Пример #1
0
    def test_get_ts_end_date(self):
        v = json.loads(os.getenv('PTHELMA_TEST_ENHYDRIS_API'))
        cookies = enhydris_api.login(v['base_url'], v['user'], v['password'])

        # Create a time series in the database
        j = {
            'gentity': v['station_id'],
            'variable': v['variable_id'],
            'unit_of_measurement': v['unit_of_measurement_id'],
            'time_zone': v['time_zone_id'],
        }
        ts_id = enhydris_api.post_model(v['base_url'], cookies, 'Timeseries',
                                        j)

        # Get its last date while it has no data
        date = enhydris_api.get_ts_end_date(v['base_url'], cookies, ts_id)
        self.assertEqual(date.isoformat(), '0001-01-01T00:00:00')

        # Now upload some data
        ts = Timeseries(ts_id)
        ts.read(StringIO(self.test_timeseries))
        enhydris_api.post_tsdata(v['base_url'], cookies, ts)

        # Get its last date
        date = enhydris_api.get_ts_end_date(v['base_url'], cookies, ts_id)
        self.assertEqual(date.isoformat(), '2014-01-05T08:00:00')

        # Get the last date of a nonexistent time series
        self.assertRaises(requests.HTTPError, enhydris_api.get_ts_end_date,
                          v['base_url'], cookies, ts_id + 1)
Пример #2
0
 def handle(self, *args, **options):
     try:
         username = args[0]
     except IndexError:
         print "I need a username!"
         return -1
     try:
         if username:
             user = User.objects.get(username=username)
             out = []
             print "output for {x}".format(x=username)
             household = Household.objects.get(user=user)
             timeseries = household \
                 .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
                                 variable__id=VAR_PERIOD)
             series = TSeries(id=timeseries.id)
             series.read_from_db(db.connection)
             timestamps = sorted(series.keys())
             values = np.array([])
             for ts in timestamps:
                 val = series[ts]
                 if isnan(val) or val == 0:
                     continue
                 values = np.append(values, val)
                 perc = np.percentile(values, 90)
                 out.append([ts, val, perc])
             _outfile = "timeseries_%s.csv" % username
             _path = "data/"
             with open(path.join(_path, _outfile), 'w') as of:
                 a = csv.writer(of, delimiter=',',
                                quotechar='"',
                                quoting=csv.QUOTE_ALL)
                 a.writerows(out)
     except Exception as e:
         print "failed with %s" % repr(e)
Пример #3
0
 def get(self, request, pk, format=None):
     ts = Timeseries(id=int(pk))
     self.check_object_permissions(request, ts)
     ts.read_from_db(connection)
     result = StringIO()
     ts.write(result)
     return HttpResponse(result.getvalue(), content_type="text/plain")
Пример #4
0
 def read_timeseries_from_cache_file(self):
     result = Timeseries()
     if os.path.exists(self.filename):
         with open(self.filename) as f:
             try:
                 result.read_file(f)
             except ValueError:
                 # File may be corrupted; continue with empty time series
                 result = Timeseries()
     return result
Пример #5
0
 def execute_item(self, item):
     source_ts = Timeseries()
     with open(item['source_file']) as f:
         source_ts.read_file(f)
     self.target_step.interval_type = item['interval_type']
     target_ts, missing = source_ts.aggregate(
         self.target_step,
         missing_allowed=self.missing_allowed,
         missing_flag=self.missing_flag)
     with open(item['target_file'], 'w') as f:
         target_ts.write_file(f, version=3)
Пример #6
0
 def testUploadTsDataUnauthenticated(self):
     # Attempt to upload some timeseries data, unauthenticated
     response = self.client.put(
         "/api/tsdata/1/",
         encode_multipart(BOUNDARY, {"timeseries_records": "2012-11-06 18:17,20,\n"}),
         content_type=MULTIPART_CONTENT,
     )
     t = Timeseries(1)
     t.read_from_db(connection)
     self.assertEqual(response.status_code, 403)
     self.assertEqual(len(t), 0)
Пример #7
0
 def testUploadTsDataGarbage(self):
     self.assert_(self.client.login(username='******', password='******'))
     response = self.client.put(
         "/api/tsdata/{}/".format(self.timeseries1.id),
         encode_multipart(BOUNDARY,
                          {'timeseries_records': '2012-aa-06 18:17,20,\n'}),
         content_type=MULTIPART_CONTENT)
     self.assertEqual(response.status_code, 400)
     t = Timeseries(self.timeseries1.id)
     t.read_from_db(connection)
     self.assertEqual(len(t), 0)
     self.client.logout()
Пример #8
0
 def testUploadTsDataGarbage(self):
     self.assert_(self.client.login(username="******", password="******"))
     response = self.client.put(
         "/api/tsdata/1/",
         encode_multipart(BOUNDARY, {"timeseries_records": "2012-aa-06 18:17,20,\n"}),
         content_type=MULTIPART_CONTENT,
     )
     t = Timeseries(1)
     t.read_from_db(connection)
     self.assertEqual(response.status_code, 400)
     self.assertEqual(len(t), 0)
     self.client.logout()
Пример #9
0
 def check(self, datadir):
     for parm in self.parameters:
         if not parm['ts_id']:
             continue
         actual_ts = Timeseries(parm['ts_id'])
         enhydris_api.read_tsdata(self.base_url, self.cookies, actual_ts)
         reference_ts = Timeseries()
         with open(os.path.join(
                 datadir, 'generated', parm['expname'] + '.txt')) as f:
             reference_ts.read(f)
             precision = self.guess_precision(f)
         self.assertTimeseriesEqual(actual_ts, reference_ts, precision,
                                    parm['expname'] + '.txt')
Пример #10
0
 def put(self, request, pk, format=None):
     try:
         ts = Timeseries(id=int(pk))
         self.check_object_permissions(request, ts)
         result_if_error = status.HTTP_400_BAD_REQUEST
         ts.read(StringIO(request.DATA['timeseries_records']))
         result_if_error = status.HTTP_409_CONFLICT
         ts.append_to_db(connection, commit=False)
         return HttpResponse(str(len(ts)), content_type="text/plain")
     except ValueError as e:
         return HttpResponse(status=result_if_error,
                             content=str(e),
                             content_type="text/plain")
Пример #11
0
 def testUploadTsDataAsWrongUser(self):
     # Attempt to upload some timeseries data as user 2; should deny
     self.assert_(self.client.login(username="******", password="******"))
     response = self.client.put(
         "/api/tsdata/1/",
         encode_multipart(BOUNDARY, {"timeseries_records": "2012-11-06 18:17,20,\n"}),
         content_type=MULTIPART_CONTENT,
     )
     t = Timeseries(1)
     t.read_from_db(connection)
     self.assertEqual(response.status_code, 403)
     self.assertEqual(len(t), 0)
     self.client.logout()
Пример #12
0
 def testUploadTsDataAsWrongUser(self):
     # Attempt to upload some timeseries data as user 2; should deny
     self.assert_(self.client.login(username='******', password='******'))
     response = self.client.put(
         "/api/tsdata/{}/".format(self.timeseries1.id),
         encode_multipart(BOUNDARY,
                          {'timeseries_records': '2012-11-06 18:17,20,\n'}),
         content_type=MULTIPART_CONTENT)
     t = Timeseries(self.timeseries1.id)
     t.read_from_db(connection)
     self.assertEqual(response.status_code, 403)
     self.assertEqual(len(t), 0)
     self.client.logout()
Пример #13
0
 def append_newer_timeseries(self, start_date, ts1):
     self.session_cookies = enhydris_api.login(self.base_url, self.user,
                                               self.password)
     url = self.base_url + 'timeseries/d/{}/download/{}/?version=3'.format(
         self.timeseries_id, start_date.isoformat())
     r = requests.get(url, cookies=self.session_cookies)
     if r.status_code != 200:
         raise HTTPError('Error {} while getting {}'.format(r.status_code,
                                                            url))
     responseio = StringIO(r.text)
     ts2 = Timeseries()
     ts2.read_file(responseio)
     responseio.seek(0)
     ts1.read_meta(responseio)
     ts1.append(ts2)
Пример #14
0
def process():
    for household in Household.objects.all():
        daily_series_db = household.timeseries.get(
                time_step__id=TSTEP_DAILY)
        series = TSeries(id=daily_series_db.id)
        series.read_from_db(db.connection)
        m = 1000.000*series.average()
        if math.isnan(m):
            continue
        num_of_occupants = max(1,
                int(round(m/AVERAGE_UNIT_WATER_CONSUMPTION)))
        print 'Household with id=%s, average daily consumption %.1f, '\
              'number of occupants set to %s'%(household.id, m,
                      num_of_occupants,)
        household.num_of_occupants = num_of_occupants
        household.save()
Пример #15
0
 def time_step(self):
     """
     Return time step of all time series. If time step is not the same
     for all time series, raises exception.
     """
     time_step = None
     for filename in self.files:
         with open(filename) as f:
             t = Timeseries()
             t.read_meta(f)
         item_time_step = (t.time_step.length_minutes,
                           t.time_step.length_months)
         if time_step and (item_time_step != time_step):
             raise WrongValueError(
                 'Not all time series have the same step')
         time_step = item_time_step
     return time_step
Пример #16
0
def has_burst_old(household):
    """
    We won't be using this algorithm any more
    :param household:
    :return:
    """
    name = household.user.username
    if not name.startswith('GR'):
        return 0, 0
    timeseries = household \
        .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
                        variable__id=VAR_PERIOD)
    series = TSeries(id=timeseries.id)
    series.read_from_db(db.connection)
    timestamps = sorted(series.keys())
    today = []  # all today's values
    _all = []
    for i in range(1, len(timestamps)):
        ts = timestamps[i]
        if household.user.username == "GR006047" \
                and ts.year == 2015 and ts.month == 2 and ts.day == 9 \
                and ts.hour == 17:
            pass
        prev_ts = timestamps[i-1]
        # if previous value is NaN we don't take this value into consideration
        # Because it might have all consumption of all the previous NaN times
        val = series[ts]
        prev_val = series[prev_ts]
        if isnan(prev_val):
            continue
        if i < len(timestamps) - 100:
            if not isnan(val) and not val == 0:
                _all.append(series[ts])
        else:
            tm = "%s:%s" % (ts.time().hour, ts.time().minute)
            if not isnan(val) and not val == 0:
                today.append((val, tm))

    if _all and today:
        all1 = np.array(_all)
        p = np.percentile(all1, 95)
        for cons, tm in today:
            if cons > p:
                return cons, tm
    return 0, 0
Пример #17
0
def has_burst(household):
    """
    We won't be using this algorithm any more
    :param household:
    :return:
    """
    name = household.user.username
    if not name.startswith('GR'):
        return 0, 0
    timeseries = household \
        .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
                        variable__id=VAR_PERIOD)
    series = TSeries(id=timeseries.id)
    series.read_from_db(db.connection)
    timestamps = sorted(series.keys())
    today = []  # all today's values
    daily_maxes = {}
    for i in range(1, len(timestamps)):
        ts = timestamps[i]
        prev_ts = timestamps[i-1]
        date = ts.date()
        # if previous value is NaN we don't take this value into consideration
        # Because it might have all consumption of all the previous NaN times
        val = series[ts]
        prev_val = series[prev_ts]
        if isnan(prev_val):
            continue
        if i < len(timestamps) - 100:
            if not isnan(val) and not val == 0:
                daily_max = daily_maxes.get(date, 0)
                if val > daily_max:
                    daily_maxes[date] = val
        else:
            tm = "%s-%s-%s %s:%s" % (ts.year, ts.month, ts.day,
                                     ts.time().hour, ts.time().minute)
            if not isnan(val) and not val == 0:
                today.append((val, tm))

    if daily_maxes and today:
        maxes = np.array(daily_maxes.values())
        p = np.percentile(maxes, 90)
        for cons, tm in today:
            if cons > p:
                return cons, tm
    return 0, 0
Пример #18
0
 def setUp(self):
     get_server_from_env(self.__dict__)
     self.ref_ts = Timeseries(0)
     if not self.base_url:
         return
     self.cookies = enhydris_api.login(self.base_url, self.user,
                                       self.password)
     self.timeseries_id = create_timeseries(self.cookies, self.__dict__)
     self.ts = Timeseries(self.timeseries_id)
Пример #19
0
def h_integrate(mask, stations_layer, date, output_filename_prefix, date_fmt,
                funct, kwargs):
    date_fmt_for_filename = date.strftime(date_fmt).replace(' ', '-').replace(
        ':', '-')
    output_filename = '{}-{}.tif'.format(output_filename_prefix,
                                         date.strftime(date_fmt_for_filename))
    if not _needs_calculation(output_filename, date, stations_layer):
        return

    # Read the time series values and add the 'value' attribute to
    # stations_layer
    stations_layer.CreateField(ogr.FieldDefn('value', ogr.OFTReal))
    input_files = []
    stations_layer.ResetReading()
    for station in stations_layer:
        filename = station.GetField('filename')
        t = Timeseries()
        with open(filename) as f:
            t.read_file(f)
        value = t.get(date, float('NaN'))
        station.SetField('value', value)
        if not isnan(value):
            input_files.append(filename)
        stations_layer.SetFeature(station)
    if not input_files:
        return

    # Create destination data source
    output = gdal.GetDriverByName('GTiff').Create(
        output_filename, mask.RasterXSize, mask.RasterYSize, 1,
        gdal.GDT_Float32)
    output.SetMetadataItem('TIMESTAMP', date.strftime(date_fmt))
    output.SetMetadataItem('INPUT_FILES', '\n'.join(input_files))

    try:
        # Set geotransform and projection in the output data source
        output.SetGeoTransform(mask.GetGeoTransform())
        output.SetProjection(mask.GetProjection())

        # Do the integration
        integrate(mask, stations_layer, output.GetRasterBand(1), funct, kwargs)
    finally:
        # Close the dataset
        output = None
Пример #20
0
def create_objects(dma, household_identifier, series, force=False):
    """
    When a household is fully parsed then this command is called to create
    database objects thus: user (household owner), household, database time
    series placeholders (for raw data and for processed data), to write actual
    time series data in database and finally to estimate the household
    occupancy.
    """
    print "Processing household %s, user username will be %s as well"%(
            household_identifier, household_identifier)
    # Create user (household owner), household, database series placeholders
    user = create_user(household_identifier)
    household=create_household(household_identifier, user,
            zone=dma.id)
    db_series = create_raw_timeseries(household)
    create_processed_timeseries(household)
    timeseries_data = {}
    # Now we will create timeseries.Timeseries() and we will add
    # parsed values
    for variable in db_series:
        if variable not in ('WaterCold', 'Electricity'):
            continue
        s, e = timeseries_bounding_dates_from_db(db.connection,
                db_series[variable].id)
        if not force and (s or e):
            print 'Raw timeseries id=%s has already data, skipping...'%(
                    db_series[variable].id,)
            continue
        timeseries = TSeries()
        timeseries.id = db_series[variable].id
        total = 0.0
        for timestamp, value in series[variable]:
            if not math.isnan(value):
                total += value
                timeseries[timestamp] = total
            else:
                timeseries[timestamp] = float('NaN')
        timeseries_data[variable] = timeseries
        timeseries.write_to_db(db=db.connection,
                transaction=transaction,
                commit=False)
    if 'WaterCold' in timeseries_data:
        calc_occupancy(timeseries_data['WaterCold'], household)
Пример #21
0
def _needs_calculation(output_filename, date, stations_layer):
    """
    Used by h_integrate to check whether the output file needs to be calculated
    or not. It does not need to be calculated if it already exists and has been
    calculated from all available data.
    """
    # Return immediately if output file does not exist
    if not os.path.exists(output_filename):
        return True

    # Get list of files which were used to calculate the output file
    fp = gdal.Open(output_filename)
    try:
        actual_input_files = fp.GetMetadataItem('INPUT_FILES')
        if actual_input_files is None:
            raise IOError('{} does not contain the metadata item INPUT_FILES'
                          .format(output_filename))
    finally:
        fp = None  # Close file
    actual_input_files = set(actual_input_files.split('\n'))

    # Get list of files available for calculating the output file
    stations_layer.ResetReading()
    available_input_files = set(
        [station.GetField('filename') for station in stations_layer
         if os.path.exists(station.GetField('filename'))])

    # Which of these files have not been used?
    unused_files = available_input_files - actual_input_files

    # For each one of these files, check whether it has newly available data.
    # Upon finding one that does, the verdict is made: return True
    for filename in unused_files:
        t = Timeseries()
        with open(filename) as f:
            t.read_file(f)
        value = t.get(date, float('NaN'))
        if not isnan(value):
            return True

    # We were unable to find data that had not already been used
    return False
Пример #22
0
def parse_and_save_timeseries(device_id, timeseries_id):
    """
    Reads a RAW timeseries from REST API and saves in our local
    database using the timeseries_id.
    ``device_id`` will be the ``identifier`` used in other functions,
    usualy is the customerID==deviceID
    """
    s, e = timeseries_bounding_dates_from_db(db.connection,
            timeseries_id)
    if s or e:
        print 'Raw timeseries id=%s has already data, skipping...'%(
                timeseries_id,)
        return
    timeseries = TSeries()
    timeseries.id = timeseries_id
    for timestamp, value in ibm_restapi.get_raw_timeseries(device_id):
        timeseries[timestamp] = value
    timeseries.write_to_db(db=db.connection,
            transaction=transaction,
            commit=False)
Пример #23
0
def parse_and_save_timeseries(filename, timeseries_id):
    first_line = True
    timeseries = TSeries()
    timeseries.id = timeseries_id
    with open(filename) as fp:
        for line in fp.readlines():
            if first_line:
                first_line = False
                continue
            components = line.split(',')
            date_str = components[1].strip('"')
            value_str = components[2].strip('"')
            value = float(value_str)
            if value<MIN_VALUE or value>=MAX_VALUE:
                value = float('nan')
            tstamp = datetime.strptime(date_str, '%Y-%m-%d %H:%M:%S')
            tstamp = tstamp.replace(second=0)
            timeseries[tstamp] = value
    timeseries.write_to_db(db=db.connection,
            transaction=transaction,
            commit=False)
Пример #24
0
def get_values_after(household, dt, variable):
    timeseries = None
    if variable == "WaterCold":
        timeseries = household \
            .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
                            variable__id=VAR_PERIOD)
    elif variable == "Electricity":
        timeseries = household \
            .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
                            variable__id=VAR_ENERGY_PERIOD)
    data = []
    if timeseries:
        series = TSeries(id=timeseries.id)
        series.read_from_db(db.connection)
        timestamps = sorted(series.keys())
        for ts in timestamps:
            val = series[ts]
            if ts <= dt:
                continue
            data.append((ts, val))
    return data
Пример #25
0
    def test_execute(self):
        application = AggregateApp()
        application.read_command_line()
        application.read_configuration()

        # Verify the output files don't exist yet
        self.assertFalse(os.path.exists(self.output_filenames[0]))
        self.assertFalse(os.path.exists(self.output_filenames[1]))

        # Execute
        application.run()

        # Check that it has created two files
        self.assertTrue(os.path.exists(self.output_filenames[0]))
        self.assertTrue(os.path.exists(self.output_filenames[1]))

        # Check that the created time series are correct
        t = Timeseries()
        with open(self.output_filenames[0]) as f:
            t.read_file(f)
        self.assertEqual(t.timezone, 'EET (UTC+0200)')
        self.assertEqual(len(t), 1)
        self.assertAlmostEqual(t['2014-06-16 16:00'], 114.9, places=5)
        t = Timeseries()
        with open(self.output_filenames[1]) as f:
            t.read_file(f)
        self.assertEqual(t.timezone, '')
        self.assertEqual(len(t), 1)
        self.assertAlmostEqual(t['2014-06-17 16:00'], 50.8167, places=5)
Пример #26
0
    def setUp(self):
        parms = settings.BITIA_TEST_ENHYDRIS_INSTALLATION
        self.cookies = enhydris_api.login(parms['base_url'],
                                          parms['user'],
                                          parms['password'])

        # Create two time series
        j = {
            'gentity': parms['station_id'],
            'variable': parms['variable_id'],
            'unit_of_measurement': parms['unit_of_measurement_id'],
            'time_zone': parms['time_zone_id'],
        }
        self.ts1_id = enhydris_api.post_model(
            parms['base_url'], self.cookies, 'Timeseries', j)
        self.ts2_id = enhydris_api.post_model(
            parms['base_url'], self.cookies, 'Timeseries', j)
        assert self.ts1_id != self.ts2_id

        # Add some data (all but the last record) to the database
        ts = Timeseries(self.ts1_id)
        ts.read(StringIO(self.timeseries1_top))
        enhydris_api.post_tsdata(parms['base_url'], self.cookies, ts)
        ts = Timeseries(self.ts2_id)
        ts.read(StringIO(self.timeseries2_top))
        enhydris_api.post_tsdata(parms['base_url'], self.cookies, ts)

        # Temporary directory for cache files
        self.tempdir = tempfile.mkdtemp()
Пример #27
0
 def handle(self, *args, **options):
     try:
         username = args[0]
     except IndexError:
         print "I need a username!"
         return -1
     try:
         if username not in ["GR", "GB", "PT", "GBA"]:
             users = User.objects.filter(username=username)
         else:
             users = User.objects.filter(username__startswith=username)
         for user in users:
             out = []
             print "output for {x}".format(x=username)
             household = Household.objects.get(user=user)
             # ts_raw = household.timeseries.filter(time_step__isnull=True,
             #                                      variable__id=VAR_CUMULATIVE)[0]
             # series = TSeries(id=ts_raw.id)
             timeseries = household \
                 .timeseries.get(variable__id=VAR_CUMULATIVE)
             series = TSeries(id=timeseries.id)
             series.read_from_db(db.connection)
             timestamps = sorted(series.keys())
             values = np.array([])
             for ts in timestamps:
                 val = series[ts]
                 if isnan(val) or val == 0:
                     continue
                 values = np.append(values, val)
                 #perc = np.percentile(values, 90)
                 out.append([ts, val])
             _outfile = "timeseries_cumulative_%s.csv" % user.username
             _path = "data/"
             with open(path.join(_path, _outfile), 'w') as of:
                 a = csv.writer(of, delimiter=',',
                                quotechar='"',
                                quoting=csv.QUOTE_ALL)
                 a.writerows(out)
     except Exception as e:
         print "failed with %s" % repr(e)
Пример #28
0
    def setUp(self):
        self.parms = json.loads(os.getenv('PTHELMA_TEST_ENHYDRIS_API'))
        self.cookies = enhydris_api.login(self.parms['base_url'],
                                          self.parms['user'],
                                          self.parms['password'])

        # Create two time series
        j = {
            'gentity': self.parms['station_id'],
            'variable': self.parms['variable_id'],
            'unit_of_measurement': self.parms['unit_of_measurement_id'],
            'time_zone': self.parms['time_zone_id'],
            'time_step': 3,
            'timestamp_offset_minutes': 0,
            'timestamp_offset_months': 0,
            'remarks': 'Très importante',
        }
        self.ts1_id = enhydris_api.post_model(
            self.parms['base_url'], self.cookies, 'Timeseries', j)
        self.ts2_id = enhydris_api.post_model(
            self.parms['base_url'], self.cookies, 'Timeseries', j)
        assert self.ts1_id != self.ts2_id

        # Add some data (all but the last record) to the database
        ts = Timeseries(self.ts1_id)
        ts.read(StringIO(self.timeseries1_top))
        enhydris_api.post_tsdata(self.parms['base_url'], self.cookies, ts)
        ts = Timeseries(self.ts2_id)
        ts.read(StringIO(self.timeseries2_top))
        enhydris_api.post_tsdata(self.parms['base_url'], self.cookies, ts)

        # Temporary directory for cache files
        self.tempdir = tempfile.mkdtemp()
        self.savedcwd = os.getcwd()
        os.chdir(self.tempdir)
Пример #29
0
def create_ogr_layer_from_timeseries(filenames, epsg, data_source):
    # Prepare the co-ordinate transformation from WGS84 to epsg
    source_sr = osr.SpatialReference()
    source_sr.ImportFromEPSG(4326)
    target_sr = osr.SpatialReference()
    target_sr.ImportFromEPSG(epsg)
    transform = osr.CoordinateTransformation(source_sr, target_sr)

    layer = data_source.CreateLayer('stations', target_sr)
    layer.CreateField(ogr.FieldDefn('filename', ogr.OFTString))
    for filename in filenames:
        with open(filename) as f:
            ts = Timeseries()
            ts.read_meta(f)
        point = ogr.Geometry(ogr.wkbPoint)
        point.AddPoint(ts.location['abscissa'], ts.location['ordinate'])
        point.Transform(transform)
        f = ogr.Feature(layer.GetLayerDefn())
        f.SetGeometry(point)
        f.SetField('filename', filename)
        layer.CreateFeature(f)
    return layer
Пример #30
0
def process_dma(dma, bounds):
    """Process DMA timeseries by aggregating all the contained
    households in the DMA"""
    print "Process DMA %s" % (dma,)
    for dma_series in dma.timeseries.all():
        print "Process series %s" % (dma_series,)
        per_capita = dma_series.name.find('capita') > -1
        variable = dma_series.variable.id
        if dma_series.time_step.id == TSTEP_FIFTEEN_MINUTES:
            start = bounds[variable]['fifteen_start']
            end = bounds[variable]['fifteen_end']
            # Fifteen minutes process is DEACTIVATED!
            # We don't process fifteen minutes, it takes too long,
            # maybe we reactivate later after we optimize the
            # algorithm to process only new records
            continue
        elif dma_series.time_step.id == TSTEP_HOURLY:
            start = bounds[variable]['hourly_start']
            end = bounds[variable]['hourly_end']
        elif dma_series.time_step.id == TSTEP_DAILY:
            start = bounds[variable]['daily_start']
            end = bounds[variable]['daily_end']
        elif dma_series.time_step.id == TSTEP_MONTHLY:
            start = bounds[variable]['monthly_start']
            end = bounds[variable]['monthly_end']
        time_step = ReadTimeStep(dma_series.id, dma_series)
        tseries = TSeries(time_step = time_step, id=dma_series.id)
        nhseries = TSeries(time_step = time_step)
        pointer = start
        while pointer<=end:
            tseries[pointer] = 0
            nhseries[pointer] = 0
            pointer = tseries.time_step.next(pointer)
        for household in dma.households.all():
            for h_series_db in household.timeseries.filter(
                    time_step__id=dma_series.time_step.id,
                    variable__id=variable):
                hseries = TSeries(id=h_series_db.id)
                hseries.read_from_db(db.connection)
                pointer = start
                while pointer<=end:
                    try:
                        v = hseries[pointer]
                        if math.isnan(v):
                            pointer = tseries.time_step.next(pointer)
                            continue
                        if per_capita:
                            v = v/float(household.num_of_occupants)
                        tseries[pointer] += v
                        nhseries[pointer] += 1
                    except KeyError:
                        v = 0
                    pointer = tseries.time_step.next(pointer)
        pointer = start
        while pointer<=end:
            if per_capita and nhseries[pointer]>0:
                tseries[pointer] = tseries[pointer] / nhseries[pointer]
            pointer = tseries.time_step.next(pointer)
        tseries.write_to_db(db.connection, commit=True)#False)
Пример #31
0
    def testUploadTsData(self):
        self.assert_(self.client.login(username='******', password='******'))
        response = self.client.put(
            "/api/tsdata/1/",
            encode_multipart(BOUNDARY,
                             {'timeseries_records': '2012-11-06 18:17,20,\n'}),
            content_type=MULTIPART_CONTENT)
        t = Timeseries(1)
        t.read_from_db(connection)
        self.assertEqual(response.status_code, 200)
        self.assertEqual(response.content, '1')
        self.assertEqual(len(t), 1)
        self.assertEqual(t.items(0)[0], datetime(2012, 11, 06, 18, 17, 0))
        self.assertEqual(t.items(0)[1], 20)
        self.client.logout()

        # Append two more records
        self.assert_(self.client.login(username='******', password='******'))
        response = self.client.put(
            "/api/tsdata/1/",
            encode_multipart(BOUNDARY,
                             {'timeseries_records':
                              '2012-11-06 18:18,21,\n2012-11-07 18:18,23,\n'}),
            content_type=MULTIPART_CONTENT)
        t = Timeseries(1)
        t.read_from_db(connection)
        self.assertEqual(response.status_code, 200)
        self.assertEqual(response.content, '2')
        self.assertEqual(len(t), 3)
        self.assertEqual(t.items(0)[0], datetime(2012, 11, 06, 18, 17, 0))
        self.assertEqual(t.items(0)[1], 20)
        self.assertEqual(t.items(1)[0], datetime(2012, 11, 06, 18, 18, 0))
        self.assertEqual(t.items(1)[1], 21)
        self.assertEqual(t.items(2)[0], datetime(2012, 11, 07, 18, 18, 0))
        self.assertEqual(t.items(2)[1], 23)
        self.client.logout()

        # Try to append an earlier record; should fail
        self.assert_(self.client.login(username='******', password='******'))
        response = self.client.put(
            "/api/tsdata/1/",
            encode_multipart(BOUNDARY,
                             {'timeseries_records': '2012-11-05 18:18,21,\n'}),
            content_type=MULTIPART_CONTENT)
        self.client.logout()
        t = Timeseries(1)
        t.read_from_db(connection)
        self.assertEqual(response.status_code, 409)
        self.assertEqual(len(t), 3)
        self.client.logout()
Пример #32
0
def regularize_raw_series(raw_series_db, proc_series_db, rs, re, ps, pe):
    """
    This function regularize raw_series_db object from database and
    writes a processed proc_series_db in database.
    Raw series is a continuously increasing values time series,
    aggregating the water consumption. Resulting processed timeseries
    contains water consumption for each of its interval. I.e. if the
    timeseries is of 15 minutes time step, then each record contains
    the water consumption for each record period.
    """
    raw_series = TSeries(id=raw_series_db.id)
    raw_series.read_from_db(db.connection)
    # We keep the last value for x-checking reasons, see last print
    # command
    test_value = raw_series[raw_series.bounding_dates()[1]]
    time_step = ReadTimeStep(proc_series_db.id, proc_series_db)
    proc_series = TSeries(id=proc_series_db.id, time_step=time_step)
    # The following code can be used in real conditions to append only
    # new records to db, in a next version
    #if not pe:
    #    start = proc_series.time_step.down(rs)
    #else:
    #    start = proc_series.time_step.up(pe)
    # Instead of the above we use now:
    start = proc_series.time_step.down(rs)
    end = proc_series.time_step.up(re)
    pointer = start
    # Pass 1: Initialize proc_series
    while pointer <= end:
        proc_series[pointer] = float('nan')
        pointer = proc_series.time_step.next(pointer)
    # Pass 2: Transfer cummulative raw series to differences series:
    prev_s = 0
    for i in xrange(len(raw_series)):
        dat, value = raw_series.items(pos=i)
        if not math.isnan(value):
            raw_series[dat] = value - prev_s
            prev_s = value
    # Pass 3: Regularize step: loop over raw series records and distribute
    # floating point values to processed series
    for i in xrange(len(raw_series)):
        dat, value = raw_series.items(pos=i)
        if not math.isnan(value):
            # find previous, next timestamp of the proc time series
            d1 = proc_series.time_step.down(dat)
            d2 = proc_series.time_step.up(dat)
            if math.isnan(proc_series[d1]): proc_series[d1] = 0
            if math.isnan(proc_series[d2]): proc_series[d2] = 0
            if d1 == d2:  # if dat on proc step then d1=d2
                proc_series[d1] += value
                continue
            dif1 = _dif_in_secs(d1, dat)
            dif2 = _dif_in_secs(dat, d2)
            dif = dif1 + dif2
            # Distribute value to d1, d2
            proc_series[d1] += (dif2 / dif) * value
            proc_series[d2] += (dif1 / dif) * value
    # Uncomment the following line in order to show debug information.
    # Usually the three following sums are consistent by equality. If
    # not equality is satisfied then there is a likelyhood of algorith
    # error
    print raw_series.sum(), proc_series.sum(), test_value
    proc_series.write_to_db(db=db.connection, commit=True)  #False)
    #return the full timeseries
    return proc_series
Пример #33
0
 def readseries(self,timeseries):
     time_step  = ReadTimeStep(timeseries.id, timeseries)
     timeseries = Timeseries(time_step=time_step,id=timeseries.id)
     timeseries.read_from_db(connection)
     return timeseries.items()