def test_save_cell_images(tmp_path): cells = segment_cells(locate_module_and_cells(datasets.poly10x6(1)[0])) save_images(tmp_path, cells) for cell in cells: p = tmp_path / "{}_row{:02d}_col{:02d}{}".format( cell.path.stem, cell.row, cell.col, cell.path.suffix) img_read = read_module_image(p, EL_IMAGE)
def _prepare_stitching_test_img(): image = datasets.poly10x6(1)[0].data.T[:, :1930] height = image.shape[0] width = image.shape[1] img0 = Image(image[600:, 0:int(width * 2 // 3)]) img1 = Image(image[600:, int(width // 3):]) return img0, img1
def test_save_images_filename_hook(tmp_path: Path): cells = segment_cells(locate_module_and_cells(datasets.poly10x6(1)[0])) hook = lambda x: "{}_{:02d}{:02d}{}".format(x.path.stem, x.row, x.col, x. path.suffix) save_images(tmp_path, cells) for cell in cells: p = tmp_path / "{}_{:02d}{:02d}{}".format(cell.path.stem, cell.row, cell.col, cell.path.suffix) # try read img_read = read_module_image(p, EL_IMAGE)
def test_single_segmentation(): # load images img = datasets.poly10x6(N=1)[0] # perform detection module = locate_module_and_cells(img) # check result assert module.has_meta("transform") # check that show result does not fail module.show() # perform segmentation into cells cells = segment_cells(module) # check assert len(cells) == 60
def test_save_and_read_image(tmp_path): img = datasets.poly10x6(1)[0] save_image(tmp_path / "img.tif", img) img_read = read_module_image(tmp_path / "img.tif", EL_IMAGE) assert np.linalg.norm(img.data.flatten() - img_read.data.flatten()) == 0
def test_save_image_with_visualization(tmp_path: Path): img = datasets.poly10x6(1)[0] p = tmp_path / "img.pdf" save_image(p, img, with_visusalization=True) assert p.is_file()
def test_save_image_sequence(tmp_path): seq = datasets.poly10x6(5) save_images(tmp_path, seq) for img in seq: img_read = read_module_image(tmp_path / img.path.name, EL_IMAGE)