Пример #1
0
def main():
    fileName = sys.argv[1]

    ncFile = NetCDFFile(fileName, 'r')
    description = ET.Element('pointDataDescription')

    variableKeys = ncFile.variables.keys()
    variableKeys.sort()
    for variableName in variableKeys:
        if variableName in excludeVars:
            continue
        variableObject = ncFile.variables[variableName]
        varElement = ET.SubElement(description, 'parameter')
        varElement.set('name', variableName)
        typeCode = variableObject.typecode()
        numDims = len(variableObject.shape)
        if numDims > 1 and typeCode is 'c':
            typeCode = 's'
            numDims = numDims - 1
        varElement.set('type', typeMap[typeCode])
        varElement.set('numDims', str(numDims))

        if 'units' in variableObject._attributes:
            unit = variableObject._attributes['units']
            varElement.set('unit', unit)
        if '_FillValue' in variableObject._attributes:
            fillValue = variableObject._attributes['_FillValue']
            # Disabled for now:
            # if fillValue:
            #   varElement.set('fillValue',str(long(fillValue)))
    indentElement(description)
    print ET.tostring(description, 'UTF-8')
Пример #2
0
    def __init__(self,
                 fn,
                 frame=0,
                 double=False,
                 store_force=False,
                 mode='r',
                 format='NETCDF4'):
        self._fn = fn
        self._data = None
        try:
            if __have_netcdf4__:
                self._data = Dataset(fn, mode, format=format)
            else:
                if mode == 'ws':
                    mode = 'w'
                self._data = NetCDFFile(fn, mode)
        except RuntimeError as e:
            raise RuntimeError('Error opening file "{0}": {1}'.format(fn, e))

        if double:
            self._float_str = 'f8'
        else:
            self._float_str = 'f4'

        self._store_force = store_force

        self._is_amber = False

        if mode[0] == 'w':
            self._data.program = 'PyCo'
            self._data.programVersion = 'N/A'
            self._is_defined = False
        else:
            if 'nx' in self._data.dimensions and 'ny' in self._data.dimensions:
                try:
                    self._shape = (len(self._data.dimensions['nx']),
                                   len(self._data.dimensions['ny']))
                except TypeError:
                    self._shape = (self._data.dimensions['nx'],
                                   self._data.dimensions['ny'])
                self._shape2 = self._shape
            elif 'atom' in self._data.dimensions:
                n = self._data.dimensions['atom']
                nx = int(sqrt(n))
                assert nx * nx == n
                self._shape = (nx, nx)
                self._shape2 = (nx, nx)

                self._is_amber = True
            else:
                raise RuntimeError('Unknown NetCDF convention used for file '
                                   '%s.' % fn)

            self._is_defined = True

        if frame < 0:
            self._cur_frame = len(self) + frame
        else:
            self._cur_frame = frame
Пример #3
0
"""
from pupynere import NetCDFFile
import pylab as pl
from matplotlib import rcParams
try:
    import numpy
    rcParams['numerix'] = 'numpy'
except:
    raise ImportError('this example requires numpy')
import matplotlib.numerix.ma as MA
import matplotlib.numerix as N
from matplotlib.toolkits.basemap import Basemap

# read in data from netCDF file.
infile = 'ccsm_popgrid.nc'
fpin = NetCDFFile(infile)
tlat = fpin.variables['TLAT'][:]
tlon = fpin.variables['TLONG'][:]
temp = fpin.variables['TEMP'][:]
fillvalue = fpin.variables['TEMP'].attributes['_FillValue']
fpin.close()

# make longitudes monotonically increasing.
tlon = N.where(N.greater_equal(tlon, min(tlon[:, 0])), tlon - 360, tlon)

# create a masked array with temperature data (continents masked).
temp = MA.masked_values(temp, fillvalue)

# stack grids side-by-side (in longitiudinal direction), so
# any range of longitudes may be plotted on a world map.
tlon = N.concatenate((tlon, tlon + 360), 1)
Пример #4
0
from pupynere import NetCDFFile
from matplotlib.toolkits.basemap import Basemap, cm
import pylab, copy
from matplotlib import rcParams

# make tick labels smaller
rcParams['xtick.labelsize'] = 9
rcParams['ytick.labelsize'] = 9

# plot rainfall from NWS using special precipitation
# colormap used by the NWS, and included in basemap.

nc = NetCDFFile('nws_precip_conus_20061222.nc')
# data from http://www.srh.noaa.gov/rfcshare/precip_analysis_new.php
prcpvar = nc.variables['amountofprecip']
data = 0.01 * prcpvar[:]
data = pylab.clip(data, 0, 10000)
latcorners = nc.variables['lat'][:]
loncorners = -nc.variables['lon'][:]
plottitle = prcpvar.long_name + ' for period ending ' + prcpvar.dateofdata
print data.min(), data.max()
print latcorners
print loncorners
print plottitle
print data.shape
lon_0 = -nc.variables['true_lon'].getValue()
lat_0 = nc.variables['true_lat'].getValue()
# create polar stereographic Basemap instance.
m = Basemap(projection='stere',lon_0=lon_0,lat_0=90.,lat_ts=lat_0,\
            llcrnrlat=latcorners[0],urcrnrlat=latcorners[2],\
            llcrnrlon=loncorners[0],urcrnrlon=loncorners[2],\