Пример #1
0
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License and the GNU Lesser General Public License
for more details.

You should have received a copy of the GNU General Public License
and the GNU Lesser General Public License along with pyDive.
If not, see <http://www.gnu.org/licenses/>.
"""
__doc__ = None

import numpy as np
import pyDive.distribution.multiple_axes as multiple_axes
from pyDive.distribution.interengine import MPI_copier

ndarray = multiple_axes.distribute(np.ndarray, "ndarray", "np", interengine_copier=MPI_copier)

factories = multiple_axes.generate_factories(ndarray, ("empty", "zeros", "ones"), np.float)
factories.update(multiple_axes.generate_factories_like(ndarray, ("empty_like", "zeros_like", "ones_like")))

globals().update(factories)

def array(array_like, distaxes='all'):
    """Create a pyDive.ndarray instance from an array-like object.

    :param array_like: Any object exposing the array interface, e.g. numpy-array, python sequence, ...
    :param ints distaxes: distributed axes. Defaults to 'all' meaning each axis is distributed.
    """
    np_array = np.array(array_like)
    result = empty(np_array.shape, np_array.dtype, distaxes)
    result[:] = np_array
Пример #2
0
You should have received a copy of the GNU General Public License
and the GNU Lesser General Public License along with pyDive.
If not, see <http://www.gnu.org/licenses/>.
"""
__doc__ = None

import numpy as np
import adios as ad
from pyDive.arrays.ndarray import hollow_like
import pyDive.distribution.multiple_axes as multiple_axes
import pyDive.IPParallelClient as com
from itertools import islice
from .. import structured
import pyDive.arrays.local.ad_ndarray

ad_ndarray = multiple_axes.distribute(pyDive.arrays.local.ad_ndarray.ad_ndarray, "ad_ndarray", "ad_ndarray", may_allocate=False)

def load(self):
    """Load array from file into main memory of all engines in parallel.

    :return: pyDive.ndarray instance
    """
    result = hollow_like(self)
    view = com.getView()
    view.execute("{0} = {1}.load()".format(result.name, self.name), targets=result.target_ranks)
    return result
ad_ndarray.load = load
del load

def open_variable(filename, variable_path, distaxis=0):
    """Create a pyDive.adios.ad_ndarray instance from file.
Пример #3
0
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License and the GNU Lesser General Public License
for more details.

You should have received a copy of the GNU General Public License
and the GNU Lesser General Public License along with pyDive.
If not, see <http://www.gnu.org/licenses/>.
"""
__doc__ = None

import numpy as np
import pyDive.distribution.multiple_axes as multiple_axes
from pyDive.distribution.interengine import GPU_copier
import pyDive.arrays.local.gpu_ndarray

gpu_ndarray = multiple_axes.distribute(pyDive.arrays.local.gpu_ndarray.gpu_ndarray, "gpu_ndarray",\
    "pyDive.arrays.local.gpu_ndarray", interengine_copier=GPU_copier)

factories = multiple_axes.generate_factories(gpu_ndarray, ("empty", "zeros"),
                                             np.float)
factories.update(
    multiple_axes.generate_factories_like(gpu_ndarray,
                                          ("empty_like", "zeros_like")))
globals().update(factories)


def ones(shape, dtype=np.float, distaxes='all', **kwargs):
    result = zeros(shape, dtype, distaxes, **kwargs)
    result += 1
    return result

Пример #4
0
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License and the GNU Lesser General Public License
for more details.

You should have received a copy of the GNU General Public License
and the GNU Lesser General Public License along with pyDive.
If not, see <http://www.gnu.org/licenses/>.
"""
__doc__ = None

import numpy as np
import pyDive.distribution.multiple_axes as multiple_axes
from pyDive.distribution.interengine import MPI_copier

ndarray = multiple_axes.distribute(np.ndarray,
                                   "ndarray",
                                   "np",
                                   interengine_copier=MPI_copier)

factories = multiple_axes.generate_factories(ndarray,
                                             ("empty", "zeros", "ones"),
                                             np.float)
factories.update(
    multiple_axes.generate_factories_like(
        ndarray, ("empty_like", "zeros_like", "ones_like")))

globals().update(factories)


def array(array_like, distaxes='all'):
    """Create a pyDive.ndarray instance from an array-like object.
Пример #5
0
for more details.

You should have received a copy of the GNU General Public License
and the GNU Lesser General Public License along with pyDive.
If not, see <http://www.gnu.org/licenses/>.
"""
__doc__ = None

import numpy as np
import pyDive.distribution.multiple_axes as multiple_axes
from pyDive.distribution.interengine import GPU_copier
import pyDive.arrays.local.gpu_ndarray

gpu_ndarray = multiple_axes.distribute(
    pyDive.arrays.local.gpu_ndarray.gpu_ndarray,
    "gpu_ndarray",
    "pyDive.arrays.local.gpu_ndarray",
    interengine_copier=GPU_copier,
)

factories = multiple_axes.generate_factories(gpu_ndarray, ("empty", "zeros"), np.float)
factories.update(multiple_axes.generate_factories_like(gpu_ndarray, ("empty_like", "zeros_like")))
globals().update(factories)


def ones(shape, dtype=np.float, distaxes="all", **kwargs):
    result = zeros(shape, dtype, distaxes, **kwargs)
    result += 1
    return result


def ones_like(other, **kwargs):