Пример #1
0
def main():
    fts = sFTS(do_plots=False)

    for dataset_name in dataset_names:
        dataset = get_dataset(dataset_name)
        bchmk.sliding_window_benchmarks(
            dataset,
            1000,
            train=0.5,
            inc=0.2,
            benchmark_models=True,
            benchmark_methods=benchmark_methods,
            benchmark_methods_parameters=benchmark_methods_parameters,
            models=[fts],
            build_methods=False,
            transformations=[None],
            orders=[1, 2, 3],
            partitions=[35],  # np.arange(10,100,2),
            progress=False,
            type='point',
            steps_ahead=[1],
            #distributed=True, nodes=['192.168.0.110', '192.168.0.107','192.168.0.106'],\n",
            file="benchmarks.db",
            dataset=dataset_name,
            tag='incremental')
Пример #2
0


'''
model = knn.KNearestNeighbors(order=3)
#model = ensemble.AllMethodEnsembleFTS("", partitioner=partitioner)
#model = arima.ARIMA("", order=(2,0,2))
#model = quantreg.QuantileRegression("", order=2, dist=True)
#model.append_transformation(tdiff)
model.fit(dataset[:800])
print(Measures.get_distribution_statistics(dataset[800:1000], model))
#tmp = model.predict(dataset[800:1000], type='distribution')
#for tmp2 in tmp:
#    print(tmp2)
#'''
'''

bchmk.sliding_window_benchmarks(dataset, 1000, train=0.8, inc=0.2,
                                methods=[hofts.HighOrderFTS], #[pwfts.ProbabilisticWeightedFTS],
                                benchmark_models=False,
                                transformations=[None],
                                orders=[1, 2, 3],
                                partitions=np.arange(30, 80, 5),
                                progress=False, type="point",
                                #steps_ahead=[1,2,4,6,8,10],
                                distributed=True, nodes=['192.168.0.110', '192.168.0.107', '192.168.0.106'],
                                file="benchmarks.db", dataset="TAIEX", tag="comparisons")



bchmk.sliding_window_benchmarks(dataset, 1000, train=0.8, inc=0.2,
Пример #3
0
print(model)
'''
#dataset = SP500.get_data()[11500:16000]
#dataset = NASDAQ.get_data()
#print(len(dataset))

bchmk.sliding_window_benchmarks(
    dataset,
    1000,
    train=0.8,
    inc=0.2,
    methods=[chen.ConventionalFTS],  #[pwfts.ProbabilisticWeightedFTS],
    benchmark_models=False,
    transformations=[None],
    #orders=[1, 2, 3],
    partitions=np.arange(10, 100, 2),
    progress=False,
    type="point",
    #steps_ahead=[1,2,4,6,8,10],
    distributed=False,
    nodes=['192.168.0.110', '192.168.0.107', '192.168.0.106'],
    file="benchmarks.db",
    dataset="TAIEX",
    tag="comparisons")

bchmk.sliding_window_benchmarks(
    dataset,
    1000,
    train=0.8,
    inc=0.2,
    methods=[chen.ConventionalFTS],  # [pwfts.ProbabilisticWeightedFTS],
Пример #4
0
from pyFTS.models import pwfts, song, ifts, hofts
from pyFTS.models.ensemble import ensemble
'''
model = knn.KNearestNeighbors(order=3)
#model = ensemble.AllMethodEnsembleFTS("", partitioner=partitioner)
#model = arima.ARIMA("", order=(2,0,2))
#model = quantreg.QuantileRegression("", order=2, dist=True)
#model.append_transformation(tdiff)
model.fit(dataset[:800])
print(Measures.get_distribution_statistics(dataset[800:1000], model))
#tmp = model.predict(dataset[800:1000], type='distribution')
#for tmp2 in tmp:
#    print(tmp2)
#'''
'''

bchmk.sliding_window_benchmarks(dataset, 1000, train=0.8, inc=0.2,
                                methods=[hofts.HighOrderFTS], #[pwfts.ProbabilisticWeightedFTS],
                                benchmark_models=False,
                                transformations=[None],
                                orders=[1, 2, 3],
                                partitions=np.arange(30, 80, 5),
                                progress=False, type="point",
                                #steps_ahead=[1,2,4,6,8,10],
                                distributed=True, nodes=['192.168.0.110', '192.168.0.107', '192.168.0.106'],
                                file="benchmarks.db", dataset="NASDAQ", tag="comparisons")



bchmk.sliding_window_benchmarks(dataset, 1000, train=0.8, inc=0.2,