = 0.2 # f(new_transfer_input_2) = 0.2 * 2.0 = 0.4 # - - - - - - - TRIAL 2 - - - - - - - # new_transfer_input = 0.1 + ( 0.5 * 0.1 + 3.0 * 0.2 - 1.0*0.4 + 1.0)*0.1 + 0.0 = 0.225 # f(new_transfer_input) = 0.265 * 2.0 = 0.45 # new_transfer_input_2 = 0.2 + ( 0.5 * 0.2 + 3.0 * 0.4 - 1.0*0.2 + 2.0)*0.1 + 0.0 = 0.51 # f(new_transfer_input_2) = 0.1 * 2.0 = 1.02 # - - - - - - - TRIAL 3 - - - - - - - # new_transfer_input = 0.225 + ( 0.5 * 0.225 + 3.0 * 0.45 - 1.0*1.02 + 1.0)*0.1 + 0.0 = 0.36925 # f(new_transfer_input) = 0.36925 * 2.0 = 0.7385 # new_transfer_input_2 = 0.51 + ( 0.5 * 0.51 + 3.0 * 1.02 - 1.0*0.45 + 2.0)*0.1 + 0.0 = 0.9965 # f(new_transfer_input_2) = 0.9965 * 2.0 = 1.463 assert np.allclose(results, [[0.2, 0.4], [0.45, 1.02], [0.7385, 1.993]])
def test_clip_float(self): L = LCA(clip=[-2.0, 2.0], function=Linear, integrator_mode=False) assert np.allclose(L.execute(3.0), 2.0) assert np.allclose(L.execute(-3.0), -2.0)