Пример #1
0
def run_mp(json_path, pyd_path, verbose=False, n_core=4):
    start_time = time.time()
    config = readjson(json_path=json_path)

    transducer_config = config['transducer']
    coor_file_path = "data/transducer_position.txt"
    textarray = np.loadtxt(coor_file_path)
    coordinates = textarray[::, 1:]
    T = Transducer(element_coordinates=coordinates, **transducer_config)

    mc = MediaComplex(config_json=config)

    init_medium_config = config['init_medium']
    init_medium = InitMedium.new_markoil(init_medium_config['boundary'])

    T.initialize(
        init_medium,
        **transducer_config["element_init_paras"],
        verbose=verbose,
        n_core=n_core)
    end_time = time.time()
    if verbose:
        print("--- initialization:", end_time - start_time, "seconds ---")

    # start sampling
    start_time = end_time
    box_config = config['box']
    B = Box(*box_config['min'], *box_config['max'], box_config['step'])

    # parallelization, give transducer casting and measuring job to process pool
    pool = Pool(n_core)  # process worker pool, 10 CPU cores

    async_results = []
    for te in T:
        ar = pool.apply_async(measure_kernel, args=(te, B, mc, verbose))
        async_results.append(ar)
    pool.close()
    pool.join()
    if verbose: print("---  all process finished  ---")

    complex_pressure = np.zeros(B.nxyz, dtype=np.complex128)

    for r in async_results:
        complex_pressure += r.get()

    end_time = time.time()
    if verbose:
        print("--- casting time:", end_time - start_time, "seconds ---")

    # save ndarray to file
    if pyd_path is None:
        pyd_path = 'pressure' + '_l' + str(B.lx) + "_n" + str(len(
            T[0])) + "_t" + str(int(time.time()))
    real_pressure = np.abs(complex_pressure)
    np.save('npydata/' + pyd_path, real_pressure)
    np.save('npydata/' + 'c' + pyd_path, complex_pressure)

    if verbose:
        # TODO plot surface
        plot_sliced_tensor(real_pressure, slicing_axis=2)
Пример #2
0
def run_hifu(config_path, pyd_path, verbose=False, n_core=4):
    start_time = time.time()
    config = readjson(json_path=config_path)

    transducer_config = config['transducer']
    coor_file_path = "data/transducer_position.txt"
    textarray = np.loadtxt(coor_file_path)
    coordinates = textarray[::, 1:]
    # coordinates = coordinates[9]
    # coordinates = np.reshape(coordinates, (1, 3))
    T = Transducer(element_coordinates=coordinates, **transducer_config)

    mc = MediaComplex(medium_list=config["medium_list"])

    box_config = config['box']
    B = Box(*box_config['min'], *box_config['max'], box_config['step'])

    esp = transducer_config["element_init_paras"]
    myhifu = HIFU(T)
    cp = myhifu.run(mc,
                    B,
                    esp['n_rays'],
                    esp['trident_angle'],
                    esp['theta_max'],
                    n_core=n_core)
    end_time = time.time()
    print(f'use {end_time - start_time} seconds')
    np.save(f'npydata/complex_pressure_{start_time}', cp)
    plot_sliced_tensor(np.abs(cp), slicing_axis=2)
Пример #3
0
def run(json_path, pyd_path, verbose=False):
    start_time = time.time()
    config = readjson(json_path=json_path)

    transducer_config = config['transducer']
    coor_file_path = "data/transducer_position.txt"
    textarray = np.loadtxt(coor_file_path)
    coordinates = textarray[::, 1:]
    T = Transducer(element_coordinates=coordinates, **transducer_config)

    mc = MediaComplex(config_json=config)

    init_medium_config = config['init_medium']
    init_medium = InitMedium.new_markoil(init_medium_config['boundary'])

    T.initialize(
        init_medium,
        **transducer_config["element_init_paras"],
        verbose=verbose)
    end_time = time.time()
    if verbose:
        print("--- initialization:", end_time - start_time, "seconds ---")

    start_time = end_time
    bundle_dict = T.cast(mc)
    end_time = time.time()
    if verbose:
        print("--- casting time:", end_time - start_time, "seconds ---")

    # start sampling
    start_time = end_time
    box_config = config['box']

    B = Box(*box_config['min'], *box_config['max'], box_config['step'])
    # print(len(B.lattrix))

    complex_pressure = measure(B, bundle_dict, verbose=verbose)

    end_time = time.time()
    if verbose:
        print("--- sampling time:", end_time - start_time, "seconds ---")

    if pyd_path is None:
        pyd_path = 'pressure' + '_l' + str(B.lx) + "_n" + str(len(
            T[0])) + "_t" + str(int(time.time()))
    real_pressure = np.abs(complex_pressure)
    np.save('npydata/' + pyd_path, real_pressure)
    np.save('npydata/' + 'c' + pyd_path, complex_pressure)

    if verbose:
        # TODO plot surface
        plot_sliced_tensor(real_pressure, slicing_axis=2)
Пример #4
0
def run_hifu(config_path, pyd_path, verbose=False, n_core=4):
    start_time = time.time()
    config = readjson(json_path=config_path)
    logging.basicConfig(filename="run_hifu"+str(start_time)+".log",
                        filemode="w",
                        level=logging.INFO)
    transducer_config = config['transducer']
    coor_file_path = "data/transducer_position.txt"
    textarray = np.loadtxt(coor_file_path)
    coordinates = textarray[::, 1:]
    # coordinates = coordinates[36]
    # coordinates = np.reshape(coordinates, (1, 3))
    T = Transducer(element_coordinates=coordinates, **transducer_config)

    mc = MediaComplex(medium_list=config["medium_list"])

    box_config = config['box']
    B = Box(*box_config['min'], *box_config['max'], box_config['step'])

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    plot_transducer(T, ax)
    plot_box(B, ax)
    plt.show()
    return
    esp = transducer_config["element_init_paras"]
    myhifu = HIFU(T)
    cp = myhifu.run(
        mc,
        B,
        esp['n_rays'],
        esp['trident_angle'],
        esp['theta_max'],
        n_core=n_core)
    end_time = time.time()
    print(f'use {end_time - start_time} seconds')
    np.save(f'npydata/complex_pressure_{start_time}', cp)
    plot_sliced_tensor(np.abs(cp), slicing_axis=1)
Пример #5
0
    def __init__(self, medium_list=None, config_file_path=None):
        super().__init__()
        if medium_list is None:
            medium_list = readjson(json_path=config_file_path)["medium_list"]

        for item in medium_list:
            if 'is_init' in item and item['is_init']:
                for m in self:
                    m.id += 1
                self.insert(0, Medium(**item, med_id=0))
            else:
                n = len(self)
                self.append(Medium(**item, med_id=n))

        # adj_mtx[i,j] = [1,2] : 1,2 are the indices of the faces of self[i]
        # adjacent to self[j]
        self.adj_mtx = np.ones((len(self), len(self))) * -1

        # traverse all media (double compare loop)
        for i, item1 in enumerate(self):
            for j, item2 in enumerate(self):
                if i != j:
                    self.adj_mtx[i, j] = item1.shape.adj_at(item2.shape)
Пример #6
0
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from pyHIFU.transducer import Transducer, TElement
from pyHIFU.io.config import readjson
from pyHIFU.physics.medium import InitMedium

config = readjson(json_path='HIFU.py/data/test_case1.json')

transducer_config = config['transducer']
coor_file_path = "HIFU.py/data/transducer_position.txt"
textarray = np.loadtxt(coor_file_path)
coordinates = textarray[::, 1:]

init_medium_config = config['init_medium']
init_medium = InitMedium.new_markoil(init_medium_config['boundary'])

te = TElement(0, [0, 0, 0], 3.5e-3, 40, 1.2e6, np.array([0.14, 0, 0]))
te.initialize(init_medium, 0, n=3000, trident_angle=5e-2, theta_max=np.pi / 20)

from pyHIFU.visualization.mkplots import plot_TElements
from pyHIFU.visualization.figure import create_ax

fig = plt.figure()
ax = create_ax(fig)

plot_TElements(te, ax)

plt.show()
Пример #7
0
import matplotlib.pyplot as plt
import numpy as np
from pyHIFU.io.config import readjson
from matplotlib.ticker import FormatStrFormatter

n_rays_data = readjson(json_path="data/d_v_n_rays.json")
theta_max_data = readjson(json_path="data/d_v_theta_max.json")
trident_angle_data = readjson(json_path="data/d_v_trident_angle.json")

n_rays_l = list(n_rays_data.keys())
n_rays_l = np.array(n_rays_l, dtype=np.float64)
n_rays_v = n_rays_data.values()

theta_max_l = list(theta_max_data.keys())
theta_max_l = np.array(theta_max_l, dtype=np.float64)
theta_max_v = theta_max_data.values()

trident_angle_l = list(trident_angle_data.keys())
trident_angle_l = np.array(trident_angle_l, dtype=np.float64)
trident_angle_v = trident_angle_data.values()

fig, ax = plt.subplots()

# ax.yaxis.set_major_formatter(FormatStrFormatter('%.2f'))
# ax.plot(n_rays_l, n_rays_v)
# ax.title.set_text("number of rays")
# ax.set_xlabel("n_rays")
# ax.set_ylabel("pnorm distance")

# ax.yaxis.set_major_formatter(FormatStrFormatter('%.2f'))
# ax.plot(theta_max_l, theta_max_v)
Пример #8
0
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from pyHIFU.transducer import Transducer, TElement
from pyHIFU.io.config import readjson
from pyHIFU.physics.medium import Medium

config = readjson(json_path='../data/case1.json')

transducer_config = config['transducer']
coor_file_path = "../data/transducer_position.txt"
textarray = np.loadtxt(coor_file_path)
coordinates = textarray[::, 1:]

init_medium_config = config['medium_list'][0]
init_medium = Medium(**init_medium_config)

te = TElement(0, [0,0,0], 3.5e-3, 40, 1.2e6, np.array([0.14, 0,0]))
te.initialize(init_medium, 0, n=1, trident_angle=5e-2, theta_max=np.pi/20)

delta = 0.001
x = np.arange(0.02, 0.15, delta)
y = np.arange(-0.03, 0.03, delta)

X, Y = np.meshgrid(x, y)

z = np.zeros(X.shape, dtype=np.complex128)
for i in range(len(x)):
    for j in range(len(y)):
        coor = [x[i], y[j], 0]
        pc = te.ffa(coor)