Пример #1
0
 def test_sgvb(self):
     μ, ρ1, ρ2, σ = 1.5, 0.2, 0.1, 1.5
     torch.manual_seed(123)
     params = dict(μ=μ, ρ1=ρ1, ρ2=ρ2, σ=σ)
     model = AR2(input_length=100)
     y = model.simulate(**params)
     fit = sgvb(model, y, max_iters=200, quiet=True)
     summ = fit.summary()
Пример #2
0
 def test_training_loop(self):
     torch.manual_seed(123)
     m = LocalLevelModel(input_length=20)
     y, z = m.simulate(γ=0., η=2., σ=1.5, ρ=0.85)
     self.assertEqual(20, len(y))
     self.assertEqual(20, len(z))
     fit = sgvb(m, y, max_iters=8, quiet=True)
     self.assertIsInstance(fit, MVNPosterior)
Пример #3
0
    def test_plots(self):
        torch.manual_seed(123)
        m = UnivariateGaussian()
        N, μ0, σ0 = 100, 5., 5.
        y = m.simulate(N=N, μ=μ0, σ=σ0)
        fit = sgvb(m, y, max_iters=100, quiet=True)

        patch("ptvi.model.plt.show", fit.plot_marg_post("μ"))
        patch("ptvi.model.plt.show", fit.plot_data())
        patch("ptvi.model.plt.show", fit.plot_elbos())
Пример #4
0
 def test_sgvb_gpu_double(self):
     μ, ρ1, ρ2, σ = 1.5, 0.2, 0.1, 1.5
     torch.manual_seed(123)
     params = dict(μ=μ, ρ1=ρ1, ρ2=ρ2, σ=σ)
     model = AR2(input_length=100, dtype=torch.float64, device=cuda)
     y = model.simulate(**params)
     self.assertEqual(y.dtype, torch.float64)
     self.assertEqual(y.device.type, cuda.type)
     fit = sgvb(model, y, max_iters=10, quiet=True)
     summ = fit.summary()
Пример #5
0
 def test_smoke_test_sgvb(self):
     model = UnivariateGaussian()
     torch.manual_seed(123)
     N, μ0, σ0 = 100, 5., 5.
     y = model.simulate(N=N, μ=μ0, σ=σ0)
     fit = sgvb(model,
                y,
                max_iters=2**4,
                num_draws=1,
                sim_entropy=True,
                quiet=True)
     self.assertIsInstance(fit, MVNPosterior)
Пример #6
0
 def test_training_loop_double_gpu(self):
     torch.manual_seed(123)
     m = LocalLevelModel(input_length=20, dtype=torch.float64, device=cuda)
     y, z = m.simulate(γ=0., η=2., σ=1.5, ρ=0.85)
     self.assertEqual(20, len(y))
     self.assertEqual(y.device.type, cuda.type)
     self.assertEqual(y.dtype, torch.float64)
     self.assertEqual(20, len(z))
     self.assertEqual(z.device.type, cuda.type)
     self.assertEqual(z.dtype, torch.float64)
     fit = sgvb(m, y, max_iters=8, quiet=True)
     self.assertIsInstance(fit, MVNPosterior)
Пример #7
0
 def test_smoke_test_sgvb_gpu_if_available(self):
     model = UnivariateGaussian(device=cuda)
     torch.manual_seed(123)
     N, μ0, σ0 = 100, 5., 5.
     y = model.simulate(N=N, μ=μ0, σ=σ0)
     self.assertEqual(y.device.type, cuda.type)
     fit = sgvb(model,
                y,
                max_iters=2**4,
                num_draws=1,
                sim_entropy=True,
                quiet=True)
     self.assertIsInstance(fit, MVNPosterior)
Пример #8
0
 def test_training(self):
     fll = FilteredLocalLevelModel(input_length=50)
     true_params = dict(γ=0., η=2., ρ=0.95, σ=1.5)
     algo_seed, data_seed = 123, 123
     torch.manual_seed(data_seed)
     y, z = fll.simulate(**true_params)
     self.assertIsInstance(y, torch.Tensor)
     self.assertEqual(y.shape, (50, ))
     self.assertIsInstance(z, torch.Tensor)
     self.assertEqual(z.shape, (50, ))
     torch.manual_seed(algo_seed)
     fit = sgvb(fll, y, max_iters=8, quiet=True)
     self.assertIsInstance(fit, MVNPosterior)
Пример #9
0
    def test_plots(self):
        torch.manual_seed(123)
        m = LocalLevelModel(input_length=20)
        y, z = m.simulate(γ=0., η=2., σ=1.5, ρ=0.85)
        fit = sgvb(m, y, max_iters=100, quiet=True)

        patch("ptvi.model.plt.show", fit.plot_sample_paths())
        patch("ptvi.model.plt.show", fit.plot_pred_ci(fc_steps=2, true_y=y))
        patch("ptvi.model.plt.show", fit.plot_marg_post("η"))
        patch("ptvi.model.plt.show", fit.plot_data())
        patch("ptvi.model.plt.show", fit.plot_elbos())
        patch("ptvi.model.plt.show",
              fit.plot_latent(true_z=z, include_data=True))
Пример #10
0
    def test_plots_and_forecasts_gpu(self):
        μ, ρ1, ρ2, σ = 1.5, 0.2, 0.1, 1.5
        torch.manual_seed(123)
        params = dict(μ=μ, ρ1=ρ1, ρ2=ρ2, σ=σ)
        model = AR2(input_length=20, dtype=torch.float64, device=cuda)
        y = model.simulate(**params)
        fit = sgvb(model, y, max_iters=10, quiet=True)

        patch("ptvi.model.plt.show", fit.plot_sample_paths())
        patch("ptvi.model.plt.show", fit.plot_sample_paths(fc_steps=2))
        patch("ptvi.model.plt.show", fit.plot_pred_ci(fc_steps=2, true_y=y))
        patch("ptvi.model.plt.show", fit.plot_marg_post("σ"))
        patch("ptvi.model.plt.show", fit.plot_data())
        patch("ptvi.model.plt.show", fit.plot_elbos())
Пример #11
0
 def test_outputs(self):
     torch.manual_seed(123)
     m = LocalLevelModel(input_length=20)
     y, z = m.simulate(γ=0., η=2., σ=1.5, ρ=0.85)
     # we can't do much better than smoke test sampling methods
     fit = sgvb(m, y, max_iters=100, quiet=True)
     ss = fit.sample_paths(N=10, fc_steps=0)
     self.assertEqual(ss.shape, (10, 20))
     self.assertEqual(0, torch.sum(torch.isnan(ss)))
     ss = fit.sample_paths(N=10, fc_steps=10)
     self.assertEqual(ss.shape, (10, 20 + 10))
     self.assertEqual(0, torch.sum(torch.isnan(ss)))
     summ = fit.summary()
     self.assertTrue(all(summ.index == ["γ", "η", "σ", "ρ"]))
Пример #12
0
def conditional(ctx, datafile, t, outfile, n, a, b, c, maxiters):
    """Forecast stoch vol model and compute log score, conditional on T observations.

    Example:

        stochvol --data_seed=123 --algo_seed=123 conditional experiment.csv 200 SV00200.json --N=100 --a=1. --b=0. --c=0.8
    """
    assert t > 1
    start_date, start_time = str(datetime.today()), time()
    click.echo(_DIVIDER)
    click.echo("Stochastic volatility model: conditional score estimation")
    click.echo(_DIVIDER)
    true_params = dict(a=a, b=b, c=c)
    algo_seed = ctx.obj["algo_seed"]
    data_seed = ctx.obj["data_seed"]
    data = pd.read_csv(datafile)
    click.echo(f"Started at: {start_date}")
    click.echo(f"Reading {t}/{len(data)} observations from {datafile}.")
    click.echo(f"True parameters assumed to be a={a}, b={b}, c={c}")

    # draw N variates from p(y_T+1 | z_T+1, a, b, c)
    click.echo(
        f"Drawing {n} variates from p(y_T+1, z_T+1 | z_T, a, b, c) with "
        f"data_seed={data_seed}"
    )
    torch.manual_seed(data_seed)
    a, b, c = map(torch.tensor, (a, b, c))
    z_next = b + c * data["z"][t - 1] + Normal(0, 1).sample((n,))
    y_next = Normal(0, torch.exp(a) * torch.exp(z_next / 2)).sample()
    y_next_list = y_next.cpu().numpy().squeeze().tolist()  # for saving

    # perform inference
    y = data["y"][:t]
    model = SVModel(input_length=t)
    click.echo(repr(model))
    torch.manual_seed(algo_seed)
    fit = sgvb(model, y, max_iters=maxiters)
    click.echo("Inference summary:")
    click.echo(fit.summary(true=true_params))

    click.echo(f"Generating {n} forecast draws from q...")
    # filter to get p(z_T | y, θ) then project z_{T+1}, z_{T+2}, ...
    forecast, fc_draws = fit.forecast(steps=1)
    fc_draws_list = fc_draws.squeeze().tolist()

    dens = forecast.pdf(y_next)
    scores = np.log(dens[dens > 0])
    score = np.mean(scores)
    score_se = np.std(scores)
    click.echo(f"Forecast log score = {score:.4f} nats (sd = {score_se:.4f}, n = {n})")

    click.echo(f"Writing results to {outfile} in JSON format.")
    y_list = data["y"][:t].tolist()
    z_list = data["z"][:t].tolist()
    summary = {
        "method": "VSMC",
        "algo_seed": algo_seed,
        "data_seed": data_seed,
        "datafile": datafile,
        "t": t,
        "outfile": outfile,
        "fc_draws": fc_draws_list,
        "score": score,
        "score_se": score_se,
        "n": n,
        "y_next": y_next_list,
        "start_date": start_date,
        "elapsed": time() - start_time,
        "true_params": true_params,
        "full_length": len(data),
        "max_iters": maxiters,
        "inference_results": str(fit.summary()),
        "y": y_list,
        "z": z_list,
    }
    with open(outfile, "w", encoding="utf8") as ofilep:
        json.dump(summary, ofilep, indent=4, sort_keys=True)

    click.echo(f"Done in {time() - start_time:.1f} seconds.")
    click.echo(_DIVIDER)
Пример #13
0
 def test_training_loop(self):
     m = StochVolModel(input_length=50)
     y, b = m.simulate(λ=0.5, σ=0.5, φ=0.95)
     fit = sgvb(m, y, max_iters=5, quiet=True)
     self.assertIsInstance(fit, MVNPosterior)