Пример #1
0
def test_video2stim():
    reload(image)
    reload(video)
    # Smoke-test example video
    from skvideo import datasets
    implant = implants.ArgusI()
    video.video2stim(datasets.bikes(), implant)
    with pytest.raises(OSError):
        video.video2stim('no-such-file.avi', implant)
Пример #2
0
def test_video2pulsetrain():
    reload(stimuli)
    implant = implants.ArgusI()

    with pytest.raises(OSError):
        stimuli.video2pulsetrain('no-such-file.avi', implant)

    # Smoke-test example video
    from skvideo import datasets
    stimuli.video2pulsetrain(datasets.bikes(), implant)
Пример #3
0
def test_parse_pulse_trains():
    # Specify pulse trains in a number of different ways and make sure they
    # are all identical after parsing

    # Create some p2p.implants
    argus = implants.ArgusI()
    simple = implants.ElectrodeArray('subretinal', 0, 0, 0, 0)

    pt_zero = utils.TimeSeries(1, np.zeros(1000))
    pt_nonzero = utils.TimeSeries(1, np.random.rand(1000))

    # Test 1
    # ------
    # Specify wrong number of pulse trains
    with pytest.raises(ValueError):
        stimuli.parse_pulse_trains(pt_nonzero, argus)
    with pytest.raises(ValueError):
        stimuli.parse_pulse_trains([pt_nonzero], argus)
    with pytest.raises(ValueError):
        stimuli.parse_pulse_trains([pt_nonzero] *
                                   (argus.num_electrodes - 1),
                                   argus)
    with pytest.raises(ValueError):
        stimuli.parse_pulse_trains([pt_nonzero] * 2, simple)

    # Test 2
    # ------
    # Send non-zero pulse train to specific electrode
    el_name = 'B3'
    el_idx = argus.get_index(el_name)

    # Specify a list of 16 pulse trains (one for each electrode)
    pt0_in = [pt_zero] * argus.num_electrodes
    pt0_in[el_idx] = pt_nonzero
    pt0_out = stimuli.parse_pulse_trains(pt0_in, argus)

    # Specify a dict with non-zero pulse trains
    pt1_in = {el_name: pt_nonzero}
    pt1_out = stimuli.parse_pulse_trains(pt1_in, argus)

    # Make sure the two give the same result
    for p0, p1 in zip(pt0_out, pt1_out):
        npt.assert_equal(p0.data, p1.data)

    # Test 3
    # ------
    # Smoke testing
    stimuli.parse_pulse_trains([pt_zero] * argus.num_electrodes, argus)
    stimuli.parse_pulse_trains(pt_zero, simple)
    stimuli.parse_pulse_trains([pt_zero], simple)
Пример #4
0
def test_ScoreboardModel():
    # ScoreboardModel automatically sets `rho`:
    model = models.ScoreboardModel(engine='serial', xystep=5)
    npt.assert_equal(hasattr(model, 'rho'), True)

    # User can set `rho`:
    model.rho = 123
    npt.assert_equal(model.rho, 123)
    model.build(rho=987)
    npt.assert_equal(model.rho, 987)

    # Zero in = zero out:
    implant = implants.ArgusI(stim=np.zeros(16))
    npt.assert_almost_equal(model.predict_percept(implant), 0)
Пример #5
0
def test_image2pulsetrain():
    # Range of values
    amp_min = 2
    amp_max = 15

    # Create a standard Argus I array
    implant = implants.ArgusI()

    # Create a small image with 1 pixel per electrode
    img = np.zeros((4, 4))

    # An all-zero image should give us a really boring stimulation protocol
    pulses = stimuli.image2pulsetrain(img, implant, valrange=[amp_min,
                                                              amp_max])
    for pt in pulses:
        npt.assert_equal(pt.data.max(), amp_min)

    # Now put some structure in the image
    img[1, 1] = img[1, 2] = img[2, 1] = img[2, 2] = 0.75

    expected_max = [amp_max, 0.75 * (amp_max - amp_min) + amp_min]
    for max_contrast, val_max in zip([True, False], expected_max):
        pt = stimuli.image2pulsetrain(img, implant, coding='amplitude',
                                      max_contrast=max_contrast,
                                      valrange=[amp_min, amp_max])

        # Make sure we have one pulse train per electrode
        npt.assert_equal(len(pt), implant.num_electrodes)

        # Make sure the brightest electrode has `amp_max`
        npt.assert_almost_equal(np.max([p.data.max() for p in pt]),
                                val_max)

        # Make sure the dimmest electrode has `amp_min` as max amplitude
        npt.assert_almost_equal(np.min([np.abs(p.data).max() for p in pt]),
                                amp_min)

    # Invalid implant
    with pytest.raises(TypeError):
        stimuli.image2pulsetrain("rainbow_cat.jpg", np.zeros(10))
    with pytest.raises(TypeError):
        e_array = implants.ElectrodeArray('epiretinal', 100, 0, 0)
        stimuli.image2pulsetrain("rainbow_cat.jpg", e_array)

    # Invalid image
    with pytest.raises(IOError):
        stimuli.image2pulsetrain("rainbow_cat.jpg", implants.ArgusI())

    # Smoke-test RGB
    stimuli.image2pulsetrain(np.zeros((10, 10, 3)), implants.ArgusI())

    # Smoke-test invert
    stimuli.image2pulsetrain(np.zeros((10, 10, 3)), implants.ArgusI(),
                             invert=True)

    # Smoke-test normalize
    stimuli.image2pulsetrain(np.ones((10, 10, 3)) * 2,
                             implants.ArgusI(), invert=True)

    # Smoke-test frequency coding
    stimuli.image2pulsetrain(np.zeros((10, 10, 3)), implants.ArgusI(),
                             coding='frequency')

    # Invalid coding
    with pytest.raises(ValueError):
        stimuli.image2pulsetrain(np.zeros((10, 10)), implants.ArgusI(),
                                 coding='n/a')

    # Trigger an import error
    with mock.patch.dict("sys.modules", {"skimage": {}, "skimage.io": {}}):
        with pytest.raises(ImportError):
            reload(stimuli)
            stimuli.image2pulsetrain(img, implant)
Пример #6
0
def test_ArgusI(ztype, x, y, rot):
    # Create an ArgusI and make sure location is correct
    # Height `z` can either be a float or a list
    z = 100 if ztype == 'float' else np.ones(16) * 20

    argus = implants.ArgusI(x, y, z=z, rot=rot)

    # Slots:
    npt.assert_equal(hasattr(argus, '__slots__'), True)
    npt.assert_equal(hasattr(argus, '__dict__'), False)

    # Coordinates of first electrode
    xy = np.array([-1200, -1200]).T

    # Rotate
    rot_rad = np.deg2rad(rot)
    R = np.array(
        [np.cos(rot_rad), -np.sin(rot_rad),
         np.sin(rot_rad),
         np.cos(rot_rad)]).reshape((2, 2))
    xy = np.matmul(R, xy)

    # Then off-set: Make sure first electrode is placed
    # correctly
    npt.assert_almost_equal(argus['A1'].x, xy[0] + x)
    npt.assert_almost_equal(argus['A1'].y, xy[1] + y)

    # Make sure array center is still (x,y)
    y_center = argus['D1'].y + (argus['A4'].y - argus['D1'].y) / 2
    npt.assert_almost_equal(y_center, y)
    x_center = argus['A1'].x + (argus['D4'].x - argus['A1'].x) / 2
    npt.assert_almost_equal(x_center, x)

    # Check radii of electrodes
    for e in ['A1', 'A3', 'B2', 'C1', 'D4']:
        npt.assert_almost_equal(argus[e].r, 125)
    for e in ['A2', 'A4', 'B1', 'C2', 'D3']:
        npt.assert_almost_equal(argus[e].r, 250)

    # Check location of the tack
    tack = np.matmul(R, [-2000, 0])
    tack = tuple(tack + [x_center, y_center])

    # `h` must have the right dimensions
    with pytest.raises(ValueError):
        implants.ArgusI(x=-100, y=10, z=np.zeros(5))
    with pytest.raises(ValueError):
        implants.ArgusI(x=-100, y=10, z=[1, 2, 3])

    # Indexing must work for both integers and electrode names
    for use_legacy_names in [True, False]:
        argus = implants.ArgusI(use_legacy_names=use_legacy_names)
        for idx, (name, electrode) in enumerate(argus.electrodes.items()):
            npt.assert_equal(electrode, argus[idx])
            npt.assert_equal(electrode, argus[name])
        npt.assert_equal(argus["unlikely name for an electrode"], None)

    # Right-eye implant:
    xc, yc = 500, -500
    argus_re = implants.ArgusI(eye='RE', x=xc, y=yc)
    npt.assert_equal(argus_re['D1'].x > argus_re['A1'].x, True)
    npt.assert_almost_equal(argus_re['D1'].y, argus_re['A1'].y)

    # need to adjust for reflection about y-axis
    # Left-eye implant:
    argus_le = implants.ArgusI(eye='LE', x=xc, y=yc)
    npt.assert_equal(argus_le['A1'].x > argus_le['D4'].x, True)
    npt.assert_almost_equal(argus_le['D1'].y, argus_le['A1'].y)

    # In both left and right eyes, rotation with positive angle should be
    # counter-clock-wise (CCW): for (x>0,y>0), decreasing x and increasing y
    for eye, el in zip(['LE', 'RE'], ['A1', 'D1']):
        before = implants.ArgusI(eye=eye)
        after = implants.ArgusI(eye=eye, rot=10)
        npt.assert_equal(after[el].x > before[el].x, True)
        npt.assert_equal(after[el].y > before[el].y, True)

    # Check naming scheme
    argus = implants.ArgusI(use_legacy_names=False)
    npt.assert_equal(argus.electrode_names[15], 'D4')
    npt.assert_equal(argus.electrode_names[0], 'A1')

    argus = implants.ArgusI(use_legacy_names=True)
    npt.assert_equal(argus.electrode_names[15], 'M1')
    npt.assert_equal(argus.electrode_names[0], 'L6')

    # Set a stimulus via dict:
    argus = implants.ArgusI(stim={'B3': 13})
    npt.assert_equal(argus.stim.shape, (1, 1))
    npt.assert_equal(argus.stim.electrodes, ['B3'])

    # Set a stimulus via array:
    argus = implants.ArgusI(stim=np.ones(16))
    npt.assert_equal(argus.stim.shape, (16, 1))
    npt.assert_almost_equal(argus.stim.data, 1)