Пример #1
0
def main(coefficientPath, sensor_id):
    thisDir = os.path.dirname(os.path.abspath(__file__))
    cases = os.listdir(os.path.join(thisDir, 'data'))
    cases.sort()
    # create 4 profiles for each of the 4 cases
    profiles = profilesCreate(4, 92, nClouds=0, nAerosols=0)
    storedTb = []
    storedEmis = []
    # populate the cases, and previously calculated Tb from crtm test program.
    for i, c in enumerate(cases):
        h5 = h5py.File(os.path.join(thisDir, 'data', c), 'r')
        profiles.Angles[i, 0] = h5['zenithAngle'][()]
        profiles.Angles[i, 1] = 999.9
        profiles.Angles[i, 2] = 100.0  # 100 degrees zenith below horizon.
        profiles.Angles[i, 3] = 0.0  # zero solar azimuth
        profiles.Angles[i, 4] = h5['scanAngle'][()]
        profiles.DateTimes[i, 0] = 2001
        profiles.DateTimes[i, 1] = 1
        profiles.DateTimes[i, 2] = 1
        profiles.Pi[i, :] = np.asarray(h5['pressureLevels'])
        profiles.P[i, :] = np.asarray(h5['pressureLayers'][()])
        profiles.T[i, :] = np.asarray(h5['temperatureLayers'])
        profiles.Q[i, :] = np.asarray(h5['humidityLayers'])
        profiles.O3[i, :] = np.asarray(h5['ozoneConcLayers'])
        profiles.climatology[i] = h5['climatology'][()]
        profiles.surfaceFractions[i, :] = h5['surfaceFractions']
        profiles.surfaceTemperatures[i, :] = h5['surfaceTemperatures']
        profiles.S2m[i,
                     1] = 33.0  # just use salinity out of S2m for the moment.
        profiles.windSpeed10m[i] = 5.0
        profiles.LAI[i] = h5['LAI'][()]
        profiles.windDirection10m[i] = h5['windDirection10m'][()]
        # land, soil, veg, water, snow, ice
        profiles.surfaceTypes[i, 0] = h5['landType'][()]
        profiles.surfaceTypes[i, 1] = h5['soilType'][()]
        profiles.surfaceTypes[i, 2] = h5['vegType'][()]
        profiles.surfaceTypes[i, 3] = h5['waterType'][()]
        profiles.surfaceTypes[i, 4] = h5['snowType'][()]
        profiles.surfaceTypes[i, 5] = h5['iceType'][()]
        storedTb.append(np.asarray(h5['Tb_cris_no_clouds']))
        storedEmis.append(np.asarray(h5['emissivity_cris_no_clouds']))
        h5.close()

    crtmOb = pyCRTM()
    crtmOb.profiles = profiles
    crtmOb.coefficientPath = pathInfo['CRTM']['coeffs_dir']
    crtmOb.sensor_id = sensor_id
    crtmOb.nThreads = 4

    crtmOb.loadInst()

    crtmOb.runDirect()
    forwardTb = crtmOb.Bt
    forwardEmissivity = crtmOb.surfEmisRefl[0, :]
    crtmOb.surfEmisRefl = []
    crtmOb.runK()
    kTb = crtmOb.Bt
    kEmissivity = crtmOb.surfEmisRefl[0, :]

    if (all(
            np.abs(forwardTb.flatten() -
                   np.asarray(storedTb).flatten()) <= 1e-5) and all(
                       np.abs(kTb.flatten() -
                              np.asarray(storedTb).flatten()) <= 1e-5)):
        print(
            "Yay! all values are close enough to what CRTM test program produced!"
        )
    else:
        print("Boo! something failed. Look at cris plots")
        wavenumbers = np.zeros([4, 1305])
        wavenumbers[0:4, :] = np.linspace(1, 1306, 1305)

        plt.figure()
        plt.plot(wavenumbers.T, forwardTb.T - np.asarray(storedTb).T)
        plt.legend(['1', '2', '3', '4'])
        plt.savefig(os.path.join(thisDir, 'cris' + '_spectrum_forward.png'))
        plt.figure()
        plt.plot(wavenumbers.T, forwardEmissivity.T - np.asarray(storedEmis).T)
        plt.savefig(os.path.join(thisDir, 'cris' + '_emissivity_forward.png'))

        plt.figure()
        plt.plot(wavenumbers.T, kTb.T - np.asarray(storedTb).T)
        plt.savefig(os.path.join(thisDir, 'cris' + '_spectrum_k.png'))
        plt.figure()
        plt.plot(wavenumbers.T, kEmissivity.T - np.asarray(storedEmis).T)
        plt.savefig(os.path.join(thisDir, 'cris' + '_emissivity_k.png'))

        #for i,c in enumerate(cases):
        #    h5 = h5py.File(os.path.join(thisDir,'data',c) , 'r+')
        #    h5.create_dataset('Tb_cris_no_clouds', data = forwardTb[i,:])
        #    h5.create_dataset('emissivity_cris_no_clouds', data = forwardEmissivity[i,:])
        sys.exit("Boo! didn't pass tolerance with CRTM test program.")
Пример #2
0
def main(coefficientPath, sensor_id, fin, experiment):
    # the profile from grb2 has 45 levels
    gfs = xr.open_dataset(fin)
    lat = gfs.lat_0
    lon = gfs.lon_0

    profiles = profilesCreate(len(lat) * len(lon), 45, nAerosols=0, nClouds=4)
    angles = gfs.xangles.stack(z=("lat_0", "lon_0")).transpose()
    #angles[:,:]=30.0 # np.where(angles>60, 60, angles)
    #angles=np.where(angles<-60, -60, angles)

    #    profiles.Angles[:,:] = angles[:,:]
    profiles.Angles[:, 0] = angles[:, 0]  #h5['zenithAngle'][()]
    profiles.Angles[:, 1] = angles[:, 1]
    profiles.Angles[:, 2] = angles[:, 3]  # 100 degrees zenith below horizon.
    profiles.Angles[:, 3] = angles[:, 4]  # zero solar azimuth
    profiles.Angles[:, 4] = angles[:, 2]  # h5['scanAngle'][()]

    # date time not used.
    datetimes = gfs.valid_time.stack(z=("lat_0", "lon_0")).transpose()
    profiles.DateTimes[:, :] = datetimes[:, :]

    profiles.Pi[:, :] = gfs.plevel.broadcast_like(
        gfs.player).stack(z=("lat_0", "lon_0")).transpose() / 100.0
    profiles.P[:, :] = gfs.player[1:, :, :].stack(
        z=("lat_0", "lon_0")).transpose() / 100.0

    profiles.T[:, :] = gfs.temp[1:, :, :].stack(z=("lat_0",
                                                   "lon_0")).transpose()

    Q = gfs.moisture[1:, :, :].stack(z=("lat_0", "lon_0")).transpose()

    profiles.Q[:, :] = xr.where(Q > 0, Q, 0)

    #profiles.O3[:,:]=gfs.o3[1:,:,:].stack(z=("lat_0","lon_0")).transpose()

    cld = gfs.water_cloud[1:, :, :].stack(z=("lat_0", "lon_0")).transpose()
    cld = np.where(cld < 0, 0, cld)
    profiles.clouds[:, :, 0, 0] = cld
    profiles.clouds[:, :, 0, 1] = 10.0

    ice = gfs.ice_cloud[1:, :, :].stack(z=("lat_0", "lon_0")).transpose()
    ice = np.where(ice < 0, 0, ice)
    profiles.clouds[:, :, 1, 0] = ice
    profiles.clouds[:, :, 1, 1] = 75

    rain = gfs.rain_cloud[1:, :, :].stack(z=("lat_0", "lon_0")).transpose()
    rain = np.where(rain < 0, 0, rain)
    profiles.clouds[:, :, 2, 0] = rain
    profiles.clouds[:, :, 2, 1] = 50

    snow = gfs.snow_cloud[1:, :, :].stack(z=("lat_0", "lon_0")).transpose()
    snow = np.where(snow < 0, 0, snow)
    profiles.clouds[:, :, 3, 0] = snow
    profiles.clouds[:, :, 3, 1] = 50

    #graupel=gfs.graupel_cloud[1:,:,:].stack(z=("lat_0","lon_0")).transpose()
    #graupel=np.where(graupel>0,0,-graupel)
    #profiles.clouds[:,:,4,0]=graupel
    #profiles.clouds[:,:,4,1]=50

    profiles.cloudType[:, 0] = 1
    profiles.cloudType[:, 1] = 2
    profiles.cloudType[:, 2] = 3
    profiles.cloudType[:, 3] = 4
    #profiles.cloudType[:,4]=5

    profiles.climatology[:] = 6  #US_STANDARD_ATMOSPHERE #6 # place holder don't know

    lands = gfs.landmask.stack(z=("lat_0", "lon_0")).transpose()
    snow = gfs.snow_cover.stack(z=("lat_0", "lon_0")).transpose()
    #ice=gfs.ice_cover.stack(z=("lat_0","lon_0")).transpose()

    profiles.surfaceFractions[:, 0] = np.where(lands == 1, int(1), int(0))
    profiles.surfaceFractions[:, 1] = np.where(
        (lands == 0) | (lands == np.nan), int(1), int(0))
    profiles.surfaceFractions[:, 2] = 0
    profiles.surfaceFractions[:, 3] = 0

    profiles.surfaceTemperatures[:,
                                 0] = gfs.sfctemp.stack(z=("lat_0", "lon_0"))
    profiles.surfaceTemperatures[:,
                                 1] = gfs.sfctemp.stack(z=("lat_0", "lon_0"))
    profiles.surfaceTemperatures[:,
                                 2] = gfs.sfctemp.stack(z=("lat_0", "lon_0"))
    profiles.surfaceTemperatures[:,
                                 3] = gfs.sfctemp.stack(z=("lat_0", "lon_0"))

    profiles.S2m[:, 1] = 33.0  # just use salinity out of S2m for the moment.
    wind_speed = gfs.wind_speed.stack(z=("lat_0", "lon_0")).transpose()

    profiles.windSpeed10m[:] = wind_speed[:]  # wind_speed

    # lai not affecting
    profiles.LAI[:] = 0.57  # h5['LAI'][()]
    wind_dir = gfs.wind_dir.stack(z=("lat_0", "lon_0")).transpose()
    wind_dir = np.where(wind_dir < 0, wind_dir + 360, wind_dir)

    profiles.windDirection10m[:] = wind_dir[:]  # h5['windDirection10m'][()]

    landtype = gfs.land_type[:, :, 0].stack(z=("lat_0", "lon_0")).transpose()
    landtype = np.where(landtype > 14, 16.0, landtype)
    landtype = np.where(landtype < 1.0, 1.0, landtype)

    profiles.surfaceTypes[:, 0] = landtype
    profiles.surfaceTypes[:, 1] = 6
    profiles.surfaceTypes[:, 2] = 2
    profiles.surfaceTypes[:, 3] = 1
    profiles.surfaceTypes[:, 4] = 3
    profiles.surfaceTypes[:, 5] = 1

    profiles = experiment(profiles)

    crtmOb = pyCRTM()
    crtmOb.profiles = profiles
    crtmOb.coefficientPath = pathInfo['CRTM']['coeffs_dir']
    crtmOb.sensor_id = sensor_id
    crtmOb.nThreads = 1

    print("hello 002")

    crtmOb.loadInst()
    crtmOb.runDirect()
    forwardTb = crtmOb.Bt

    #    forwardEmissivity = crtmOb.surfEmisRefl[0,:]
    #    #make K matrix run surfEmisRefl again.
    #    crtmOb.surfEmisRefl = []
    #    crtmOb.runK()
    #    kTb = crtmOb.Bt
    #    kEmissivity = crtmOb.surfEmisRefl[0,:]

    print("hello 003")

    result = xr.DataArray(np.reshape(forwardTb.T, (10, len(lat), len(lon))),
                          dims=("channel", "lat_0", "lon_0"),
                          coords=(np.arange(0, 10), gfs.lat_0, gfs.lon_0))

    #fig,ax=plt.subplots(5,2)
    #    result[:,30,30].plot()
    #    for i in range(5):
    #        for j in range(2):
    #            ax[i,j].pcolor(result[i*2+j,:,:].where(result[i*2+j,:,:]>-100), vmin=201, vmax=300)
    #

    # prepare for interpolation
    ds_in = result.rename({"lat_0": 'lat', "lon_0": 'lon'})

    fo = xr.open_dataset(fobs)
    lato = fo.lat.data
    lono = fo.lon.data

    ds_out = xr.Dataset({
        'lat': (['lat'], lato),
        'lon': (['lon'], lono),
    })
    regridder = xe.Regridder(ds_in, ds_out, 'bilinear', reuse_weights=True)

    dr_out = regridder(result)
    out = dr_out.where(fo.obs.data > 0)

    fout = fin[0:len(fin) - 3] + "_output_" + experiment.__name__ + ".nc"

    if os.path.exists(fout):
        os.remove(fout)
    result.to_netcdf(fout, "w")

    #    plt.pcolor(0.5*(out[7]+out[8]),vmin=230,vmax=290)
    #
    #    plt.show()
    print(result.max())
    print(result.min())