def test_read_crn(): columns = [ 'WBANNO', 'UTC_DATE', 'UTC_TIME', 'LST_DATE', 'LST_TIME', 'CRX_VN', 'longitude', 'latitude', 'temp_air', 'PRECIPITATION', 'ghi', 'ghi_flag', 'SURFACE_TEMPERATURE', 'ST_TYPE', 'ST_FLAG', 'relative_humidity', 'relative_humidity_flag', 'SOIL_MOISTURE_5', 'SOIL_TEMPERATURE_5', 'WETNESS', 'WET_FLAG', 'wind_speed', 'wind_speed_flag'] index = pd.DatetimeIndex(['2019-01-01 16:10:00', '2019-01-01 16:15:00', '2019-01-01 16:20:00', '2019-01-01 16:25:00'], freq=None).tz_localize('UTC') values = np.array([ [53131, 20190101, 1610, 20190101, 910, 3, -111.17, 32.24, nan, 0.0, 296.0, 0, 4.4, 'C', 0, 90.0, 0, nan, nan, 24, 0, 0.78, 0], [53131, 20190101, 1615, 20190101, 915, 3, -111.17, 32.24, 3.3, 0.0, 183.0, 0, 4.0, 'C', 0, 87.0, 0, nan, nan, 1182, 0, 0.36, 0], [53131, 20190101, 1620, 20190101, 920, 3, -111.17, 32.24, 3.5, 0.0, 340.0, 0, 4.3, 'C', 0, 83.0, 0, nan, nan, 1183, 0, 0.53, 0], [53131, 20190101, 1625, 20190101, 925, 3, -111.17, 32.24, 4.0, 0.0, 393.0, 0, 4.8, 'C', 0, 81.0, 0, nan, nan, 1223, 0, 0.64, 0]]) dtypes = [ dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('int64'), dtype('float64'), dtype('O'), dtype('int64'), dtype('float64'), dtype('int64'), dtype('float64'), dtype('float64'), dtype('int64'), dtype('int64'), dtype('float64'), dtype('int64')] expected = pd.DataFrame(values, columns=columns, index=index) for (col, _dtype) in zip(expected.columns, dtypes): expected[col] = expected[col].astype(_dtype) out = crn.read_crn(testfile) assert_frame_equal(out, expected)
def test_read_crn(testfile, columns, dtypes): index = pd.DatetimeIndex([ '2019-01-01 16:10:00', '2019-01-01 16:15:00', '2019-01-01 16:20:00', '2019-01-01 16:25:00' ], freq=None).tz_localize('UTC') values = np.array([[ 53131, 20190101, 1610, 20190101, 910, 3, -111.17, 32.24, nan, 0.0, 296.0, 0, 4.4, 'C', 0, 90.0, 0, nan, nan, 24, 0, 0.78, 0 ], [ 53131, 20190101, 1615, 20190101, 915, 3, -111.17, 32.24, 3.3, 0.0, 183.0, 0, 4.0, 'C', 0, 87.0, 0, nan, nan, 1182, 0, 0.36, 0 ], [ 53131, 20190101, 1620, 20190101, 920, 3, -111.17, 32.24, 3.5, 0.0, 340.0, 0, 4.3, 'C', 0, 83.0, 0, nan, nan, 1183, 0, 0.53, 0 ], [ 53131, 20190101, 1625, 20190101, 925, 3, -111.17, 32.24, 4.0, 0.0, 393.0, 0, 4.8, 'C', 0, 81.0, 0, nan, nan, 1223, 0, 0.64, 0 ]]) expected = pd.DataFrame(values, columns=columns, index=index) for (col, _dtype) in zip(expected.columns, dtypes): expected[col] = expected[col].astype(_dtype) out = crn.read_crn(testfile) assert_frame_equal(out, expected)
def test_read_crn_problems(testfile_problems, columns_mapped, dtypes): # GH1025 index = pd.DatetimeIndex(['2020-07-06 12:00:00', '2020-07-06 13:10:00'], freq=None).tz_localize('UTC') values = np.array([ [92821, 20200706, 1200, 20200706, 700, '3', -80.69, 28.62, 24.9, 0.0, np.nan, 0, 25.5, 'C', 0, 93.0, 0, nan, nan, 990, 0, 1.57, 0], [92821, 20200706, 1310, 20200706, 810, '2.623', -80.69, 28.62, 26.9, 0.0, 430.0, 0, 30.2, 'C', 0, 87.0, 0, nan, nan, 989, 0, 1.64, 0]]) expected = pd.DataFrame(values, columns=columns_mapped, index=index) for (col, _dtype) in zip(expected.columns, dtypes): expected[col] = expected[col].astype(_dtype) out = crn.read_crn(testfile_problems) assert_frame_equal(out, expected)
def test_read_crn(): columns = [ 'WBANNO', 'UTC_DATE', 'UTC_TIME', 'LST_DATE', 'LST_TIME', 'CRX_VN', 'longitude', 'latitude', 'temp_air', 'PRECIPITATION', 'ghi', 'ghi_flag', 'SURFACE_TEMPERATURE', 'ST_TYPE', 'ST_FLAG', 'relative_humidity', 'relative_humidity_flag', 'SOIL_MOISTURE_5', 'SOIL_TEMPERATURE_5', 'WETNESS', 'WET_FLAG', 'wind_speed', 'wind_speed_flag' ] index = pd.DatetimeIndex([ '2019-01-01 16:10:00', '2019-01-01 16:15:00', '2019-01-01 16:20:00', '2019-01-01 16:25:00' ], freq=None).tz_localize('UTC') values = np.array([[ 53131, 20190101, 1610, 20190101, 910, 3, -111.17, 32.24, nan, 0.0, 296.0, 0, 4.4, 'C', 0, 90.0, 0, nan, nan, 24, 0, 0.78, 0 ], [ 53131, 20190101, 1615, 20190101, 915, 3, -111.17, 32.24, 3.3, 0.0, 183.0, 0, 4.0, 'C', 0, 87.0, 0, nan, nan, 1182, 0, 0.36, 0 ], [ 53131, 20190101, 1620, 20190101, 920, 3, -111.17, 32.24, 3.5, 0.0, 340.0, 0, 4.3, 'C', 0, 83.0, 0, nan, nan, 1183, 0, 0.53, 0 ], [ 53131, 20190101, 1625, 20190101, 925, 3, -111.17, 32.24, 4.0, 0.0, 393.0, 0, 4.8, 'C', 0, 81.0, 0, nan, nan, 1223, 0, 0.64, 0 ]]) dtypes = [ dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('int64'), dtype('float64'), dtype('O'), dtype('int64'), dtype('float64'), dtype('int64'), dtype('float64'), dtype('float64'), dtype('int64'), dtype('int64'), dtype('float64'), dtype('int64') ] expected = pd.DataFrame(values, columns=columns, index=index) for (col, _dtype) in zip(expected.columns, dtypes): expected[col] = expected[col].astype(_dtype) out = crn.read_crn(testfile) assert_frame_equal(out, expected)
def test_read_crn_map_variables(testfile, columns_unmapped, dtypes): out = crn.read_crn(testfile, map_variables=False) assert_index_equal(out.columns, pd.Index(columns_unmapped))