def genDideaTrainingData(options): """Create didea log-sum-exp training data""" output = {} tbl = 'monoisotopic' preprocess = pipeline(options.normalize) # Generate the histogram bin ranges ranges = simple_uniform_binwidth(0, options.max_mass, options.num_bins, bin_width=1.0) vc = int(options.charge) validcharges = set([vc]) spectra = list(s for s in MS2Iterator(options.spectra, False) if set(s.charges) & validcharges) if len(spectra) == 0: print >> sys.stderr, 'There are no spectra with charge_line (+%d).' % vc exit(-1) # # Load spectra # spectra, _, _, validcharges = load_spectra(options.spectra, # options.charge) # vc = validcharges.pop() # if len(spectra) == 0: # print >> sys.stderr, 'There are no spectra with supplied charges.' # exit(-1) psm_sid = re.compile('\d+') psm_peptide = re.compile('[a-zA-Z]+$') #generate vector of sids/peptides print options.psms f = open(options.psms, "r") targets = [ (int(l["Scan"]), l["Peptide"]) for l in csv.DictReader(f, delimiter='\t', skipinitialspace=True) ] # Scan Peptide Charge sids = [] for (st, pt) in targets: sids.append(st) sidsPer = [] for spec_ind, s in enumerate(spectra): sid = s.spectrum_id preprocess(s) # Generate the spectrum observations. truebins = histogram_spectra(s, ranges, max, use_mz=True) bins = bins_to_vecpt_ratios(truebins, 'intensity', 0.0) # find psm ind = find_sid(sids, s.spectrum_id) sidsPer.append(sid) if (ind != -1): p = Peptide(targets[ind][1]) for tau, tauProd in zip( range(-37, 38), dideaShiftDotProducts(p, vc, bins, len(bins))): output[spec_ind, tau] = tauProd # output is the number of spectra and a dictionary which has all of the shifted dot-products per spectrum return (len(spectra), output, sidsPer)
def psm(p, s0, c = 2, highResMs2 = False, dripLearnedMeans = 'dripLearned.means', dripLearnedCovars = 'dripLearned.covars', mods = '', ntermMods = '', ctermMods = '', varModSequence = '', precursor_filter = False, high_res_gauss_dist = 0.05): """ Inputs: p = peptide string s = observed spectrum, instance of class MS2Spectrum c = psm charge mods = static mods ntermMods = static nterm-mods ctermMods = static cterm-mods """ s = copy.deepcopy(s0) args = dripGaussianCollectionNames() sid = s.spectrum_id # parse modifications mods, varMods = parse_var_mods(mods, True) ntermMods, ntermVarMods = parse_var_mods(ntermMods, False) ctermMods, ctermVarMods = parse_var_mods(ctermMods, False) if precursor_filter: normalize = 'top300TightSequest' else: normalize = 'top300Sequest' preprocess = pipeline(normalize) preprocess(s) # get original intensity values to plot s0.mz = list(s.mz) mz_vals = set(s.mz) z = max(s0.intensity) s0.intensity = [i/z for mz, i in zip(s0.mz, s0.intensity) if mz in mz_vals] num_psms = 1 max_obs_mass = 2001 dirBase = 'dtk' # output_dir = os.path.abspath('dripEncode_' + dirBase) output_dir = os.path.abspath('encode') if not os.path.exists(output_dir): os.mkdir(output_dir) obs_dir = 'obs' # sub directory of output_dir pfile_dir = os.path.join(output_dir, obs_dir) if not os.path.exists(pfile_dir): os.mkdir(pfile_dir) # log_dir = os.path.abspath('dripLog_' + dirBase) log_dir = os.path.abspath('log') if not os.path.exists(log_dir): os.mkdir(log_dir) if not highResMs2: dripMeans = load_drip_means(dripLearnedMeans) if varMods or ntermVarMods or ctermVarMods: assert varModSequence, "Variable mod enzyme options specified, but empty string denoting which amino acids are var mods supplied. Exitting" bNy = interleave_b_y_ions_var_mods_lowres(Peptide(p), c, mods, ntermMods, ctermMods, varMods, varNtermMods, varCtermMods, varModSequence) else: bNy = interleave_b_y_ions_lowres(Peptide(p), c, mods, ntermMods, ctermMods) l = len(bNy) filter_theoretical_peaks_lowres(bNy, dripMeans, s.mz[0], s.mz[-1]) else: # calculate b- and y-ions, filter peaks outside of spectrum range if varMods or ntermVarMods or ctermVarMods: assert varModSequence, "Variable mod enzyme options specified, but empty string denoting which amino acids are var mods supplied. Exitting" bNy = interleave_b_y_ions_var_mods(Peptide(p), c, mods, ntermMods, ctermMods, varMods, varNtermMods, varCtermMods, varModSequence) else: bNy = interleave_b_y_ions(Peptide(p), c, mods, ntermMods, ctermMods) l = len(bNy) filter_theoretical_peaks(bNy, s.mz[0], s.mz[-1], high_res_gauss_dist) # now construct means based on this dripMeans = {} for i, ion in enumerate(bNy): dripMeans[i] = ion ion_to_index_map = {} # reverse mapping, from ions to indices for ind in dripMeans: ion_to_index_map[dripMeans[ind]] = ind # make collection per spectrum make_master_parameters_lowres(args, dripMeans) peptide_obs_file = os.path.join(pfile_dir,'pep-lengths') spectrum_obs_file = os.path.join(pfile_dir,'spectrum') pep_dt = open(os.path.join(output_dir, 'iterable.dts'), "w") pep_dt.write('%d\n\n' % (num_psms)) # write peptide database to parse and identify GMTK segments later pepdb_list = open(os.path.join(output_dir, 'pepDB.txt'), "w") pepdb_list.write("Kind\tSid\tPeptide\tNumBY\tCharge\n") pep_num = 0 # create iterable dt and peptide pfile peptide_sentence_flatascii(pep_dt, p, bNy, pep_num, sid, max_obs_mass, peptide_obs_file, True, len(bNy)) # create spectrum pfile spectrum_sentence_flatascii(spectrum_obs_file, s.mz, s.intensity) pepdb_list.write("t\t%d\t%s\t%d\t%d\n" % (sid, p, l, c)) # close streams for this spectrum pep_dt.close() pepdb_list.close() # compile dt using gmtkDTIndex call(['gmtkDTindex', '-decisionTreeFiles', os.path.join(output_dir,'iterable.dts')], stdout = stdo, stderr = stde) # stdout = sys.stderr, stderr = sys.stderr) # create structure and master files then triangulate try: create_drip_structure(highResMs2, args.structure_file, max_obs_mass, False, False, high_res_gauss_dist) except: print "Could not create DRIP structure file %s, exitting" % args.structure_file exit(-1) try: create_drip_master(highResMs2, args.master_file, max_obs_mass, "DRIP_MZ", "drip_collection/covar.txt", "DRIP_GAUSSIAN_COMPONENTS", "DRIP_GAUSSIAN_MIXTURES", "DRIP_MZ_GAUSSIANS") except: print "Could not create DRIP master file %s, exitting" % args.master_file exit(-1) try: triangulate_drip(args.structure_file, args.master_file) except: print "Could not create triangulate structure file %s, exitting" % args.structure_file exit(-1) try: write_covar_file(highResMs2, args.covar_file, dripLearnedCovars, True, high_res_gauss_dist) except: print "Could not create covariance file %s, exitting" % args.covar_file exit(-1) # run GMTK dtFile = os.path.join(output_dir, 'iterable.dts') cppCommand = '\'-DITERABLE_DT=' + dtFile \ + ' -DDRIP_MZ=' + args.mean_file \ + ' -DDRIP_GAUSSIAN_COMPONENTS=' + args.gauss_file \ + ' -DDRIP_GAUSSIAN_MIXTURES=' + args.mixture_file \ + ' -DDRIP_MZ_GAUSSIANS=' + args.collection_file \ + '\'' # call gmtkViterbi vitStr0 = "gmtkViterbi -strFile " + args.structure_file \ + " -triFile " + args.structure_file + ".trifile -ni1 0 -nf1 2 -ni2 1 -nf2 0" \ + " -fdiffact2 rl" \ + " -inputMasterFile " + args.master_file + " -inputTrainableParameters trained.params -failOnZeroClique F" # gmtkViterbi command line vitValsFile = os.path.join(log_dir, 'vitVals.txt') vitStr = vitStr0 + ' -vitValsFile ' + vitValsFile \ + ' -of1 ' + spectrum_obs_file \ + ' -fmt1 flatascii ' \ + ' -of2 ' + peptide_obs_file \ + ' -fmt2 flatascii ' \ + ' -cppCommand ' + cppCommand # call(shlex.split(vitStr), stdout = sys.stdout, stderr = sys.stdout) call(shlex.split(vitStr), stdout = stdo, stderr = stde) # parse output t,d = ppsm.parse_dripExtract(vitValsFile, os.path.join(output_dir, 'pepDB.txt')) t = t[sid,c][0] # calculate insertions and deletions t.add_obs_spectrum(s0) t.calculate_drip_features(dripMeans) t.calc_by_sets(c, mods, ntermMods, ctermMods, highResMs2, ion_to_index_map, varMods, ntermVarMods, ctermVarMods, varModSequence) return t
def make_drip_data_highres(args, spectra, stdo, stde): """Generate test data .pfile. and create job scripts for cluster use (if num_jobs > 1). Decrease number of calls to GMTK by only calling once per spectrum and running for all charge states in one go. inputs: args - output of parsed input arguments (struct) outputs: sids - list of scan IDs for the generated data pre: - args has been created by parse_args(), directories have been created/checked for existence, relevant arguments have been processed (Booleans, mods, digesting enzyme, etc) - data has been created by candidate_spectra_generate() and contains the above mentioned fields post: - args.{mean_file, gauss_file, mixture_file, collection_file} will all be adjusted - args.max_mass will be updated to the size of the number of unique theoretical fragmentation locations (floating point if high-res ms2, integers if low-res ms2) """ # parse modifications mods, varMods = parse_var_mods(args.mods_spec, True) # print "mods:" # print mods ntermMods, ntermVarMods = parse_var_mods(args.nterm_peptide_mods_spec, False) # print "n-term mods:" # print nterm_mods ctermMods, ctermVarMods = parse_var_mods(args.cterm_peptide_mods_spec, False) varModKey = "Var_mod_seq" if not args.append_to_pin: target,decoy,num_psms = load_psms(args.psm_file) else: target,decoy,num_psms = load_pin_file(args.psm_file) # check whether variable mods enzyme options were specified and # necessary variable mod string specifying which amino acids are modded # were in the PSM files for i in target[target.keys()[0]]: t = i break if varMods or ntermVarMods or ctermVarMods: if varModKey not in t.other: print "Variable modifications enzyme options specified," print "but PSM file does not contain necessary field Var_mod_seq for strings specifying which amino acids are modified." print "Exitting" exit(-1) # else: # if varModKey in t.other: # print "PSM file does contains field Var_mod_seq denoting variable modifications," # print "but variable modifications enzyme options not specified." # print "Exitting" # exit(-1) pfile_dir = os.path.join(args.output_dir, args.obs_dir) sid_charges = list(set(target.iterkeys()) | set(decoy.iterkeys())) # assume that we should randomize PSMs for multithreading purposes; only reason # why we are currently assuming this is that there is already a parameter for dripSearch # which signifies whether we should shuffle the data shuffle(sid_charges) if(args.normalize != 'filter0'): preprocess = pipeline(args.normalize) validcharges = args.charges ion_dict = {} # global dictionary for used fragment ions theo_spec_dict = {} numBY_dict_per_sid = {} # construct ion_dict for sid in spectra: s = spectra[sid] preprocess(s) for charge in validcharges: if (s.spectrum_id, charge) not in target: continue # check if we're filtering theoretical peaks outside observed m/z values if args.filt_theo_peaks: if args.per_spectrum_mz_bound: minMz = s.mz[0] maxMz = s.mz[-1] else: minMz = args.mz_lb maxMz = args.mz_ub # calculate maximum decoy and target theoretical spectra cardinalities for p in target[s.spectrum_id, charge]: pep = p.peptide # bNy = interleave_b_y_ions(Peptide(pep), charge, mods, # ntermMods, ctermMods) if varMods or ntermVarMods or ctermVarMods: varModSequence = p.other[varModKey] bNy = interleave_b_y_ions_var_mods(Peptide(pep), charge, mods, ntermMods, ctermMods, varMods, ntermVarMods, ctermVarMods, varModSequence) else: bNy = interleave_b_y_ions(Peptide(pep), charge, mods, ntermMods, ctermMods) numBY_dict_per_sid[sid, pep] = len(bNy) if args.filt_theo_peaks: filter_theoretical_peaks(bNy, minMz, maxMz) theo_spec_dict[s.spectrum_id, pep] = bNy for i in bNy: ion_dict[i] = 1 for d in decoy[s.spectrum_id, charge]: pep = d.peptide # bNy = interleave_b_y_ions(Peptide(pep), charge, mods, # ntermMods, ctermMods) if varMods or ntermVarMods or ctermVarMods: varModSequence = d.other[varModKey] bNy = interleave_b_y_ions_var_mods(Peptide(pep), charge, mods, ntermMods, ctermMods, varMods, ntermVarMods, ctermVarMods, varModSequence) else: bNy = interleave_b_y_ions(Peptide(pep), charge, mods, ntermMods, ctermMods) numBY_dict_per_sid[sid, pep] = len(bNy) if args.filt_theo_peaks: filter_theoretical_peaks(bNy, minMz, maxMz) theo_spec_dict[s.spectrum_id, pep] = bNy for i in bNy: ion_dict[i] = 1 ions = list(ion_dict.iterkeys()) ions.sort() for i, ion in enumerate(ions): ion_dict[ion] = i # make collection per spectrum make_master_parameters(args, ion_dict, ions) peptide_pfile = create_pfile(pfile_dir, 'pep-lengths.pfile', 0, 1) spectrum_pfile = create_pfile(pfile_dir, 'spectrum.pfile', 2,0) pep_dt = open(os.path.join(args.output_dir, 'iterable.dts'), "w") pep_dt.write('%d\n\n' % (num_psms)) # write peptide database to parse and identify GMTK segments later pepdb_list = open(os.path.join(args.output_dir, 'pepDB.txt'), "w") pepdb_list.write("Kind\tSid\tPeptide\tNumBY\tCharge\n") spec_dict = {} pep_num = 0 for sid, charge in sid_charges: if sid not in spec_dict: s = spectra[sid] preprocess(s) spec_dict[sid] = s else: s = spec_dict[sid] for p in target[sid,charge]: pep = p.peptide bNy = theo_spec_dict[s.spectrum_id, pep] bNy = [ion_dict[bOrY] for bOrY in bNy] drip_peptide_sentence(pep_dt, pep, bNy, pep_num, s.spectrum_id, args.max_obs_mass, peptide_pfile, True, len(bNy)-1) drip_spectrum_sentence(spectrum_pfile, s.mz, s.intensity) pepdb_list.write("t\t%d\t%s\t%d\t%d\n" % (sid, pep, numBY_dict_per_sid[sid, pep], charge)) pep_num += 1 if (sid,charge) in decoy: for d in decoy[sid,charge]: pep = d.peptide bNy = theo_spec_dict[s.spectrum_id, pep] bNy = [ion_dict[bOrY] for bOrY in bNy] drip_peptide_sentence(pep_dt, pep, bNy, pep_num, s.spectrum_id, args.max_obs_mass, peptide_pfile, False, len(bNy)-1) drip_spectrum_sentence(spectrum_pfile, s.mz, s.intensity) pepdb_list.write("d\t%d\t%s\t%d\t%d\n" % (sid, pep, numBY_dict_per_sid[sid, pep], charge)) pep_num += 1 # close streams for this spectrum pep_dt.close() pepdb_list.close() # compile dt using gmtkDTIndex call(['gmtkDTindex', '-decisionTreeFiles', os.path.join(args.output_dir,'iterable.dts')], stdout = stdo, stderr = stde) return spec_dict, pep_num
def make_drip_data_lowres(args, spectra, stdo, stde): """Generate test data .pfile. and create job scripts for cluster use. Decrease number of calls to GMTK by only calling once per spectrum and running for all charge states in one go """ # parse modifications mods, varMods = parse_var_mods(args.mods_spec, True) # print "mods:" # print mods ntermMods, ntermVarMods = parse_var_mods(args.nterm_peptide_mods_spec, False) # print "n-term mods:" # print nterm_mods ctermMods, ctermVarMods = parse_var_mods(args.cterm_peptide_mods_spec, False) varModKey = "Var_mod_seq" # load means dripMeans = load_drip_means(args.learned_means) # make master file make_master_parameters_lowres(args, dripMeans) if not args.append_to_pin: target,decoy,num_psms = load_psms(args.psm_file) else: target,decoy,num_psms = load_pin_file(args.psm_file) # check whether variable mods enzyme options were specified and # necessary variable mod string specifying which amino acids are modded # were in the PSM files for i in target[target.keys()[0]]: t = i break if varMods or ntermVarMods or ctermVarMods: if varModKey not in t.other: print "Variable modifications enzyme options specified," print "but PSM file does not contain necessary field Var_mod_seq for strings specifying which amino acids are modified." print "Exitting" exit(-1) # else: # if varModKey in t.other: # print "PSM file does contains field Var_mod_seq denoting variable modifications," # print "but variable modifications enzyme options not specified." # print "Exitting" # exit(-1) pfile_dir = os.path.join(args.output_dir, args.obs_dir) sid_charges = list(set(target.iterkeys()) | set(decoy.iterkeys())) # sid_charges = list(set(list(target.iterkeys()) + list(decoy.iterkeys()))) # assume that we should randomize PSMs for multithreading purposes; only reason # why we are currently assuming this is that there is already a parameter for dripSearch # which signifies whether we should shuffle the data shuffle(sid_charges) if(args.normalize != 'filter0'): preprocess = pipeline(args.normalize) validcharges = args.charges # write peptide database to parse and identify GMTK segments later pepdb_list = open(os.path.join(args.output_dir, 'pepDB.txt'), "w") pepdb_list.write("Kind\tSid\tPeptide\tNumBY\tCharge\n") peptide_pfile = create_pfile(pfile_dir, 'pep-lengths.pfile', 0, 1) spectrum_pfile = create_pfile(pfile_dir, 'spectrum.pfile', 2,0) pep_dt = open(os.path.join(args.output_dir, 'iterable.dts'), "w") pep_dt.write('%d\n\n' % (num_psms)) spec_dict = {} pep_num = 0 for sid, charge in sid_charges: if sid not in spec_dict: s = spectra[sid] preprocess(s) spec_dict[sid] = s else: s = spec_dict[sid] if args.filt_theo_peaks: if args.per_spectrum_mz_bound: minMz = s.mz[0] maxMz = s.mz[-1] else: minMz = args.mz_lb maxMz = args.mz_ub if (sid,charge) in target: for p in target[sid,charge]: pep = p.peptide # bNy = interleave_b_y_ions_lowres(Peptide(pep), charge, mods, # ntermMods, ctermMods) if varMods or ntermVarMods or ctermVarMods: varModSequence = p.other[varModKey] bNy = interleave_b_y_ions_var_mods_lowres(Peptide(pep), charge, mods, ntermMods, ctermMods, varMods, ntermVarMods, ctermVarMods, varModSequence) else: bNy = interleave_b_y_ions_lowres(Peptide(pep), charge, mods, ntermMods, ctermMods) pepdb_list.write("t\t%d\t%s\t%d\t%d\n" % (sid, pep, len(bNy), charge)) # numBY for DRIP features assumes all b-/y-ions, not just those # unfiltered per spectrum if args.filt_theo_peaks: filter_theoretical_peaks_lowres(bNy, dripMeans, minMz, maxMz) drip_peptide_sentence(pep_dt, pep, bNy, pep_num, s.spectrum_id, args.max_obs_mass, peptide_pfile, True, len(bNy)-1) drip_spectrum_sentence(spectrum_pfile, s.mz, s.intensity) pep_num += 1 if (sid,charge) in decoy: for d in decoy[sid,charge]: pep = d.peptide # bNy = interleave_b_y_ions_lowres(Peptide(pep), charge, mods, # ntermMods, ctermMods) if varMods or ntermVarMods or ctermVarMods: varModSequence = d.other[varModKey] bNy = interleave_b_y_ions_var_mods_lowres(Peptide(pep), charge, mods, ntermMods, ctermMods, varMods, ntermVarMods, ctermVarMods, varModSequence) else: bNy = interleave_b_y_ions_lowres(Peptide(pep), charge, mods, ntermMods, ctermMods) pepdb_list.write("d\t%d\t%s\t%d\t%d\n" % (sid, pep, len(bNy), charge)) # numBY for DRIP features assumes all b-/y-ions, not just those # unfiltered per spectrum if args.filt_theo_peaks: filter_theoretical_peaks_lowres(bNy, dripMeans, minMz, maxMz) drip_peptide_sentence(pep_dt, pep, bNy, pep_num, s.spectrum_id, args.max_obs_mass, peptide_pfile, False, len(bNy)-1) drip_spectrum_sentence(spectrum_pfile, s.mz, s.intensity) pep_num += 1 # close streams for this spectrum pep_dt.close() pepdb_list.close() # compile dt using gmtkDTIndex call(['gmtkDTindex', '-decisionTreeFiles', os.path.join(args.output_dir,'iterable.dts')], stdout = stdo, stderr = stde) return spec_dict, pep_num
def psm(p, s0, c = 2, highResMs2 = False, dripLearnedMeans = 'dripLearned.means', dripLearnedCovars = 'dripLearned.covars', mods = '', ntermMods = '', ctermMods = '', varModSequence = '', precursor_filter = False, high_res_gauss_dist = 0.05): """ Inputs: p = peptide string s = observed spectrum, instance of class MS2Spectrum c = psm charge mods = static mods ntermMods = static nterm-mods ctermMods = static cterm-mods """ s = copy.deepcopy(s0) args = dripGaussianCollectionNames() sid = s.spectrum_id # parse modifications mods, varMods = parse_var_mods(mods, True) ntermMods, ntermVarMods = parse_var_mods(ntermMods, False) ctermMods, ctermVarMods = parse_var_mods(ctermMods, False) if precursor_filter: normalize = 'top300TightSequest' else: normalize = 'top300Sequest' preprocess = pipeline(normalize) preprocess(s) # get original intensity values to plot s0.mz = list(s.mz) mz_vals = set(s.mz) z = max(s0.intensity) s0.intensity = [i/z for mz, i in zip(s0.mz, s0.intensity) if mz in mz_vals] num_psms = 1 max_obs_mass = 2001 dirBase = 'dtk' # output_dir = os.path.abspath('dripEncode_' + dirBase) output_dir = os.path.abspath('encode') if not os.path.exists(output_dir): os.mkdir(output_dir) obs_dir = 'obs' # sub directory of output_dir pfile_dir = os.path.join(output_dir, obs_dir) if not os.path.exists(pfile_dir): os.mkdir(pfile_dir) # log_dir = os.path.abspath('dripLog_' + dirBase) log_dir = os.path.abspath('log') if not os.path.exists(log_dir): os.mkdir(log_dir) if not highResMs2: dripMeans = load_drip_means(dripLearnedMeans) if varMods or ntermVarMods or ctermVarMods: assert varModSequence, "Variable mod enzyme options specified, but empty string denoting which amino acids are var mods supplied. Exitting" bNy = interleave_b_y_ions_var_mods_lowres(Peptide(p), c, mods, ntermMods, ctermMods, varMods, varNtermMods, varCtermMods, varModSequence) else: bNy = interleave_b_y_ions_lowres(Peptide(p), c, mods, ntermMods, ctermMods) l = len(bNy) filter_theoretical_peaks_lowres(bNy, dripMeans, s.mz[0], s.mz[-1]) else: # calculate b- and y-ions, filter peaks outside of spectrum range if varMods or ntermVarMods or ctermVarMods: assert varModSequence, "Variable mod enzyme options specified, but empty string denoting which amino acids are var mods supplied. Exitting" bNy = interleave_b_y_ions_var_mods(Peptide(p), c, mods, ntermMods, ctermMods, varMods, varNtermMods, varCtermMods, varModSequence) else: bNy = interleave_b_y_ions(Peptide(p), c, mods, ntermMods, ctermMods) l = len(bNy) filter_theoretical_peaks(bNy, s.mz[0], s.mz[-1], high_res_gauss_dist) # now construct means based on this dripMeans = {} for i, ion in enumerate(bNy): dripMeans[i] = ion ion_to_index_map = {} # reverse mapping, from ions to indices for ind in dripMeans: ion_to_index_map[dripMeans[ind]] = ind # make collection per spectrum make_master_parameters_lowres(args, dripMeans) peptide_obs_file = os.path.join(pfile_dir,'pep-lengths') spectrum_obs_file = os.path.join(pfile_dir,'spectrum') pep_dt = open(os.path.join(output_dir, 'iterable.dts'), "w") pep_dt.write('%d\n\n' % (num_psms)) # write peptide database to parse and identify GMTK segments later pepdb_list = open(os.path.join(output_dir, 'pepDB.txt'), "w") pepdb_list.write("Kind\tSid\tPeptide\tNumBY\tCharge\n") pep_num = 0 # create iterable dt and peptide pfile peptide_sentence_flatascii(pep_dt, p, bNy, pep_num, sid, max_obs_mass, peptide_obs_file, True, len(bNy)) # create spectrum pfile spectrum_sentence_flatascii(spectrum_obs_file, s.mz, s.intensity) pepdb_list.write("t\t%d\t%s\t%d\t%d\n" % (sid, p, l, c)) # close streams for this spectrum pep_dt.close() pepdb_list.close() # compile dt using gmtkDTIndex call(['gmtkDTindex', '-decisionTreeFiles', os.path.join(output_dir,'iterable.dts')], stdout = stdo, stderr = stde) # stdout = sys.stderr, stderr = sys.stderr) # create structure and master files then triangulate try: create_drip_structure(highResMs2, args.structure_file, max_obs_mass, False, False, high_res_gauss_dist) except: print "Could not create DRIP structure file %s, exitting" % args.structure_file exit(-1) try: create_drip_master(highResMs2, args.master_file, max_obs_mass, "DRIP_MZ", "drip_collection/covar.txt", "DRIP_GAUSSIAN_COMPONENTS", "DRIP_GAUSSIAN_MIXTURES", "DRIP_MZ_GAUSSIANS") except: print "Could not create DRIP master file %s, exitting" % args.master_file exit(-1) try: triangulate_drip(args.structure_file, args.master_file) except: print "Could not create triangulate structure file %s, exitting" % args.structure_file exit(-1) try: write_covar_file(highResMs2, args.covar_file, dripLearnedCovars, True, high_res_gauss_dist) except: print "Could not create covariance file %s, exitting" % args.covar_file exit(-1) # run GMTK dtFile = os.path.join(output_dir, 'iterable.dts') cppCommand = '\'-DITERABLE_DT=' + dtFile \ + ' -DMAX_FRAGMENT_MASS=' + str(max_obs_mass) \ + ' -DDRIP_MZ=' + args.mean_file \ + ' -DDRIP_GAUSSIAN_COMPONENTS=' + args.gauss_file \ + ' -DDRIP_GAUSSIAN_MIXTURES=' + args.mixture_file \ + ' -DDRIP_MZ_GAUSSIANS=' + args.collection_file \ + '\'' # call gmtkViterbi vitStr0 = "gmtkViterbi -strFile " + args.structure_file \ + " -triFile " + args.structure_file + ".trifile -ni1 0 -nf1 2 -ni2 1 -nf2 0" \ + " -fdiffact2 rl" \ + " -inputMasterFile " + args.master_file + " -inputTrainableParameters trained.params -failOnZeroClique F" # gmtkViterbi command line vitValsFile = os.path.join(log_dir, 'vitVals.txt') vitStr = vitStr0 + ' -vitValsFile ' + vitValsFile \ + ' -of1 ' + spectrum_obs_file \ + ' -fmt1 flatascii ' \ + ' -of2 ' + peptide_obs_file \ + ' -fmt2 flatascii ' \ + ' -cppCommand ' + cppCommand # call(shlex.split(vitStr), stdout = sys.stdout, stderr = sys.stdout) call(shlex.split(vitStr), stdout = stdo, stderr = stde) # parse output t,d = ppsm.parse_dripExtract(vitValsFile, os.path.join(output_dir, 'pepDB.txt')) t = t[sid,c][0] # calculate insertions and deletions t.add_obs_spectrum(s0) t.calculate_drip_features(dripMeans) t.calc_by_sets(c, mods, ntermMods, ctermMods, highResMs2, ion_to_index_map, varMods, ntermVarMods, ctermVarMods, varModSequence) return t