Пример #1
0
def test_get_airmass():
    tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
    times = pd.DatetimeIndex(start='20160101T0600-0700',
                             end='20160101T1800-0700',
                             freq='3H')
    airmass = tus.get_airmass(times)
    expected = pd.DataFrame(data=np.array(
                            [[        nan,         nan],
                             [ 3.61046506,  3.32072602],
                             [ 1.76470864,  1.62309115],
                             [ 2.45582153,  2.25874238],
                             [        nan,         nan]]),
                            columns=['airmass_relative', 'airmass_absolute'],
                            index=times)
    assert_frame_equal(expected, airmass)

    airmass = tus.get_airmass(times, model='young1994')
    expected = pd.DataFrame(data=np.array(
                            [[        nan,         nan],
                             [ 3.6075018 ,  3.31800056],
                             [ 1.7641033 ,  1.62253439],
                             [ 2.45413091,  2.25718744],
                             [        nan,         nan]]),
                            columns=['airmass_relative', 'airmass_absolute'],
                            index=times)
    assert_frame_equal(expected, airmass)
Пример #2
0
def test_get_airmass():
    tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
    times = pd.DatetimeIndex(start='20160101T0600-0700',
                             end='20160101T1800-0700',
                             freq='3H')
    airmass = tus.get_airmass(times)
    expected = pd.DataFrame(data=np.array(
                            [[        nan,         nan],
                             [ 3.61046506,  3.32072602],
                             [ 1.76470864,  1.62309115],
                             [ 2.45582153,  2.25874238],
                             [        nan,         nan]]),
                            columns=['airmass_relative', 'airmass_absolute'],
                            index=times)
    assert_frame_equal(expected, airmass)

    airmass = tus.get_airmass(times, model='young1994')
    expected = pd.DataFrame(data=np.array(
                            [[        nan,         nan],
                             [ 3.6075018 ,  3.31800056],
                             [ 1.7641033 ,  1.62253439],
                             [ 2.45413091,  2.25718744],
                             [        nan,         nan]]),
                            columns=['airmass_relative', 'airmass_absolute'],
                            index=times)
    assert_frame_equal(expected, airmass)
Пример #3
0
def test_get_airmass_valueerror():
    tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
    times = pd.DatetimeIndex(start='20160101T0600-0700',
                             end='20160101T1800-0700',
                             freq='3H')
    with pytest.raises(ValueError):
        clearsky = tus.get_airmass(times, model='invalid_model')
Пример #4
0
def test_get_airmass_valueerror():
    tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
    times = pd.DatetimeIndex(start='20160101T0600-0700',
                             end='20160101T1800-0700',
                             freq='3H')
    with pytest.raises(ValueError):
        clearsky = tus.get_airmass(times, model='invalid_model')
Пример #5
0
class ForecastModel(object):
    """
    An object for querying and holding forecast model information for
    use within the pvlib library.

    Simplifies use of siphon library on a THREDDS server.

    Parameters
    ----------
    model_type: string
        UNIDATA category in which the model is located.
    model_name: string
        Name of the UNIDATA forecast model.
    set_type: string
        Model dataset type.

    Attributes
    ----------
    access_url: string
        URL specifying the dataset from data will be retrieved.
    base_tds_url : string
        The top level server address
    catalog_url : string
        The url path of the catalog to parse.
    data: pd.DataFrame
        Data returned from the query.
    data_format: string
        Format of the forecast data being requested from UNIDATA.
    dataset: Dataset
        Object containing information used to access forecast data.
    dataframe_variables: list
        Model variables that are present in the data.
    datasets_list: list
        List of all available datasets.
    fm_models: Dataset
        TDSCatalog object containing all available
        forecast models from UNIDATA.
    fm_models_list: list
        List of all available forecast models from UNIDATA.
    latitude: list
        A list of floats containing latitude values.
    location: Location
        A pvlib Location object containing geographic quantities.
    longitude: list
        A list of floats containing longitude values.
    lbox: boolean
        Indicates the use of a location bounding box.
    ncss: NCSS object
        NCSS
    model_name: string
        Name of the UNIDATA forecast model.
    model: Dataset
        A dictionary of Dataset object, whose keys are the name of the
        dataset's name.
    model_url: string
        The url path of the dataset to parse.
    modelvariables: list
        Common variable names that correspond to queryvariables.
    query: NCSS query object
        NCSS object used to complete the forecast data retrival.
    queryvariables: list
        Variables that are used to query the THREDDS Data Server.
    time: DatetimeIndex
        Time range.
    variables: dict
        Defines the variables to obtain from the weather
        model and how they should be renamed to common variable names.
    units: dict
        Dictionary containing the units of the standard variables
        and the model specific variables.
    vert_level: float or integer
        Vertical altitude for query data.
    """

    access_url_key = 'NetcdfSubset'
    catalog_url = 'https://thredds.ucar.edu/thredds/catalog.xml'
    base_tds_url = catalog_url.split('/thredds/')[0]
    data_format = 'netcdf'

    units = {
        'temp_air': 'C',
        'wind_speed': 'm/s',
        'ghi': 'W/m^2',
        'ghi_raw': 'W/m^2',
        'dni': 'W/m^2',
        'dhi': 'W/m^2',
        'total_clouds': '%',
        'low_clouds': '%',
        'mid_clouds': '%',
        'high_clouds': '%'
    }

    def __init__(self, model_type, model_name, set_type, vert_level=None):
        self.model_type = model_type
        self.model_name = model_name
        self.set_type = set_type
        self.connected = False
        self.vert_level = vert_level

    def connect_to_catalog(self):
        self.catalog = TDSCatalog(self.catalog_url)
        self.fm_models = TDSCatalog(
            self.catalog.catalog_refs[self.model_type].href)
        self.fm_models_list = sorted(list(self.fm_models.catalog_refs.keys()))

        try:
            model_url = self.fm_models.catalog_refs[self.model_name].href
        except ParseError:
            raise ParseError(self.model_name + ' model may be unavailable.')

        try:
            self.model = TDSCatalog(model_url)
        except HTTPError:
            try:
                self.model = TDSCatalog(model_url)
            except HTTPError:
                raise HTTPError(self.model_name + ' model may be unavailable.')

        self.datasets_list = list(self.model.datasets.keys())
        self.set_dataset()
        self.connected = True

    def __repr__(self):
        return '{}, {}'.format(self.model_name, self.set_type)

    def set_dataset(self):
        '''
        Retrieves the designated dataset, creates NCSS object, and
        creates a NCSS query object.
        '''

        keys = list(self.model.datasets.keys())
        labels = [item.split()[0].lower() for item in keys]
        if self.set_type == 'best':
            self.dataset = self.model.datasets[keys[labels.index('best')]]
        elif self.set_type == 'latest':
            self.dataset = self.model.datasets[keys[labels.index('latest')]]
        elif self.set_type == 'full':
            self.dataset = self.model.datasets[keys[labels.index('full')]]

        self.access_url = self.dataset.access_urls[self.access_url_key]
        self.ncss = NCSS(self.access_url)
        self.query = self.ncss.query()

    def set_query_time_range(self, start, end):
        """
        Parameters
        ----------
        start : datetime.datetime, pandas.Timestamp
            Must be tz-localized.
        end : datetime.datetime, pandas.Timestamp
            Must be tz-localized.

        Notes
        -----
        Assigns ``self.start``, ``self.end``. Modifies ``self.query``
        """
        self.start = pd.Timestamp(start)
        self.end = pd.Timestamp(end)
        if self.start.tz is None or self.end.tz is None:
            raise TypeError('start and end must be tz-localized')
        self.query.time_range(self.start, self.end)

    def set_query_latlon(self):
        '''
        Sets the NCSS query location latitude and longitude.
        '''

        if (isinstance(self.longitude, list)
                and isinstance(self.latitude, list)):
            self.lbox = True
            # west, east, south, north
            self.query.lonlat_box(self.longitude[0], self.longitude[1],
                                  self.latitude[0], self.latitude[1])
        else:
            self.lbox = False
            self.query.lonlat_point(self.longitude, self.latitude)

    def set_location(self, tz, latitude, longitude):
        '''
        Sets the location for the query.

        Parameters
        ----------
        tz: tzinfo
            Timezone of the query
        latitude: float
            Latitude of the query
        longitude: float
            Longitude of the query

        Notes
        -----
        Assigns ``self.location``.
        '''
        self.location = Location(latitude, longitude, tz=tz)

    def get_data(self,
                 latitude,
                 longitude,
                 start,
                 end,
                 vert_level=None,
                 query_variables=None,
                 close_netcdf_data=True,
                 **kwargs):
        """
        Submits a query to the UNIDATA servers using Siphon NCSS and
        converts the netcdf data to a pandas DataFrame.

        Parameters
        ----------
        latitude: float
            The latitude value.
        longitude: float
            The longitude value.
        start: datetime or timestamp
            The start time.
        end: datetime or timestamp
            The end time.
        vert_level: None, float or integer, default None
            Vertical altitude of interest.
        query_variables: None or list, default None
            If None, uses self.variables.
        close_netcdf_data: bool, default True
            Controls if the temporary netcdf data file should be closed.
            Set to False to access the raw data.
        **kwargs:
            Additional keyword arguments are silently ignored.

        Returns
        -------
        forecast_data : DataFrame
            column names are the weather model's variable names.
        """

        if not self.connected:
            self.connect_to_catalog()

        if vert_level is not None:
            self.vert_level = vert_level

        if query_variables is None:
            self.query_variables = list(self.variables.values())
        else:
            self.query_variables = query_variables

        self.set_query_time_range(start, end)

        self.latitude = latitude
        self.longitude = longitude
        self.set_query_latlon()  # modifies self.query
        self.set_location(self.start.tz, latitude, longitude)

        if self.vert_level is not None:
            self.query.vertical_level(self.vert_level)

        self.query.variables(*self.query_variables)
        self.query.accept(self.data_format)

        self.netcdf_data = self.ncss.get_data(self.query)

        # might be better to go to xarray here so that we can handle
        # higher dimensional data for more advanced applications
        self.data = self._netcdf2pandas(self.netcdf_data, self.query_variables,
                                        self.start, self.end)

        if close_netcdf_data:
            self.netcdf_data.close()

        return self.data

    def process_data(self, data, **kwargs):
        """
        Defines the steps needed to convert raw forecast data
        into processed forecast data. Most forecast models implement
        their own version of this method which also call this one.

        Parameters
        ----------
        data: DataFrame
            Raw forecast data

        Returns
        -------
        data: DataFrame
            Processed forecast data.
        """
        data = self.rename(data)
        return data

    def get_processed_data(self, *args, **kwargs):
        """
        Get and process forecast data.

        Parameters
        ----------
        *args: positional arguments
            Passed to get_data
        **kwargs: keyword arguments
            Passed to get_data and process_data

        Returns
        -------
        data: DataFrame
            Processed forecast data
        """
        return self.process_data(self.get_data(*args, **kwargs), **kwargs)

    def rename(self, data, variables=None):
        """
        Renames the columns according the variable mapping.

        Parameters
        ----------
        data: DataFrame
        variables: None or dict, default None
            If None, uses self.variables

        Returns
        -------
        data: DataFrame
            Renamed data.
        """
        if variables is None:
            variables = self.variables
        return data.rename(columns={y: x for x, y in variables.items()})

    def _netcdf2pandas(self, netcdf_data, query_variables, start, end):
        """
        Transforms data from netcdf to pandas DataFrame.

        Parameters
        ----------
        data: netcdf
            Data returned from UNIDATA NCSS query.
        query_variables: list
            The variables requested.
        start: Timestamp
            The start time
        end: Timestamp
            The end time

        Returns
        -------
        pd.DataFrame
        """
        # set self.time
        try:
            time_var = 'time'
            self.set_time(netcdf_data.variables[time_var])
        except KeyError:
            # which model does this dumb thing?
            time_var = 'time1'
            self.set_time(netcdf_data.variables[time_var])

        data_dict = {}
        for key, data in netcdf_data.variables.items():
            # if accounts for possibility of extra variable returned
            if key not in query_variables:
                continue
            squeezed = data[:].squeeze()
            if squeezed.ndim == 1:
                data_dict[key] = squeezed
            elif squeezed.ndim == 2:
                for num, data_level in enumerate(squeezed.T):
                    data_dict[key + '_' + str(num)] = data_level
            else:
                raise ValueError('cannot parse ndim > 2')

        data = pd.DataFrame(data_dict, index=self.time)
        # sometimes data is returned as hours since T0
        # where T0 is before start. Then the hours between
        # T0 and start are added *after* end. So sort and slice
        # to remove the garbage
        data = data.sort_index().loc[start:end]
        return data

    def set_time(self, time):
        '''
        Converts time data into a pandas date object.

        Parameters
        ----------
        time: netcdf
            Contains time information.

        Returns
        -------
        pandas.DatetimeIndex
        '''
        times = num2date(time[:].squeeze(),
                         time.units,
                         only_use_cftime_datetimes=False,
                         only_use_python_datetimes=True)
        self.time = pd.DatetimeIndex(pd.Series(times), tz=self.location.tz)

    def cloud_cover_to_ghi_linear(self,
                                  cloud_cover,
                                  ghi_clear,
                                  offset=35,
                                  **kwargs):
        """
        Convert cloud cover to GHI using a linear relationship.

        0% cloud cover returns ghi_clear.

        100% cloud cover returns offset*ghi_clear.

        Parameters
        ----------
        cloud_cover: numeric
            Cloud cover in %.
        ghi_clear: numeric
            GHI under clear sky conditions.
        offset: numeric, default 35
            Determines the minimum GHI.
        kwargs
            Not used.

        Returns
        -------
        ghi: numeric
            Estimated GHI.

        References
        ----------
        Larson et. al. "Day-ahead forecasting of solar power output from
        photovoltaic plants in the American Southwest" Renewable Energy
        91, 11-20 (2016).
        """

        offset = offset / 100.
        cloud_cover = cloud_cover / 100.
        ghi = (offset + (1 - offset) * (1 - cloud_cover)) * ghi_clear
        return ghi

    def cloud_cover_to_irradiance_clearsky_scaling(self,
                                                   cloud_cover,
                                                   method='linear',
                                                   **kwargs):
        """
        Estimates irradiance from cloud cover in the following steps:

        1. Determine clear sky GHI using Ineichen model and
           climatological turbidity.
        2. Estimate cloudy sky GHI using a function of
           cloud_cover e.g.
           :py:meth:`~ForecastModel.cloud_cover_to_ghi_linear`
        3. Estimate cloudy sky DNI using the DISC model.
        4. Calculate DHI from DNI and GHI.

        Parameters
        ----------
        cloud_cover : Series
            Cloud cover in %.
        method : str, default 'linear'
            Method for converting cloud cover to GHI.
            'linear' is currently the only option.
        **kwargs
            Passed to the method that does the conversion

        Returns
        -------
        irrads : DataFrame
            Estimated GHI, DNI, and DHI.
        """
        solpos = self.location.get_solarposition(cloud_cover.index)
        cs = self.location.get_clearsky(cloud_cover.index,
                                        model='ineichen',
                                        solar_position=solpos)

        method = method.lower()
        if method == 'linear':
            ghi = self.cloud_cover_to_ghi_linear(cloud_cover, cs['ghi'],
                                                 **kwargs)
        else:
            raise ValueError('invalid method argument')

        dni = disc(ghi, solpos['zenith'], cloud_cover.index)['dni']
        dhi = ghi - dni * np.cos(np.radians(solpos['zenith']))

        irrads = pd.DataFrame({'ghi': ghi, 'dni': dni, 'dhi': dhi}).fillna(0)
        return irrads

    def cloud_cover_to_transmittance_linear(self,
                                            cloud_cover,
                                            offset=0.75,
                                            **kwargs):
        """
        Convert cloud cover to atmospheric transmittance using a linear
        model.

        0% cloud cover returns offset.

        100% cloud cover returns 0.

        Parameters
        ----------
        cloud_cover : numeric
            Cloud cover in %.
        offset : numeric, default 0.75
            Determines the maximum transmittance.
        kwargs
            Not used.

        Returns
        -------
        ghi : numeric
            Estimated GHI.
        """
        transmittance = ((100.0 - cloud_cover) / 100.0) * offset

        return transmittance

    def cloud_cover_to_irradiance_liujordan(self, cloud_cover, **kwargs):
        """
        Estimates irradiance from cloud cover in the following steps:

        1. Determine transmittance using a function of cloud cover e.g.
           :py:meth:`~ForecastModel.cloud_cover_to_transmittance_linear`
        2. Calculate GHI, DNI, DHI using the
           :py:func:`pvlib.irradiance.liujordan` model

        Parameters
        ----------
        cloud_cover : Series

        Returns
        -------
        irradiance : DataFrame
            Columns include ghi, dni, dhi
        """
        # in principle, get_solarposition could use the forecast
        # pressure, temp, etc., but the cloud cover forecast is not
        # accurate enough to justify using these minor corrections
        solar_position = self.location.get_solarposition(cloud_cover.index)
        dni_extra = get_extra_radiation(cloud_cover.index)
        airmass = self.location.get_airmass(cloud_cover.index)

        transmittance = self.cloud_cover_to_transmittance_linear(
            cloud_cover, **kwargs)

        irrads = liujordan(solar_position['apparent_zenith'],
                           transmittance,
                           airmass['airmass_absolute'],
                           dni_extra=dni_extra)
        irrads = irrads.fillna(0)

        return irrads

    def cloud_cover_to_irradiance(self,
                                  cloud_cover,
                                  how='clearsky_scaling',
                                  **kwargs):
        """
        Convert cloud cover to irradiance. A wrapper method.

        Parameters
        ----------
        cloud_cover : Series
        how : str, default 'clearsky_scaling'
            Selects the method for conversion. Can be one of
            clearsky_scaling or liujordan.
        **kwargs
            Passed to the selected method.

        Returns
        -------
        irradiance : DataFrame
            Columns include ghi, dni, dhi
        """

        how = how.lower()
        if how == 'clearsky_scaling':
            irrads = self.cloud_cover_to_irradiance_clearsky_scaling(
                cloud_cover, **kwargs)
        elif how == 'liujordan':
            irrads = self.cloud_cover_to_irradiance_liujordan(
                cloud_cover, **kwargs)
        else:
            raise ValueError('invalid how argument')

        return irrads

    def kelvin_to_celsius(self, temperature):
        """
        Converts Kelvin to celsius.

        Parameters
        ----------
        temperature: numeric

        Returns
        -------
        temperature: numeric
        """
        return temperature - 273.15

    def isobaric_to_ambient_temperature(self, data):
        """
        Calculates temperature from isobaric temperature.

        Parameters
        ----------
        data: DataFrame
            Must contain columns pressure, temperature_iso,
            temperature_dew_iso. Input temperature in K.

        Returns
        -------
        temperature : Series
            Temperature in K
        """

        P = data['pressure'] / 100.0  # noqa: N806
        Tiso = data['temperature_iso']  # noqa: N806
        Td = data['temperature_dew_iso'] - 273.15  # noqa: N806

        # saturation water vapor pressure
        e = 6.11 * 10**((7.5 * Td) / (Td + 273.3))

        # saturation water vapor mixing ratio
        w = 0.622 * (e / (P - e))

        temperature = Tiso - ((2.501 * 10.**6) / 1005.7) * w

        return temperature

    def uv_to_speed(self, data):
        """
        Computes wind speed from wind components.

        Parameters
        ----------
        data : DataFrame
            Must contain the columns 'wind_speed_u' and 'wind_speed_v'.

        Returns
        -------
        wind_speed : Series
        """
        wind_speed = np.sqrt(data['wind_speed_u']**2 + data['wind_speed_v']**2)

        return wind_speed

    def gust_to_speed(self, data, scaling=1 / 1.4):
        """
        Computes standard wind speed from gust.
        Very approximate and location dependent.

        Parameters
        ----------
        data : DataFrame
            Must contain the column 'wind_speed_gust'.

        Returns
        -------
        wind_speed : Series
        """
        wind_speed = data['wind_speed_gust'] * scaling

        return wind_speed
Пример #6
0
def test_get_airmass_valueerror(times):
    tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
    with pytest.raises(ValueError):
        tus.get_airmass(times, model='invalid_model')
Пример #7
0
class ForecastModel(object):
    """
    An object for querying and holding forecast model information for
    use within the pvlib library.

    Simplifies use of siphon library on a THREDDS server.

    Parameters
    ----------
    model_type: string
        UNIDATA category in which the model is located.
    model_name: string
        Name of the UNIDATA forecast model.
    set_type: string
        Model dataset type.

    Attributes
    ----------
    access_url: string
        URL specifying the dataset from data will be retrieved.
    base_tds_url : string
        The top level server address
    catalog_url : string
        The url path of the catalog to parse.
    data: pd.DataFrame
        Data returned from the query.
    data_format: string
        Format of the forecast data being requested from UNIDATA.
    dataset: Dataset
        Object containing information used to access forecast data.
    dataframe_variables: list
        Model variables that are present in the data.
    datasets_list: list
        List of all available datasets.
    fm_models: Dataset
        TDSCatalog object containing all available
        forecast models from UNIDATA.
    fm_models_list: list
        List of all available forecast models from UNIDATA.
    latitude: list
        A list of floats containing latitude values.
    location: Location
        A pvlib Location object containing geographic quantities.
    longitude: list
        A list of floats containing longitude values.
    lbox: boolean
        Indicates the use of a location bounding box.
    ncss: NCSS object
        NCSS
    model_name: string
        Name of the UNIDATA forecast model.
    model: Dataset
        A dictionary of Dataset object, whose keys are the name of the
        dataset's name.
    model_url: string
        The url path of the dataset to parse.
    modelvariables: list
        Common variable names that correspond to queryvariables.
    query: NCSS query object
        NCSS object used to complete the forecast data retrival.
    queryvariables: list
        Variables that are used to query the THREDDS Data Server.
    time: DatetimeIndex
        Time range.
    variables: dict
        Defines the variables to obtain from the weather
        model and how they should be renamed to common variable names.
    units: dict
        Dictionary containing the units of the standard variables
        and the model specific variables.
    vert_level: float or integer
        Vertical altitude for query data.
    """

    access_url_key = 'NetcdfSubset'
    catalog_url = 'http://thredds.ucar.edu/thredds/catalog.xml'
    base_tds_url = catalog_url.split('/thredds/')[0]
    data_format = 'netcdf'
    vert_level = 100000

    units = {
        'temp_air': 'C',
        'wind_speed': 'm/s',
        'ghi': 'W/m^2',
        'ghi_raw': 'W/m^2',
        'dni': 'W/m^2',
        'dhi': 'W/m^2',
        'total_clouds': '%',
        'low_clouds': '%',
        'mid_clouds': '%',
        'high_clouds': '%'}

    def __init__(self, model_type, model_name, set_type):
        self.model_type = model_type
        self.model_name = model_name
        self.set_type = set_type
        self.catalog = TDSCatalog(self.catalog_url)
        self.fm_models = TDSCatalog(self.catalog.catalog_refs[model_type].href)
        self.fm_models_list = sorted(list(self.fm_models.catalog_refs.keys()))

        try:
            model_url = self.fm_models.catalog_refs[model_name].href
        except ParseError:
            raise ParseError(self.model_name + ' model may be unavailable.')

        try:
            self.model = TDSCatalog(model_url)
        except HTTPError:
            try:
                self.model = TDSCatalog(model_url)
            except HTTPError:
                raise HTTPError(self.model_name + ' model may be unavailable.')

        self.datasets_list = list(self.model.datasets.keys())
        self.set_dataset()

    def __repr__(self):
        return '{}, {}'.format(self.model_name, self.set_type)

    def set_dataset(self):
        '''
        Retrieves the designated dataset, creates NCSS object, and
        creates a NCSS query object.
        '''

        keys = list(self.model.datasets.keys())
        labels = [item.split()[0].lower() for item in keys]
        if self.set_type == 'best':
            self.dataset = self.model.datasets[keys[labels.index('best')]]
        elif self.set_type == 'latest':
            self.dataset = self.model.datasets[keys[labels.index('latest')]]
        elif self.set_type == 'full':
            self.dataset = self.model.datasets[keys[labels.index('full')]]

        self.access_url = self.dataset.access_urls[self.access_url_key]
        self.ncss = NCSS(self.access_url)
        self.query = self.ncss.query()

    def set_query_latlon(self):
        '''
        Sets the NCSS query location latitude and longitude.
        '''

        if (isinstance(self.longitude, list) and
            isinstance(self.latitude, list)):
            self.lbox = True
            # west, east, south, north
            self.query.lonlat_box(self.latitude[0], self.latitude[1],
                                  self.longitude[0], self.longitude[1])
        else:
            self.lbox = False
            self.query.lonlat_point(self.longitude, self.latitude)

    def set_location(self, time, latitude, longitude):
        '''
        Sets the location for the query.

        Parameters
        ----------
        time: datetime or DatetimeIndex
            Time range of the query.
        '''
        if isinstance(time, datetime.datetime):
            tzinfo = time.tzinfo
        else:
            tzinfo = time.tz

        if tzinfo is None:
            self.location = Location(latitude, longitude)
        else:
            self.location = Location(latitude, longitude, tz=tzinfo)

    def get_data(self, latitude, longitude, start, end,
                 vert_level=None, query_variables=None,
                 close_netcdf_data=True):
        """
        Submits a query to the UNIDATA servers using Siphon NCSS and
        converts the netcdf data to a pandas DataFrame.

        Parameters
        ----------
        latitude: float
            The latitude value.
        longitude: float
            The longitude value.
        start: datetime or timestamp
            The start time.
        end: datetime or timestamp
            The end time.
        vert_level: None, float or integer
            Vertical altitude of interest.
        variables: None or list
            If None, uses self.variables.
        close_netcdf_data: bool
            Controls if the temporary netcdf data file should be closed.
            Set to False to access the raw data.

        Returns
        -------
        forecast_data : DataFrame
            column names are the weather model's variable names.
        """
        if vert_level is not None:
            self.vert_level = vert_level

        if query_variables is None:
            self.query_variables = list(self.variables.values())
        else:
            self.query_variables = query_variables

        self.latitude = latitude
        self.longitude = longitude
        self.set_query_latlon()  # modifies self.query
        self.set_location(start, latitude, longitude)

        self.start = start
        self.end = end
        self.query.time_range(self.start, self.end)

        self.query.vertical_level(self.vert_level)
        self.query.variables(*self.query_variables)
        self.query.accept(self.data_format)

        self.netcdf_data = self.ncss.get_data(self.query)

        # might be better to go to xarray here so that we can handle
        # higher dimensional data for more advanced applications
        self.data = self._netcdf2pandas(self.netcdf_data, self.query_variables)

        if close_netcdf_data:
            self.netcdf_data.close()

        return self.data

    def process_data(self, data, **kwargs):
        """
        Defines the steps needed to convert raw forecast data
        into processed forecast data. Most forecast models implement
        their own version of this method which also call this one.

        Parameters
        ----------
        data: DataFrame
            Raw forecast data

        Returns
        -------
        data: DataFrame
            Processed forecast data.
        """
        data = self.rename(data)
        return data

    def get_processed_data(self, *args, **kwargs):
        """
        Get and process forecast data.

        Parameters
        ----------
        *args: positional arguments
            Passed to get_data
        **kwargs: keyword arguments
            Passed to get_data and process_data

        Returns
        -------
        data: DataFrame
            Processed forecast data
        """
        return self.process_data(self.get_data(*args, **kwargs), **kwargs)

    def rename(self, data, variables=None):
        """
        Renames the columns according the variable mapping.

        Parameters
        ----------
        data: DataFrame
        variables: None or dict
            If None, uses self.variables

        Returns
        -------
        data: DataFrame
            Renamed data.
        """
        if variables is None:
            variables = self.variables
        return data.rename(columns={y: x for x, y in variables.items()})

    def _netcdf2pandas(self, netcdf_data, query_variables):
        """
        Transforms data from netcdf to pandas DataFrame.

        Parameters
        ----------
        data: netcdf
            Data returned from UNIDATA NCSS query.
        query_variables: list
            The variables requested.

        Returns
        -------
        pd.DataFrame
        """
        # set self.time
        try:
            time_var = 'time'
            self.set_time(netcdf_data.variables[time_var])
        except KeyError:
            # which model does this dumb thing?
            time_var = 'time1'
            self.set_time(netcdf_data.variables[time_var])

        data_dict = {key: data[:].squeeze() for key, data in
                     netcdf_data.variables.items() if key in query_variables}

        return pd.DataFrame(data_dict, index=self.time)

    def set_time(self, time):
        '''
        Converts time data into a pandas date object.

        Parameters
        ----------
        time: netcdf
            Contains time information.

        Returns
        -------
        pandas.DatetimeIndex
        '''
        times = num2date(time[:].squeeze(), time.units)
        self.time = pd.DatetimeIndex(pd.Series(times), tz=self.location.tz)

    def cloud_cover_to_ghi_linear(self, cloud_cover, ghi_clear, offset=35,
                                  **kwargs):
        """
        Convert cloud cover to GHI using a linear relationship.

        0% cloud cover returns ghi_clear.

        100% cloud cover returns offset*ghi_clear.

        Parameters
        ----------
        cloud_cover: numeric
            Cloud cover in %.
        ghi_clear: numeric
            GHI under clear sky conditions.
        offset: numeric
            Determines the minimum GHI.
        kwargs
            Not used.

        Returns
        -------
        ghi: numeric
            Estimated GHI.

        References
        ----------
        Larson et. al. "Day-ahead forecasting of solar power output from
        photovoltaic plants in the American Southwest" Renewable Energy
        91, 11-20 (2016).
        """

        offset = offset / 100.
        cloud_cover = cloud_cover / 100.
        ghi = (offset + (1 - offset) * (1 - cloud_cover)) * ghi_clear
        return ghi

    def cloud_cover_to_irradiance_clearsky_scaling(self, cloud_cover,
                                                   method='linear',
                                                   **kwargs):
        """
        Estimates irradiance from cloud cover in the following steps:

        1. Determine clear sky GHI using Ineichen model and
           climatological turbidity.
        2. Estimate cloudy sky GHI using a function of
           cloud_cover e.g.
           :py:meth:`~ForecastModel.cloud_cover_to_ghi_linear`
        3. Estimate cloudy sky DNI using the DISC model.
        4. Calculate DHI from DNI and DHI.

        Parameters
        ----------
        cloud_cover : Series
            Cloud cover in %.
        method : str
            Method for converting cloud cover to GHI.
            'linear' is currently the only option.
        **kwargs
            Passed to the method that does the conversion

        Returns
        -------
        irrads : DataFrame
            Estimated GHI, DNI, and DHI.
        """
        solpos = self.location.get_solarposition(cloud_cover.index)
        cs = self.location.get_clearsky(cloud_cover.index, model='ineichen',
                                        solar_position=solpos)

        method = method.lower()
        if method == 'linear':
            ghi = self.cloud_cover_to_ghi_linear(cloud_cover, cs['ghi'],
                                                 **kwargs)
        else:
            raise ValueError('invalid method argument')

        dni = disc(ghi, solpos['zenith'], cloud_cover.index)['dni']
        dhi = ghi - dni * np.cos(np.radians(solpos['zenith']))

        irrads = pd.DataFrame({'ghi': ghi, 'dni': dni, 'dhi': dhi}).fillna(0)
        return irrads

    def cloud_cover_to_transmittance_linear(self, cloud_cover, offset=0.75,
                                            **kwargs):
        """
        Convert cloud cover to atmospheric transmittance using a linear
        model.

        0% cloud cover returns offset.

        100% cloud cover returns 0.

        Parameters
        ----------
        cloud_cover : numeric
            Cloud cover in %.
        offset : numeric
            Determines the maximum transmittance.
        kwargs
            Not used.

        Returns
        -------
        ghi : numeric
            Estimated GHI.
        """
        transmittance = ((100.0 - cloud_cover) / 100.0) * 0.75

        return transmittance

    def cloud_cover_to_irradiance_liujordan(self, cloud_cover, **kwargs):
        """
        Estimates irradiance from cloud cover in the following steps:

        1. Determine transmittance using a function of cloud cover e.g.
           :py:meth:`~ForecastModel.cloud_cover_to_transmittance_linear`
        2. Calculate GHI, DNI, DHI using the
           :py:func:`pvlib.irradiance.liujordan` model

        Parameters
        ----------
        cloud_cover : Series

        Returns
        -------
        irradiance : DataFrame
            Columns include ghi, dni, dhi
        """
        # in principle, get_solarposition could use the forecast
        # pressure, temp, etc., but the cloud cover forecast is not
        # accurate enough to justify using these minor corrections
        solar_position = self.location.get_solarposition(cloud_cover.index)
        dni_extra = extraradiation(cloud_cover.index)
        airmass = self.location.get_airmass(cloud_cover.index)

        transmittance = self.cloud_cover_to_transmittance_linear(cloud_cover,
                                                                 **kwargs)

        irrads = liujordan(solar_position['apparent_zenith'],
                           transmittance, airmass['airmass_absolute'],
                           dni_extra=dni_extra)
        irrads = irrads.fillna(0)

        return irrads

    def cloud_cover_to_irradiance(self, cloud_cover, how='clearsky_scaling',
                                  **kwargs):
        """
        Convert cloud cover to irradiance. A wrapper method.

        Parameters
        ----------
        cloud_cover : Series
        how : str
            Selects the method for conversion. Can be one of
            clearsky_scaling or liujordan.
        **kwargs
            Passed to the selected method.

        Returns
        -------
        irradiance : DataFrame
            Columns include ghi, dni, dhi
        """

        how = how.lower()
        if how == 'clearsky_scaling':
            irrads = self.cloud_cover_to_irradiance_clearsky_scaling(
                cloud_cover, **kwargs)
        elif how == 'liujordan':
            irrads = self.cloud_cover_to_irradiance_liujordan(
                cloud_cover, **kwargs)
        else:
            raise ValueError('invalid how argument')

        return irrads

    def kelvin_to_celsius(self, temperature):
        """
        Converts Kelvin to celsius.

        Parameters
        ----------
        temperature: numeric

        Returns
        -------
        temperature: numeric
        """
        return temperature - 273.15

    def isobaric_to_ambient_temperature(self, data):
        """
        Calculates temperature from isobaric temperature.

        Parameters
        ----------
        data: DataFrame
            Must contain columns pressure, temperature_iso,
            temperature_dew_iso. Input temperature in K.

        Returns
        -------
        temperature : Series
            Temperature in K
        """

        P = data['pressure'] / 100.0
        Tiso = data['temperature_iso']
        Td = data['temperature_dew_iso'] - 273.15

        # saturation water vapor pressure
        e = 6.11 * 10**((7.5 * Td) / (Td + 273.3))

        # saturation water vapor mixing ratio
        w = 0.622 * (e / (P - e))

        T = Tiso - ((2.501 * 10.**6) / 1005.7) * w

        return T

    def uv_to_speed(self, data):
        """
        Computes wind speed from wind components.

        Parameters
        ----------
        data : DataFrame
            Must contain the columns 'wind_speed_u' and 'wind_speed_v'.

        Returns
        -------
        wind_speed : Series
        """
        wind_speed = np.sqrt(data['wind_speed_u']**2 + data['wind_speed_v']**2)

        return wind_speed

    def gust_to_speed(self, data, scaling=1/1.4):
        """
        Computes standard wind speed from gust.
        Very approximate and location dependent.

        Parameters
        ----------
        data : DataFrame
            Must contain the column 'wind_speed_gust'.

        Returns
        -------
        wind_speed : Series
        """
        wind_speed = data['wind_speed_gust'] * scaling

        return wind_speed
Пример #8
0
def test_get_airmass_valueerror(times):
    tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
    with pytest.raises(ValueError):
        clearsky = tus.get_airmass(times, model='invalid_model')