Пример #1
0
def learn_frame(im_depth, skel_pos, offsets_1, offsets_2):

	''' Get frame data '''
	skel_pos = pts_to_surface(skel_pos, im_depth, thresh=50)

	''' Compute features and labels '''
	im_labels = get_per_pixel_joints(im_depth, skel_pos, 'geodesic')
	im_labels[(im_depth==0)*(im_labels>N_MSR_JOINTS)] = N_MSR_JOINTS+1
	# im_labels[(im_depth>0)*(im_labels==255)] = N_MSR_JOINTS+1
	mask = (im_labels<N_MSR_JOINTS)
	pixel_loc = np.nonzero(mask)
	pixel_labels = im_labels[pixel_loc]
	# embed()
	features = calculate_rf_features(im_depth, offsets_1, offsets_2, mask=mask)

	''' Visualize '''
	if 1:
		im_labels = np.repeat(im_labels[:,:,None], 3, -1)
		im_labels = display_skeletons(im_labels, skel_pos, (20,), skel_type='Low')
		cv2.putText(im_labels, "Blue=Truth", (10, 210), cv2.FONT_HERSHEY_DUPLEX, .5, (int(im_labels.max()/2), 0, 0))
		cv2.putText(im_labels, "Green=Predict", (10, 230), cv2.FONT_HERSHEY_DUPLEX, .5, (0, int(im_labels.max()/2), 0))
		cv2.imshow("feature_space", im_labels/im_labels.max().astype(np.float))
		ret = cv2.waitKey(10)
		if ret > 0: exit

	return features, pixel_labels
Пример #2
0
def learn_frame(im_depth, skel_pos, offsets_1, offsets_2):
    ''' Get frame data '''
    skel_pos = pts_to_surface(skel_pos, im_depth, thresh=50)
    ''' Compute features and labels '''
    im_labels = get_per_pixel_joints(im_depth, skel_pos, 'geodesic')
    im_labels[(im_depth == 0) * (im_labels > N_MSR_JOINTS)] = N_MSR_JOINTS + 1
    # im_labels[(im_depth>0)*(im_labels==255)] = N_MSR_JOINTS+1
    mask = (im_labels < N_MSR_JOINTS)
    pixel_loc = np.nonzero(mask)
    pixel_labels = im_labels[pixel_loc]
    # embed()
    features = calculate_rf_features(im_depth, offsets_1, offsets_2, mask=mask)
    ''' Visualize '''
    if 1:
        im_labels = np.repeat(im_labels[:, :, None], 3, -1)
        im_labels = display_skeletons(im_labels,
                                      skel_pos, (20, ),
                                      skel_type='Low')
        cv2.putText(im_labels, "Blue=Truth", (10, 210),
                    cv2.FONT_HERSHEY_DUPLEX, .5,
                    (int(im_labels.max() / 2), 0, 0))
        cv2.putText(im_labels, "Green=Predict", (10, 230),
                    cv2.FONT_HERSHEY_DUPLEX, .5,
                    (0, int(im_labels.max() / 2), 0))
        cv2.imshow("feature_space",
                   im_labels / im_labels.max().astype(np.float))
        ret = cv2.waitKey(10)
        if ret > 0: exit

    return features, pixel_labels
Пример #3
0
def plotUsers(image, users):
    # embed()
    # if type(users) == dict:
    # users = [u for u in users.values()]

    # for u in users:
    # uvw = [-1]
    for u in users.keys():
        if users[u]['tracked']:
            xyz = users[u]['com']
            uvw = skel2depth(np.array([xyz]), image.shape)[0]
            ''' Only plot if there are valid coordinates (not [0,0,0])'''
            if uvw[0] > 0:
                if users[u]['tracked'] and len(
                        users[u]['jointPositions'].keys()) > 0:
                    '''Colorize COM'''
                    cv2.rectangle(image, tuple([uvw[0] - 3, uvw[1] - 3]),
                                  tuple([uvw[0] + 3, uvw[1] + 3]), (4000))
                    '''Plot skeleton'''
                    pts = [j for j in users[u]['jointPositions'].values()]
                    skel = skel2depth(np.array(pts), image.shape)
                    from pyKinectTools.utils.SkeletonUtils import display_skeletons
                    image = display_skeletons(image,
                                              skel,
                                              color=(image.max(), 0, 0),
                                              skel_type='Kinect')
Пример #4
0
def plotUsers(image, users):
    # embed()
    # if type(users) == dict:
        # users = [u for u in users.values()]

    # for u in users:
    # uvw = [-1]
    for u in users.keys():
        if users[u]['tracked']:
            xyz = users[u]['com']
            uvw = skel2depth(np.array([xyz]), image.shape)[0]
            ''' Only plot if there are valid coordinates (not [0,0,0])'''
            if uvw[0] > 0:
                if users[u]['tracked'] and len(users[u]['jointPositions'].keys()) > 0:

                    '''Colorize COM'''
                    cv2.rectangle(image, tuple([uvw[0]-3, uvw[1]-3]), tuple([uvw[0]+3, uvw[1]+3]), (4000))
                    '''Plot skeleton'''
                    pts = [j for j in users[u]['jointPositions'].values()]
                    skel = skel2depth(np.array(pts), image.shape)
                    from pyKinectTools.utils.SkeletonUtils import display_skeletons
                    image = display_skeletons(image, skel, color=(image.max(),0,0), skel_type='Kinect')
Пример #5
0
    def infer_pose(self, depth):
        '''
		depth : depth image
		'''
        # Compute features and labels
        # embed()
        features = calculate_rf_features(depth, self.offsets[0],
                                         self.offsets[1])
        pixel_loc = np.nonzero(depth > 0)

        pred = self.rf.predict(features)
        im_predict = np.ones_like(depth) + N_MSR_JOINTS + 1
        im_predict[pixel_loc] = pred

        skel_pos_pred = pose_mean_shift(im_predict)
        ''' Visualize '''
        if 1:
            cv2.imshow("prediction1", im_predict / float(im_predict.max()))
            im_predict = np.repeat(depth[:, :, None].astype(np.float), 3, -1)
            im_predict[depth > 0] -= depth[depth > 0].min()
            im_predict /= float(im_predict.max() / 255.)
            im_predict = im_predict.astype(np.uint8)
            # im_predict = display_skeletons(im_predict, skel_pos, (255,0,0), SKEL_DISPLAY_MODE)
            im_predict = display_skeletons(im_predict, skel_pos_pred,
                                           (0, 255, 0), SKEL_DISPLAY_MODE)

            cv2.putText(im_predict, "Blue=Truth", (10, 210),
                        cv2.FONT_HERSHEY_DUPLEX, .5,
                        (int(im_predict.max() / 2), 0, 0))
            cv2.putText(im_predict, "Green=Predict", (10, 230),
                        cv2.FONT_HERSHEY_DUPLEX, .5,
                        (0, int(im_predict.max() / 2), 0))
            cv2.imshow("prediction", im_predict)

            ret = cv2.waitKey(10)
            # if ret > 0: break

        return skel_pos_pred, im_predict
Пример #6
0
	def infer_pose(self,depth):
		'''
		depth : depth image
		'''
		# Compute features and labels
		# embed()
		features = calculate_rf_features(depth, self.offsets[0], self.offsets[1])
		pixel_loc = np.nonzero(depth>0)

		pred = self.rf.predict(features)
		im_predict = np.ones_like(depth)+N_MSR_JOINTS+1
		im_predict[pixel_loc] = pred

		skel_pos_pred = pose_mean_shift(im_predict)


		''' Visualize '''
		if 1:
			cv2.imshow("prediction1", im_predict/float(im_predict.max()))
			im_predict = np.repeat(depth[:,:,None].astype(np.float), 3, -1)
			im_predict[depth>0] -= depth[depth>0].min()
			im_predict /= float(im_predict.max()/255.)
			im_predict = im_predict.astype(np.uint8)
			# im_predict = display_skeletons(im_predict, skel_pos, (255,0,0), SKEL_DISPLAY_MODE)
			im_predict = display_skeletons(im_predict, skel_pos_pred, (0,255,0), SKEL_DISPLAY_MODE)

			cv2.putText(im_predict, "Blue=Truth", (10, 210), cv2.FONT_HERSHEY_DUPLEX, .5, (int(im_predict.max()/2), 0, 0))
			cv2.putText(im_predict, "Green=Predict", (10, 230), cv2.FONT_HERSHEY_DUPLEX, .5, (0, int(im_predict.max()/2), 0))
			cv2.imshow("prediction", im_predict)

			ret = cv2.waitKey(10)
			# if ret > 0: break



		return skel_pos_pred, im_predict
Пример #7
0
def get_per_pixel_joints(im_depth, skel, alg='geodesic', radius=5):
	'''
	Find the closest joint to each pixel using geodesic distances.
	---Paramaters---
	im_depth : should be masked depth image
	skel : in image coords
	alg : 'geodesic' or 'circular'
	radius : [only for circular]
	'''
	height, width = im_depth.shape
	distance_ims = np.empty([height, width, N_SKEL_JOINTS])
	MAX_VALUE = 32000

	# Get rid of edges around joints
	edge_thresh = 200#10
	gradients = np.gradient(im_depth)
	mag = np.sqrt(gradients[0]**2+gradients[1]**2)
	im_depth[mag>edge_thresh] = 0

	joints_out_of_bounds = np.abs(im_depth[skel[:,0], skel[:,1]] - skel[:,2]) > 100

	# Only look at major joints
	for i, j in zip(SKEL_JOINTS, range(N_SKEL_JOINTS)):
		if skel[i] in joints_out_of_bounds:
			distance_ims[:,:,j] = MAX_VALUE
			continue
		pos = skel[i]

		if alg == 'geodesic':
			x = np.maximum(np.minimum(pos[1], height-1), 0)
			y = np.maximum(np.minimum(pos[0], width-1), 0)
			# if j == 0:
			# 	pts, min_map = generateKeypoints(np.ascontiguousarray(im_depth), centroid=[x,y], iterations=10, scale=6)

			im_dist = distance_map(np.ascontiguousarray(im_depth), centroid=[x,y], scale=6)
			distance_ims[:,:,j] = im_dist

			if 0:
				radius = 5
				x = np.maximum(np.minimum(pos[1], height-1-radius), radius)
				y = np.maximum(np.minimum(pos[0], width-1-radius), radius)
				# print x,y
				pts = circle(x,y, radius)
				# print pts[0]
				max_ = distance_ims[distance_ims[:,:,j]<MAX_VALUE, j].max()
				distance_ims[distance_ims[:,:,j]>=MAX_VALUE,j] = max_+100
				distance_ims[pts[0],pts[1],j] = max_+100
				figure(1)
				subplot(3,5,j+1)
				imshow(distance_ims[:,:,j])
				axis('off')
				# subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.1, hspace=.1)
				tight_layout()
				subplots_adjust(left=.001, bottom=.001, wspace=.003, hspace=.003)

		elif alg == 'circular':
			x = np.maximum(np.minimum(pos[1], height-1-radius), radius)
			y = np.maximum(np.minimum(pos[0], width-1-radius), radius)
			pts = draw.circle(x,y, radius)
			closest_pos[pts] = i
		else:
			print "No algorithm type in 'get_per_pixel_joints'"


	if alg == 'geodesic':
		closest_pos = np.argmin(distance_ims, -1).astype(np.uint8)
		closest_pos_all = np.argsort(distance_ims, -1).astype(np.uint8)
	elif alg == 'circular':
		closest_pos = np.zeros_like(im_depth)

	#Change all background pixels
	# mask = im_depth!=0
	# mask = (distance_ims.max(-1)<32000)
	mask = im_depth!=0
	closest_pos[-mask] = N_MSR_JOINTS+1

	if 0:
		# Reorder for occlusions
		skel_depths = np.array([skel[i,2] for i in SKEL_JOINTS])
		skel_XYZ = np.array([skel[i] for i in SKEL_JOINTS])
		pos_order = np.argsort(skel_depths).tolist()
		pos_order.reverse()

		residual = im_depth[mask] - skel_depths[closest_pos[mask]]
		im_tmp = np.zeros_like(im_depth)
		im_tmp[mask] = residual
		closest_arg = np.argmin(distance_ims+skel_depths, -1)
		closest_arg[-mask] = -1


		# If geo dist < euc distance then kill
		# Go from back to front. Only care about things ahead
		from scipy.spatial import distance
		# euclid_dists = distance.squareform(distance.pdist(depth2world(skel_XYZ, [240,320])))
		euclid_dists = distance.squareform(distance.pdist(skel_XYZ))
		geo_dists = np.zeros_like(euclid_dists)

		for i in xrange(len(SKEL_JOINTS)):
			p = pos_order[i]
			# If a joint is behind it, don't care -- set to infinity
			geo_dists[p,:] = [distance_ims[skel[j][0],skel[j][1],p] if j in pos_order[i:] else np.inf for j in SKEL_JOINTS]

		# Check if it's incorrect at least 2x
		removed_joints = []
		err = (geo_dists*2. < euclid_dists)
		for i in xrange(len(err)):
			if err[i].sum(0) >= 1:
				# removed_joints += [i]
				distance_ims[:,:,i] = MAX_VALUE

		closest_pos_e = np.argmin(distance_ims, -1).astype(np.uint8)
		closest_pos_e[-mask] = N_MSR_JOINTS+1

		subplot(2,2,1)
		closest_pos = display_skeletons(closest_pos, skel, color=(23,), skel_type='Low')
		imshow(closest_pos); axis('off')
		subplot(2,2,2)
		imshow(closest_pos_e); axis('off')
		subplot(2,2,3)
		imshow(closest_pos_e==closest_pos); axis('off')
		# blank = np.ones(300,300)
		# removed_text = ''

		# for i in removed_joints:
			# removed_text += str(i)+" "
			# cv2.putText()
		tight_layout()
		subplots_adjust(left=.001, bottom=.001, wspace=.003, hspace=.003)
		show()

	# embed()

	# closest_pos_e[im_depth==0] = N_MSR_JOINTS+1

	# closest_pos2[-mask] = N_MSR_JOINTS+1
	# closest_pos2[closest_pos>=32000] = N_MSR_JOINTS+1
	# closest_arg[im_depth==0] = N_MSR_JOINTS+1

	# figure(1); imshow(closest_arg);
	# figure(3); imshow(closest_pos2)

	# # Reorder
	# im_order = np.zeros_like(im_depth)-1
	# for p in range(len(pos_order)):
	# 	mask_tmp = closest_pos==p
	# 	dists_tmp = distance_ims[mask_tmp, p] + skel[pos_order[p],2]
	# 	im_order[mask_tmp] = np.maximum(im_order[mask_tmp], dists_tmp)

	# figure(100)
	# imshow(closest_pos)
	# figure(101)
	# imshow(im_depth)
	# show()
	# embed()
	return closest_pos
Пример #8
0
def compute_features(name, vis=False, person_rez=[144,72]):
	'''
	---Parameters---
	filename : base filename for depth/color/skel
	vis: turn visualize on?
	person_rez : all hog/hof features should be the same dimensions, so we resize the people to this resolution
	---Return---
	features: features in a dictionary
	'''

	''' Get filenames '''
	depth_file = name + "depth.bin"
	color_file = name + "rgb.avi"
	skeleton_file = name + "skeleton.txt"
	''' Read data from each video/sequence '''
	try:
		depthIms, maskIms = read_MSR_depth_ims(depth_file)
		colorIms = read_MSR_color_ims(color_file)
		skels_world, skels_im = read_MSR_skeletons(skeleton_file)
	except:
		print "Error reading data"
		return -1

	#print depthIms.shape, colorIms.shape
	framecount = np.minimum(depthIms.shape[0], colorIms.shape[0])
	dataset_features = {'framecount':framecount, 'hog':[], 'hof':[], 'skel_image':[], 'skel_world':[]}
	grayIm_prev = None

	''' View all data'''
	for frame in xrange(framecount):
		depth = depthIms[frame]
		mask = maskIms[frame]
		color = colorIms[frame]
		# Skeleton in world (w) and image (i) coordinates
		skel_w = skels_world[frame]
		skel_i = world2depth(skel_w, rez=[240,320])

		''' Calculate hogs '''
		grayIm = (rgb2gray(color) * 255).astype(np.uint8)
		hogIm = np.zeros_like(depth)

		person_mask, bounding_boxes, labels = extract_people(grayIm, mask>0)
		rez = grayIm[bounding_boxes[0]].shape

		#hog_input_im = sm.imresize(grayIm[bounding_boxes[0]], person_rez)
		hog_input_im = cv2.resize(grayIm[bounding_boxes[0]], (person_rez[1], person_rez[0]))
		hogData, hogImBox = hog(hog_input_im, orientations=4, visualise=True)
		
		#hogIm[bounding_boxes[0]] = sm.imresize(hogImBox, [rez[0],rez[1]])
		hogIm[bounding_boxes[0]] = cv2.resize(hogImBox, (rez[1],rez[0]))
		# hogIm[bounding_boxes[0]] = hogImBox
		hogIm *= person_mask

		''' Calculate HOF '''
		hofIm = np.zeros_like(depth)
		if grayIm_prev is None:
			grayIm_prev = np.copy(grayIm)
			continue
		else:
			flow = getFlow(grayIm_prev[bounding_boxes[0]], grayIm[bounding_boxes[0]])
			rez = flow.shape
			bounding_boxes = (bounding_boxes[0][0], bounding_boxes[0][1], slice(0,2))

			#hof_input_im = np.dstack([sm.imresize(flow[0], [person_rez[0],person_rez[1]]),
			#							sm.imresize(flow[1], [person_rez[0],person_rez[1]])])i
			hof_input_im = np.dstack([cv2.resize(flow[0], (person_rez[1],person_rez[0])), cv2.resize(flow[1], (person_rez[1], person_rez[0]))])

			hofData, hofImBox = hof(hof_input_im, orientations=5, visualise=True)
			#hofIm[bounding_boxes[:2]] = sm.imresize(hofImBox, [rez[0],rez[1]])
			hofIm[bounding_boxes[:2]] = cv2.resize(hogImBox, (rez[1],rez[0]))
			hofIm *= person_mask
		grayIm_prev = np.copy(grayIm)


		''' Add features '''
		dataset_features['hog'] += [hogData]
		dataset_features['hof'] += [hofData]
		dataset_features['skel_image'] += [skel_i]
		dataset_features['skel_world'] += [skel_w]

		''' Plot skeletons on color image'''
		if vis:
			color = display_skeletons(color, skel_i)

			''' Visualization '''
			cv2.imshow("Depth", depth/float(depth.max()))
			cv2.imshow("HOG", hogIm/float(hogIm.max()))
			cv2.imshow("RGB", color)
			cv2.imshow("RGB masked", color*(mask[:,:,None]>0))
			cv2.imshow("HOF", hofIm/float(hofIm.max()))
			ret = cv2.waitKey(10)

			if ret >= 0:
				break

	print "Done calculating ", name
	return dataset_features
Пример #9
0
def main(visualize=False,
         learn=False,
         actions=None,
         subjects=None,
         n_frames=220):
    # learn = True
    # learn = False
    if actions is []:
        actions = [2]
    if subjects is []:
        subjects = [2]
    # actions = [1]
    # actions = [1, 2, 3, 4, 5]
    # subjects = [1]
    if 1:
        MHAD = True
        cam = MHADPlayer(base_dir='/Users/colin/Data/BerkeleyMHAD/',
                         kinect=1,
                         actions=actions,
                         subjects=subjects,
                         reps=[1],
                         get_depth=True,
                         get_color=True,
                         get_skeleton=True,
                         fill_images=False)
    else:
        MHAD = False
        cam = KinectPlayer(base_dir='./',
                           device=1,
                           bg_subtraction=True,
                           get_depth=True,
                           get_color=True,
                           get_skeleton=True,
                           fill_images=False)
        bg = Image.open(
            '/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_A.tif')
        # cam = KinectPlayer(base_dir='./', device=2, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
        # bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_B.tif')
        cam.bgSubtraction.backgroundModel = np.array(bg.getdata()).reshape(
            [240, 320]).clip(0, 4500)
    height, width = cam.depthIm.shape
    skel_previous = None

    face_detector = FaceDetector()
    hand_detector = HandDetector(cam.depthIm.shape)
    # curve_detector = CurveDetector(cam.depthIm.shape)

    # Video writer
    # video_writer = cv2.VideoWriter("/Users/colin/Desktop/test.avi", cv2.cv.CV_FOURCC('M','J','P','G'), 15, (320,240))

    # Save Background model
    # im = Image.fromarray(cam.depthIm.astype(np.int32), 'I')
    # im.save("/Users/Colin/Desktop/k2.png")

    # Setup pose database
    append = True
    append = False
    # pose_database = PoseDatabase("PoseDatabase.pkl", learn=learn, search_joints=[0,4,7,10,13], append=append)
    pose_database = PoseDatabase("PoseDatabase.pkl",
                                 learn=learn,
                                 search_joints=[0, 2, 4, 5, 7, 10, 13],
                                 append=append)

    # Setup Tracking
    skel_init, joint_size, constraint_links, features_joints, skel_parts, convert_to_kinect = get_14_joint_properties(
    )
    constraint_values = []
    for c in constraint_links:
        constraint_values += [
            np.linalg.norm(skel_init[c[0]] - skel_init[c[1]], 2)
        ]
    constraint_values = np.array(constraint_values)

    skel_current = None  #skel_init.copy()
    skel_previous = None  #skel_current.copy()

    # Evaluation
    accuracy_all_db = []
    accuracy_all_track = []
    joint_accuracy_db = []
    joint_accuracy_track = []
    # geo_accuracy = []
    # color_accuracy = []
    # lbp_accuracy = []

    frame_count = 0
    frame_rate = 1
    if not MHAD:
        cam.next(350)
    frame_prev = 0
    # try:
    if 1:
        while cam.next(frame_rate):  # and frame_count < n_frames:
            if frame_count - frame_prev > 100:
                print ""
                print "Frame #{0:d}".format(frame_count)
                frame_prev = frame_count

            if not MHAD:
                if len(cam.users) == 0:
                    continue
                else:
                    # cam.users = [np.array(cam.users[0]['jointPositions'].values())]
                    if np.any(cam.users[0][0] == -1):
                        continue
                    cam.users[0][:, 1] *= -1
                    cam.users_uv_msr = [
                        cam.camera_model.world2im(cam.users[0], [240, 320])
                    ]

            # Apply mask to image
            if MHAD:
                mask = cam.get_person(2) > 0
            else:
                mask = cam.get_person() > 0
                if np.all(mask == False):
                    continue

            im_depth = cam.depthIm
            cam.depthIm[cam.depthIm > 3000] = 0
            im_color = cam.colorIm * mask[:, :, None]
            cam.colorIm *= mask[:, :, None]
            pose_truth = cam.users[0]
            pose_truth_uv = cam.users_uv_msr[0]

            # Get bounding box around person
            box = nd.find_objects(mask)[0]
            d = 20
            # Widen box
            box = (slice(np.maximum(box[0].start-d, 0), \
              np.minimum(box[0].stop+d, height-1)), \
                slice(np.maximum(box[1].start-d, 0), \
              np.minimum(box[1].stop+d, width-1)))
            box_corner = [box[0].start, box[1].start]
            ''' ---------- ----------------------------------- --------'''
            ''' ----------- Feature Detector centric approach ---------'''
            ''' ---------- ----------------------------------- --------'''
            ''' ---- Calculate Detectors ---- '''
            # Face detection
            face_detector.run(im_color[box])
            # Skin detection
            hand_markers = hand_detector.run(im_color[box], n_peaks=3)
            # Calculate Geodesic Extrema
            im_pos = cam.camera_model.im2PosIm(
                cam.depthIm * mask)[box] * mask[box][:, :, None]
            geodesic_markers = geodesic_extrema_MPI(im_pos,
                                                    iterations=5,
                                                    visualize=False)
            _, geo_map = geodesic_extrema_MPI(im_pos,
                                              iterations=1,
                                              visualize=True)
            geodesic_markers_pos = im_pos[geodesic_markers[:, 0],
                                          geodesic_markers[:, 1]]

            markers = list(geodesic_markers) + list(
                hand_markers)  #+ list(lop_markers) + curve_markers
            markers = np.array([list(x) for x in markers])
            ''' ---- Database lookup ---- '''
            if 1:
                pts_mean = im_pos[(im_pos != 0)[:, :, 2]].mean(0)
                if learn:
                    # Normalize pose
                    pose_uv = cam.users_uv[0]
                    if np.any(pose_uv == 0):
                        print "skip"
                        frame_count += frame_rate
                        continue
                    pose_database.update(pose_truth - pts_mean)

                else:
                    # Concatenate markers
                    markers = list(geodesic_markers) + hand_markers
                    markers = np.array([list(x) for x in markers])

                    # Normalize pose
                    pts = im_pos[markers[:, 0], markers[:, 1]]
                    pts = np.array([x for x in pts if x[0] != 0])
                    pts -= pts_mean

                    # Get closest pose
                    pose = pose_database.query(pts, knn=5)
                    # embed()
                    for i in range(5):
                        pose_tmp = cam.camera_model.world2im(
                            pose[i] + pts_mean, cam.depthIm.shape)
                        cam.colorIm = display_skeletons(cam.colorIm,
                                                        pose_tmp,
                                                        skel_type='Kinect',
                                                        color=(0, i * 40 + 50,
                                                               0))
                    pose = pose[0]

                    # im_pos -= pts_mean
                    # R,t = IterativeClosestPoint(pose, im_pos.reshape([-1,3])-pts_mean, max_iters=5, min_change=.001, pt_tolerance=10000)
                    # pose = np.dot(R.T, pose.T).T - t
                    # pose = np.dot(R, pose.T).T + t

                    pose += pts_mean
                    pose_uv = cam.camera_model.world2im(
                        pose, cam.depthIm.shape)

                    # print pose
                    surface_map = nd.distance_transform_edt(
                        -nd.binary_erosion(mask[box]),
                        return_distances=False,
                        return_indices=True)
                    try:
                        pose_uv[:, :2] = surface_map[:, pose_uv[:, 0] -
                                                     box_corner[0],
                                                     pose_uv[:, 1] -
                                                     box_corner[1]].T + [
                                                         box_corner[0],
                                                         box_corner[1]
                                                     ]
                    except:
                        pass
                    pose = cam.camera_model.im2world(pose_uv,
                                                     cam.depthIm.shape)
                    # print pose
            ''' ---- Tracker ---- '''
            # surface_map = nd.distance_transform_edt(-mask[box], return_distances=False, return_indices=True)
            # surface_map = nd.distance_transform_edt(im_pos[:,:,2]==0, return_distances=False, return_indices=True)

            if skel_previous is None:
                # if 1:
                skel_previous = pose.copy()
                skel_current = pose.copy()
                skel_previous_uv = pose_uv.copy()
                skel_current_uv = pose_uv.copy()

            for _ in range(1):

                # ---- (Step 1A) Find feature coordespondences ----
                try:
                    skel_previous_uv[:, :
                                     2] = surface_map[:,
                                                      skel_previous_uv[:, 0] -
                                                      box_corner[0],
                                                      skel_previous_uv[:, 1] -
                                                      box_corner[1]].T + [
                                                          box_corner[0],
                                                          box_corner[1]
                                                      ]
                except:
                    pass
                skel_current = cam.camera_model.im2world(
                    skel_previous_uv, cam.depthIm.shape)

                # Alternative method: use kdtree
                ## Calc euclidian distance between each pixel and all joints
                px_corr = np.zeros(
                    [im_pos.shape[0], im_pos.shape[1],
                     len(skel_current)])
                # for i,s in enumerate(pose):
                # for i,s in enumerate(skel_current):
                # px_corr[:,:,i] = np.sqrt(np.sum((im_pos - s)**2, -1))# / joint_size[i]**2
                # for i,s in enumerate(pose_uv):

                # Geodesics
                for i, s in enumerate(skel_previous_uv):
                    ''' Problem: need to constrain pose_uv to mask '''
                    _, geo_map = geodesic_extrema_MPI(
                        im_pos, [s[0] - box_corner[0], s[1] - box_corner[1]],
                        iterations=1,
                        visualize=True)
                    px_corr[:, :, i] = geo_map
                    subplot(2, 7, i + 1)
                    # imshow(geo_map, vmin=0, vmax=2000)
                    # axis('off')
                    px_corr[geo_map == 0, i] = 9999
                cv2.imshow('gMap', (px_corr.argmin(-1) + 1) / 15. * mask[box])
                ## Handle occlusions by argmax'ing over set of skel parts
                # visible_configurations = list(it.product([0,1], repeat=5))[1:]
                visible_configurations = [
                    # [0,1,1,1,1],
                    # [1,0,0,0,0],
                    [1, 1, 1, 1, 1]
                ]
                px_visibility_label = np.zeros([
                    im_pos.shape[0], im_pos.shape[1],
                    len(visible_configurations)
                ],
                                               dtype=np.uint8)
                visible_scores = np.ones(len(visible_configurations)) * np.inf
                # Try each occlusion configuration set
                for i, v in enumerate(visible_configurations):
                    visible_joints = list(
                        it.chain.from_iterable(skel_parts[np.array(v) > 0]))
                    px_visibility_label[:, :, i] = np.argmin(
                        px_corr[:, :, visible_joints],
                        -1)  #.reshape([im_pos.shape[0], im_pos.shape[1]])
                    visible_scores[i] = np.min(px_corr[:, :, visible_joints],
                                               -1).sum()
                # Choose best occlusion configuration
                occlusion_index = np.argmin(visible_scores)
                occlusion_configuration = visible_configurations[
                    occlusion_index]
                occlusion_set = list(
                    it.chain.from_iterable(skel_parts[np.array(
                        visible_configurations[occlusion_index]) > 0]))
                # Choose label for pixels based on occlusion configuration
                px_label = px_visibility_label[:, :,
                                               occlusion_index] * mask[box]
                px_label_flat = px_visibility_label[:, :, occlusion_index][
                    mask[box]].flatten()

                visible_joints = [
                    1 if x in occlusion_set else 0 for x in range(len(pose))
                ]
                # print visible_joints

                # Project distance to joint's radius
                px_joint_displacement = im_pos[
                    mask[box]] - skel_current[px_label_flat]
                px_joint_magnitude = np.sqrt(
                    np.sum(px_joint_displacement**2, -1))
                joint_mesh_pos = skel_current[
                    px_label_flat] + px_joint_displacement * (
                        joint_size[px_label_flat] / px_joint_magnitude)[:,
                                                                        None]
                px_joint_displacement = joint_mesh_pos - im_pos[mask[box]]
                # Ensure pts aren't too far away
                px_joint_displacement[np.abs(px_joint_displacement) > 500] = 0
                # embed()
                if 0:
                    x = im_pos.copy() * 0
                    x[mask[box]] = joint_mesh_pos

                    for i in range(3):
                        subplot(1, 4, i + 1)
                        imshow(x[:, :, i])
                        axis('off')
                    subplot(1, 4, 4)
                    imshow((px_label + 1) * mask[box])

                # Calc the correspondance change in position for each joint
                correspondence_displacement = np.zeros([len(skel_current), 3])
                ii = 0
                for i, _ in enumerate(skel_current):
                    if i in occlusion_set:
                        labels = px_label_flat == i
                        correspondence_displacement[i] = np.sum(
                            px_joint_displacement[px_label_flat == ii], 0
                        ) / np.sum(
                            px_joint_displacement[px_label_flat == ii] != 0)
                        ii += 1
                correspondence_displacement = np.nan_to_num(
                    correspondence_displacement)
                # print correspondence_displacement
                # Viz correspondences
                if 0:
                    x = im_pos.copy() * 0
                    x[mask[box]] = px_joint_displacement

                    for i in range(3):
                        subplot(1, 4, i + 1)
                        imshow(x[:, :, i])
                        axis('off')
                    subplot(1, 4, 4)
                    imshow((px_label + 1) * mask[box])
                    # embed()
                    # for j in range(3):
                    # 	for i in range(14):
                    # 		subplot(3,14,j*14+i+1)
                    # 		imshow(x[:,:,j]*((px_label==i)*mask[box]))
                    # 		axis('off')
                    show()

                # ---- (Step 2) Update pose state, x ----
                lambda_p = .0
                lambda_c = 1.
                skel_prev_difference = (skel_current - skel_previous)
                # print skel_prev_difference
                skel_current = skel_previous \
                    + lambda_p  * skel_prev_difference \
                    - lambda_c  * correspondence_displacement#\

                # ---- (Step 3) Add constraints ----
                if 1:
                    # A: Link lengths / geometry
                    # skel_current = link_length_constraints(skel_current, constraint_links, constraint_values, alpha=.5)
                    skel_current = geometry_constraints(skel_current,
                                                        joint_size,
                                                        alpha=0.5)
                    skel_current = collision_constraints(
                        skel_current, constraint_links)

                    skel_img_box = (cam.camera_model.world2im(
                        skel_current, cam.depthIm.shape) -
                                    [box[0].start, box[1].start, 0]
                                    )  #/mask_interval
                    skel_img_box = skel_img_box.clip([0, 0, 0], [
                        box[0].stop - box[0].start - 1,
                        box[1].stop - box[1].start - 1, 9999
                    ])
                    # skel_img_box = skel_img_box.clip([0,0,0], [cam.depthIm.shape[0]-1, cam.depthIm.shape[1]-1, 9999])
                    # B: Ray-cast constraints
                    # embed()
                    skel_current, skel_current_uv = ray_cast_constraints(
                        skel_current, skel_img_box, im_pos, surface_map,
                        joint_size)
                    # skel_img_box -= [box[0].start, box[1].start, 0]

                    # # Map back from mask to image
                    # try:
                    # 	skel_current_uv[:,:2] = surface_map[:, skel_img_box[:,0], skel_img_box[:,1]].T# + [box_corner[0], box_corner[1]]
                    # except:
                    # 	pass
                    prob = link_length_probability(skel_current,
                                                   constraint_links,
                                                   constraint_values, 100)
                    # print "Prob:", np.mean(prob), np.min(prob), prob
                    print frame_count
                    thresh = .05
                    if np.min(prob) < thresh:  # and frame_count > 1:
                        print 'Resetting pose'
                        for c in constraint_links[prob < thresh]:
                            for cc in c:
                                skel_current_uv[c] = pose_uv[c] - [
                                    box[0].start, box[1].start, 0
                                ]
                                skel_current[c] = pose[c]
                        # skel_current_uv = pose_uv.copy() - [box[0].start, box[1].start, 0]
                        # skel_current = pose.copy()

                    skel_current_uv = skel_current_uv + [
                        box[0].start, box[1].start, 0
                    ]
                    skel_current = cam.camera_model.im2world(
                        skel_current_uv, cam.depthIm.shape)
                else:
                    skel_current_uv = (cam.camera_model.world2im(
                        skel_current, cam.depthIm.shape))
                    # skel_img_box = skel_img_box.clip([0,0,0], [cam.depthIm.shape[0]-1, cam.depthIm.shape[1]-1, 9999])

            # Update for next round
            skel_previous = skel_current.copy()
            skel_previous_uv = skel_current_uv.copy()
            ''' ---- Accuracy ---- '''
            # embed()
            if 1 and not learn:
                # pose_truth = cam.users[0]
                error_db = pose_truth - pose
                error_track = pose_truth - skel_current
                # print "Error", error
                error_l2_db = np.sqrt(np.sum(error_db**2, 1))
                error_l2_track = np.sqrt(np.sum(error_track**2, 1))
                joint_accuracy_db += [error_l2_db]
                joint_accuracy_track += [error_l2_track]
                accuracy_db = np.sum(error_l2_db < 150) / 14.
                accuracy_track = np.sum(error_l2_track < 150) / 14.
                print "Current db:", accuracy_db, error_l2_db.mean()
                print "Current track:", accuracy_track, error_l2_track.mean()
                print ""
                accuracy_all_db += [accuracy_db]
                accuracy_all_track += [accuracy_track]
                # print "Running avg:", np.mean(accuracy_all)
                # print "Joint avg (per-joint):", np.mean(joint_accuracy_all, -1)
                # print "Joint avg (overall):", np.mean(joint_accuracy_all)
            ''' --- Visualization --- '''

            display_markers(cam.colorIm,
                            hand_markers[:2],
                            box,
                            color=(0, 250, 0))
            if len(hand_markers) > 2:
                display_markers(cam.colorIm, [hand_markers[2]],
                                box,
                                color=(0, 200, 0))
            display_markers(cam.colorIm,
                            geodesic_markers,
                            box,
                            color=(200, 0, 0))
            # display_markers(cam.colorIm, curve_markers, box, color=(0,100,100))
            # display_markers(cam.colorIm, lop_markers, box, color=(0,0,200))

            cam.colorIm = display_skeletons(cam.colorIm,
                                            pose_truth_uv,
                                            skel_type='Kinect',
                                            color=(0, 255, 0))
            cam.colorIm = display_skeletons(cam.colorIm,
                                            pose_uv,
                                            skel_type='Kinect')
            cam.colorIm = display_skeletons(cam.colorIm,
                                            skel_current_uv,
                                            skel_type='Kinect',
                                            color=(0, 0, 255))
            # cam.visualize(color=True, depth=False)
            cam.visualize(color=True, depth=True)

            # embed()
            # ------------------------------------------------------------

            # video_writer.write((geo_clf_map/float(geo_clf_map.max())*255.).astype(np.uint8))
            # video_writer.write(cam.colorIm[:,:,[2,1,0]])

            frame_count += frame_rate
    # except:
    # pass

    print "-- Results for subject {:d} action {:d}".format(
        subjects[0], actions[0])
    print "Running avg (db):", np.mean(accuracy_all_db)
    print "Running avg (track):", np.mean(accuracy_all_track)
    print "Joint avg (overall db):", np.mean(joint_accuracy_db)
    print "Joint avg (overall track):", np.mean(joint_accuracy_track)
    # print 'Done'

    embed()
    return
Пример #10
0
def compute_features(name, vis=False, person_rez=[144, 72]):
    '''
	---Parameters---
	filename : base filename for depth/color/skel
	vis: turn visualize on?
	person_rez : all hog/hof features should be the same dimensions, so we resize the people to this resolution
	---Return---
	features: features in a dictionary
	'''
    ''' Get filenames '''
    depth_file = name + "depth.bin"
    color_file = name + "rgb.avi"
    skeleton_file = name + "skeleton.txt"
    ''' Read data from each video/sequence '''
    try:
        depthIms, maskIms = read_MSR_depth_ims(depth_file)
        colorIms = read_MSR_color_ims(color_file)
        skels_world, skels_im = read_MSR_skeletons(skeleton_file)
    except:
        print "Error reading data"
        return -1

    #print depthIms.shape, colorIms.shape
    framecount = np.minimum(depthIms.shape[0], colorIms.shape[0])
    dataset_features = {
        'framecount': framecount,
        'hog': [],
        'hof': [],
        'skel_image': [],
        'skel_world': []
    }
    grayIm_prev = None
    ''' View all data'''
    for frame in xrange(framecount):
        depth = depthIms[frame]
        mask = maskIms[frame]
        color = colorIms[frame]
        # Skeleton in world (w) and image (i) coordinates
        skel_w = skels_world[frame]
        skel_i = world2depth(skel_w, rez=[240, 320])
        ''' Calculate hogs '''
        grayIm = (rgb2gray(color) * 255).astype(np.uint8)
        hogIm = np.zeros_like(depth)

        person_mask, bounding_boxes, labels = extract_people(grayIm, mask > 0)
        rez = grayIm[bounding_boxes[0]].shape

        #hog_input_im = sm.imresize(grayIm[bounding_boxes[0]], person_rez)
        hog_input_im = cv2.resize(grayIm[bounding_boxes[0]],
                                  (person_rez[1], person_rez[0]))
        hogData, hogImBox = hog(hog_input_im, orientations=4, visualise=True)

        #hogIm[bounding_boxes[0]] = sm.imresize(hogImBox, [rez[0],rez[1]])
        hogIm[bounding_boxes[0]] = cv2.resize(hogImBox, (rez[1], rez[0]))
        # hogIm[bounding_boxes[0]] = hogImBox
        hogIm *= person_mask
        ''' Calculate HOF '''
        hofIm = np.zeros_like(depth)
        if grayIm_prev is None:
            grayIm_prev = np.copy(grayIm)
            continue
        else:
            flow = getFlow(grayIm_prev[bounding_boxes[0]],
                           grayIm[bounding_boxes[0]])
            rez = flow.shape
            bounding_boxes = (bounding_boxes[0][0], bounding_boxes[0][1],
                              slice(0, 2))

            #hof_input_im = np.dstack([sm.imresize(flow[0], [person_rez[0],person_rez[1]]),
            #							sm.imresize(flow[1], [person_rez[0],person_rez[1]])])i
            hof_input_im = np.dstack([
                cv2.resize(flow[0], (person_rez[1], person_rez[0])),
                cv2.resize(flow[1], (person_rez[1], person_rez[0]))
            ])

            hofData, hofImBox = hof(hof_input_im,
                                    orientations=5,
                                    visualise=True)
            #hofIm[bounding_boxes[:2]] = sm.imresize(hofImBox, [rez[0],rez[1]])
            hofIm[bounding_boxes[:2]] = cv2.resize(hogImBox, (rez[1], rez[0]))
            hofIm *= person_mask
        grayIm_prev = np.copy(grayIm)
        ''' Add features '''
        dataset_features['hog'] += [hogData]
        dataset_features['hof'] += [hofData]
        dataset_features['skel_image'] += [skel_i]
        dataset_features['skel_world'] += [skel_w]
        ''' Plot skeletons on color image'''
        if vis:
            color = display_skeletons(color, skel_i)
            ''' Visualization '''
            cv2.imshow("Depth", depth / float(depth.max()))
            cv2.imshow("HOG", hogIm / float(hogIm.max()))
            cv2.imshow("RGB", color)
            cv2.imshow("RGB masked", color * (mask[:, :, None] > 0))
            cv2.imshow("HOF", hofIm / float(hofIm.max()))
            ret = cv2.waitKey(10)

            if ret >= 0:
                break

    print "Done calculating ", name
    return dataset_features
Пример #11
0
def main(visualize=False, learn=False):
	# Init both cameras
	# fill = True
	fill = False
	get_color = True
	cam = KinectPlayer(base_dir='./', device=1, bg_subtraction=True, get_depth=True, get_color=get_color, get_skeleton=True, fill_images=fill)
	cam2 = KinectPlayer(base_dir='./', device=2, bg_subtraction=True, get_depth=True, get_color=get_color, get_skeleton=True, fill_images=fill)
	# Transformation matrix from first to second camera
	data = pickle.load(open("Registration.dat", 'r'))
	transform_c1_to_c2 = data['transform']

	# Get random forest parameters
	if learn:
		rf = RFPose(offset_max=100, feature_count=300)
	else:
		rf = RFPose()
		rf.load_forest()

	ii = 0
	# cam.next(200)
	all_joint_ims_z = []
	all_joint_ims_c = []
	while cam.next() and ii < 200:
		# Update frames
		cam2.sync_cameras(cam)
		if ii%10 != 0:
			ii += 1
			continue

		# Transform skels from cam1 to cam2
		cam_skels = [np.array(cam.users[s]['jointPositions'].values()) for s in cam.users.keys()]
		# Get rid of bad skels
		cam_skels = [s for s in cam_skels if np.all(s[0] != -1)]

		if len(cam_skels) == 0:
			continue
		ii+=1

		# Save images
		if 1:
			joint_ims_z = []
			joint_ims_c = []
			dx = 10
			skel_tmp = skel2depth(cam_skels[0], [240,320])
			for j_pos in skel_tmp:
				# embed()
				joint_ims_z += [cam.depthIm[j_pos[0]-dx:j_pos[0]+dx, j_pos[1]-dx:j_pos[1]+dx]]
				joint_ims_c += [cam.colorIm[j_pos[0]-dx:j_pos[0]+dx, j_pos[1]-dx:j_pos[1]+dx]]
			if len(joint_ims_z) > 0:
				all_joint_ims_z += [joint_ims_z]
				all_joint_ims_c += [joint_ims_c]

		if 0:
			cam2_skels = transform_skels(cam_skels, transform_c1_to_c2, 'image')

			try:
				depth = cam2.get_person()
				if learn:
					rf.add_frame(depth, cam2_skels[0])
				else:
					rf.infer_pose(depth)

				if visualize:
					cam2.depthIm = display_skeletons(cam2.depthIm, cam2_skels[0], (5000,), skel_type='Low')
					skel1 = kinect_to_msr_skel(skel2depth(cam_skels[0], [240,320]))
					cam.depthIm = display_skeletons(cam.depthIm, skel1, (5000,), skel_type='Low')
					cam.visualize()
					cam2.visualize()
			except:
				pass


	embed()
	if learn:
		print "Starting forest"
		rf.learn_forest()

	print 'Done'
Пример #12
0
def main_infer(rf_name=None):
	'''
	'''

	if rf_name is None:
		import os
		files = os.listdir('Saved_Params/')
		rf_name = 'Saved_Params/' + files[-1]
		print "Classifier file:",rf_name


	# Load classifier data
	data =  pickle.load(open(rf_name))
	rf = data['rf']
	offsets_1, offsets_2 = data['offsets']

	''' Read data from each video/sequence '''
	depthIms = []
	skels_world = []
	if 1:
		# VP = KinectPlayer(base_dir='/Users/colin/Data/Office_25Feb2013/', device=2, get_depth=True, get_color=False, get_skeleton=True, get_mask=False)
		VP = KinectPlayer(base_dir='/Users/colin/Data/Room_close_26Feb13/', device=1, get_depth=True, get_color=False, get_skeleton=True, get_mask=False)
		_,_ = VP.get_n_skeletons(50)
		depthIms, skels_world = VP.get_n_skeletons(100)
		# depthIms = np.array(depthIms)[:,:,::-1]

	else:
		# name = 'a01_s01_e02_'
		name = 'a01_s10_e02_'
		# name = 'a02_s06_e02_'
		# name = 'a05_s02_e02_'
		depth_file = name + "depth.bin"
		color_file = name + "rgb.avi"
		skeleton_file = name + "skeleton.txt"

		try:
			depthIms, maskIms = read_MSR_depth_ims(depth_file)
			depthIms *= maskIms
			depthIms /= 10
			# colorIms = read_MSR_color_ims(color_file)
			skels_world, skels_im = read_MSR_skeletons(skeleton_file)
			skels_world[:,2]/=10
		except:
			print "Error reading data"


	''' Process data '''
	all_pred_ims = []
	for i in xrange(1, len(depthIms), 1):
		# try:
		if 1:
			print i
			''' Get frame data '''
			im_depth = depthIms[i]
			# im_depth[160:, :] = 0
			skel_pos = skel2depth(skels_world[i], rez=[240,320])
			# ''' --- NOTE THIS 10 PX OFFSET IN THE MSR DATASET !!! --- '''
			# skel_pos[:,0] -= 10

			skel_pos_pred, im_predict = infer_pose(im_depth, rf, offsets_1, offsets_2)

			# Overlay skeletons
			if 1:
				# colorIm = colorIms[i]
				# im_predict = colorIm
				cv2.imshow("forest_prediction", im_predict/float(im_predict.max()))

				im_predict = np.repeat(im_depth[:,:,None].astype(np.float), 3, -1)
				# embed()
				im_predict[im_depth>0] -= im_depth[im_depth>0].min()
				im_predict /= float(im_predict.max()/255.)
				im_predict = im_predict.astype(np.uint8)


				# im_predict = np.repeat(im_predict[:,:,None], 3, -1)
				# im_predict /= float(im_predict.max())*255
				# im_predict = im_predict.astype(np.uint8)
				im_predict = display_skeletons(im_predict, skel_pos, (255,0,0), SKEL_DISPLAY_MODE)
				im_predict = display_skeletons(im_predict, skel_pos_pred, (0,255,0), SKEL_DISPLAY_MODE)
				im_predict = display_skeletons(im_predict, skel_pos, (255,0,0), SKEL_DISPLAY_MODE)
				im_predict = display_skeletons(im_predict, skel_pos_pred, (0,255,0), SKEL_DISPLAY_MODE)

				# embed()
				# max_ = (im_predict * (im_predict < 255)).max()

			all_pred_ims += [im_predict]

			''' Visualize '''
			if 1:
				cv2.putText(im_predict, "Blue=Truth", (10, 210), cv2.FONT_HERSHEY_DUPLEX, .5, (int(im_predict.max()/2), 0, 0))
				cv2.putText(im_predict, "Green=Predict", (10, 230), cv2.FONT_HERSHEY_DUPLEX, .5, (0, int(im_predict.max()/2), 0))
				cv2.imshow("prediction", im_predict)

				ret = cv2.waitKey(10)
				if ret > 0: break

				time.sleep(.5)

		# except:
		# 	print "Frame failed:", i
		# 	break

	embed()
Пример #13
0
def main(visualize=False, learn=False, patch_size=32, n_frames=2500):

    if 1:
        get_color = True
        cam = MHADPlayer(base_dir='/Users/colin/Data/BerkeleyMHAD/',
                         kinects=[1],
                         actions=[1],
                         subjects=[1],
                         get_depth=True,
                         get_color=True,
                         get_skeleton=True,
                         fill_images=False)
        # cam = KinectPlayer(base_dir='./', device=2, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
        # cam.bgSubtraction.backgroundModel = sm.imread('/Users/colin/Data/CIRL_28Feb2013/depth/59/13/47/device_1/depth_59_13_47_4_13_35507.png').clip(0, 4500)
        # bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/Office_Background_B.tif')
        # bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_B.tif')
        # bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/Wall_Background_B.tif')
        # cam.bgSubtraction.backgroundModel = np.array(bg.getdata()).reshape([240,320]).clip(0, 4500)
        # embed()
        # cam = KinectPlayer(base_dir='./', device=2, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
    elif 0:
        get_color = False
        cam = EVALPlayer(base_dir='/Users/colin/Data/EVAL/',
                         bg_subtraction=True,
                         get_depth=True,
                         get_skeleton=True,
                         fill_images=False)
    elif 0:
        get_color = False
        cam = MSRPlayer(base_dir='/Users/colin/Data/MSR_DailyActivities/Data/',
                        actions=[1],
                        subjects=[1, 2, 3, 4, 5],
                        bg_subtraction=True,
                        get_depth=True,
                        get_color=True,
                        get_skeleton=True,
                        fill_images=False)

    embed()
    height, width = cam.depthIm.shape

    skel_names = np.array(['head', 'neck', 'torso', 'l_shoulder', 'l_elbow', 'l_hand', \
       'r_shoulder', 'r_elbow', 'r_hand', 'l_hip', 'l_knee', 'l_foot',\
       'r_hip', 'r_knee', 'r_foot'])

    # skel_init, joint_size, constraint_links, features_joints,convert_to_kinect = get_11_joint_properties()
    skel_init, joint_size, constraint_links, features_joints, skel_parts, convert_to_kinect = get_13_joint_properties(
    )
    # skel_init, joint_size, constraint_links, features_joints,skel_parts, convert_to_kinect = get_14_joint_properties()
    # skel_init, joint_size, constraint_links, features_joints,convert_to_kinect = get_15_joint_properties()
    constraint_values = []
    for c in constraint_links:
        constraint_values += [
            np.linalg.norm(skel_init[c[0]] - skel_init[c[1]], 2)
        ]
    constraint_values = np.array(constraint_values)

    skel_current = skel_init.copy()
    skel_previous = skel_current.copy()

    face_detector = FaceDetector()
    hand_template = sm.imread('/Users/colin/Desktop/fist.png')[:, :, 2]
    hand_template = (255 - hand_template) / 255.
    if height == 240:
        hand_template = cv2.resize(hand_template, (10, 10))
    else:
        hand_template = cv2.resize(hand_template, (20, 20))

    frame_count = 0
    if get_color and height == 240:
        cam.next(220)

    accuracy_measurements = {'overall': [], 'per_joint': []}

    # Video writer
    # print '1'
    video_writer = cv2.VideoWriter("/Users/colin/Desktop/test.avi",
                                   cv2.cv.CV_FOURCC('M', 'J', 'P', 'G'), 15,
                                   (320, 240))
    # print '1'

    # embed()
    while cam.next(1) and frame_count < n_frames:
        print ""
        print "Frame #{0:d}".format(frame_count)
        # Get rid of bad skeletons
        if type(cam.users) == dict:
            cam_skels = [
                np.array(cam.users[s]['jointPositions'].values())
                for s in cam.users
            ]
        else:
            cam_skels = [np.array(s) for s in cam.users]
        cam_skels = [s for s in cam_skels if np.all(s[0] != -1)]

        # Check for skeletons
        # if len(cam_skels) == 0:
        # continue

        # Apply mask to image
        mask = cam.get_person() > 0
        # if mask is False:
        if 1:
            if len(cam_skels) > 0:
                # cam.colorIm = display_skeletons(cam.colorIm[:,:,2], skel_msr_im, (255,), skel_type='Kinect')[:,:,None]
                cam.colorIm[:, :, 1] = display_skeletons(
                    cam.colorIm[:, :, 2],
                    skel2depth(cam_skels[0], cam.depthIm.shape), (255, ),
                    skel_type='Kinect')

            ## Max P=31 for LBPs becuase of datatype
            # tmp = local_binary_pattern(-cam.depthIm, 1, 10)#*(cam.foregroundMask>0)
            # embed()
            # tmp = local_occupancy_pattern(cam.depthIm, 31, 20, px_diff_thresh=100)*(cam.foregroundMask>0)

            # cv2.imshow("LBP", np.abs(tmp.astype(np.float))/float(tmp.max()))
            cam.colorIm = cam.colorIm[:, :, [0, 2, 1]]
            cam.visualize()
            continue

        # Anonomize
        # c_masked = cam.colorIm*mask[:,:,None]
        # d_masked = cam.depthIm*mask
        # c_masked_neg = cam.colorIm*(-mask[:,:,None])

        im_depth = cam.depthIm
        if get_color:
            im_color = cam.colorIm
            im_color *= mask[:, :, None]
            im_color = np.ascontiguousarray(im_color)
            im_color = im_color[:, :, [2, 1, 0]]
        if len(cam_skels) > 0:
            skel_msr_xyz = cam_skels[0]
            skel_msr_im = skel2depth(cam_skels[0], cam.depthIm.shape)

        box = nd.find_objects(mask)[0]
        d = 20
        box = (slice(np.maximum(box[0].start-d, 0), \
          np.minimum(box[0].stop+d, height-1)), \
            slice(np.maximum(box[1].start-d, 0), \
          np.minimum(box[1].stop+d, width-1)))

        # Face and skin detection
        if get_color:
            face_detector.run(im_color[box])
            im_skin = rgb2lab(cam.colorIm[box].astype(np.int16))[:, :, 1]
            # im_skin = skimage.exposure.equalize_hist(im_skin)
            # im_skin = skimage.exposure.rescale_intensity(im_skin, out_range=[0,1])
            im_skin *= im_skin > face_detector.min_threshold
            im_skin *= im_skin < face_detector.max_threshold
            # im_skin *= face_detector>.068

            skin_match_c = nd.correlate(im_skin, hand_template)

            # Display Predictions - Color Based matching
            optima = peak_local_max(skin_match_c,
                                    min_distance=20,
                                    num_peaks=3,
                                    exclude_border=False)
            # Visualize
            if len(optima) > 0:
                optima_values = skin_match_c[optima[:, 0], optima[:, 1]]
                optima_thresh = np.max(optima_values) / 2
                optima = optima.tolist()

                for i, o in enumerate(optima):
                    if optima_values[i] < optima_thresh:
                        optima.pop(i)
                        break
                    joint = np.array(o) + [box[0].start, box[1].start]
                    circ = np.array(circle(joint[0], joint[1], 5)).T
                    circ = circ.clip([0, 0], [height - 1, width - 1])
                    cam.colorIm[circ[:, 0], circ[:, 1]] = (
                        0, 120 - 30 * i, 0
                    )  #(255*(i==0),255*(i==1),255*(i==2))
            markers = optima

        # ---------------- Tracking Algorithm ----------------
        # ---- Preprocessing ----
        if get_color:
            im_pos = rgbIm2PosIm(cam.depthIm * mask)[box] * mask[box][:, :,
                                                                      None]
        else:
            im_pos = cam.posIm[box]
        cam.depthIm[cam.depthIm == 4500] = 0
        im_pos_mean = np.array([
            im_pos[:, :, 0][im_pos[:, :, 2] != 0].mean(),
            im_pos[:, :, 1][im_pos[:, :, 2] != 0].mean(),
            im_pos[:, :, 2][im_pos[:, :, 2] != 0].mean()
        ],
                               dtype=np.int16)

        # Zero-center
        if skel_current[0, 2] == 0:
            skel_current += im_pos_mean
            skel_previous += im_pos_mean

        # Calculate Geodesic Extrema
        extrema = geodesic_extrema_MPI(im_pos, iterations=15, visualize=False)
        if len(extrema) > 0:
            for i, o in enumerate(extrema):
                joint = np.array(o) + [box[0].start, box[1].start]
                circ = np.array(circle(joint[0], joint[1], 5)).T
                circ = circ.clip([0, 0], [height - 1, width - 1])
                cam.colorIm[circ[:, 0], circ[:, 1]] = (0, 0, 200 - 10 * i)

        # Calculate Z-surface
        surface_map = nd.distance_transform_edt(-mask[box],
                                                return_distances=False,
                                                return_indices=True)

        # Only sample some of the points
        if 1:
            mask_interval = 1
            feature_radius = 10
        else:
            mask_interval = 3
            feature_radius = 2

        # Modify the box wrt the sampling
        box = (slice(box[0].start, box[0].stop, mask_interval),
               slice(box[1].start, box[1].stop, mask_interval))
        im_pos_full = im_pos.copy()
        im_pos = im_pos[::mask_interval, ::mask_interval]
        box_height, box_width, _ = im_pos.shape

        skel_img_box = world2rgb(
            skel_current, cam.depthIm.shape) - [box[0].start, box[1].start, 0]
        skel_img_box = skel_img_box.clip(
            [0, 0, 0], [im_pos.shape[0] - 1, im_pos.shape[1] - 1, 9999])

        feature_width = feature_radius * 2 + 1
        all_features = [face_detector.face_position, optima, extrema]
        total_feature_count = np.sum([len(f) for f in all_features])

        # Loop through the rest of the constraints
        for _ in range(1):

            # ---- (Step 1A) Find feature coordespondences ----
            color_feature_displacement = feature_joint_displacements(
                skel_current,
                im_pos,
                all_features[1],
                features_joints[1],
                distance_thresh=500)
            depth_feature_displacement = feature_joint_displacements(
                skel_current,
                im_pos,
                all_features[2],
                features_joints[2],
                distance_thresh=500)

            # Alternative method: use kdtree
            ## Calc euclidian distance between each pixel and all joints
            px_corr = np.zeros(
                [im_pos.shape[0], im_pos.shape[1],
                 len(skel_current)])
            for i, s in enumerate(skel_current):
                px_corr[:, :, i] = np.sqrt(np.sum((im_pos - s)**2,
                                                  -1))  # / joint_size[i]**2

            ## Handle occlusions by argmax'ing over set of skel parts
            # visible_configurations = list(it.product([0,1], repeat=5))[1:]
            visible_configurations = [
                #[0,1,1,1,1],
                #[1,0,0,0,0],
                [1, 1, 1, 1, 1]
            ]
            px_visibility_label = np.zeros([
                im_pos.shape[0], im_pos.shape[1],
                len(visible_configurations)
            ],
                                           dtype=np.uint8)
            visible_scores = np.ones(len(visible_configurations)) * np.inf
            # Try each occlusion configuration set
            for i, v in enumerate(visible_configurations):
                visible_joints = list(
                    it.chain.from_iterable(skel_parts[np.array(v) > 0]))
                px_visibility_label[:, :, i] = np.argmin(
                    px_corr[:, :, visible_joints],
                    -1)  #.reshape([im_pos.shape[0], im_pos.shape[1]])
                visible_scores[i] = np.min(px_corr[:, :, visible_joints],
                                           -1).sum()
            # Choose best occlusion configuration
            occlusion_index = np.argmin(visible_scores)
            occlusion_configuration = visible_configurations[occlusion_index]
            occlusion_set = list(
                it.chain.from_iterable(skel_parts[
                    np.array(visible_configurations[occlusion_index]) > 0]))
            # Choose label for pixels based on occlusion configuration
            px_label = px_visibility_label[:, :, occlusion_index] * mask[box]
            px_label_flat = px_visibility_label[:, :, occlusion_index][
                mask[box]].flatten()

            visible_joints = [
                1 if x in occlusion_set else 0
                for x in range(len(skel_current))
            ]

            # Project distance to joint's radius
            px_joint_displacement = skel_current[px_label_flat] - im_pos[
                mask[box]]
            px_joint_magnitude = np.sqrt(np.sum(px_joint_displacement**2, -1))
            joint_mesh_pos = skel_current[
                px_label_flat] + px_joint_displacement * (
                    joint_size[px_label_flat] / px_joint_magnitude)[:, None]
            px_joint_displacement = joint_mesh_pos - im_pos[mask[box]]

            # Calc the correspondance change in position for each joint
            correspondence_displacement = np.zeros([len(skel_current), 3])
            ii = 0
            for i, _ in enumerate(skel_current):
                if i in occlusion_set:
                    labels = px_label_flat == i
                    correspondence_displacement[i] = np.mean(
                        px_joint_displacement[px_label_flat == ii], 0)
                    # correspondence_displacement[ii] = np.sum(px_joint_displacement[px_label_flat==ii], 0)
                    ii += 1
            correspondence_displacement = np.nan_to_num(
                correspondence_displacement)

            # ---- (Step 2) Update pose state, x ----
            lambda_p = .0
            lambda_c = .3
            lambda_cf = .3
            lambda_df = .0
            skel_prev_difference = (skel_current - skel_previous)
            # embed()
            skel_current = skel_previous \
                + lambda_p  * skel_prev_difference \
                - lambda_c  * correspondence_displacement\
                - lambda_cf * color_feature_displacement\
                - lambda_df * depth_feature_displacement

            # ---- (Step 3) Add constraints ----
            # A: Link lengths / geometry
            skel_current = link_length_constraints(skel_current,
                                                   constraint_links,
                                                   constraint_values,
                                                   alpha=.5)
            skel_current = geometry_constraints(skel_current,
                                                joint_size,
                                                alpha=0.5)
            # skel_current = collision_constraints(skel_current, constraint_links)

            skel_img_box = (world2rgb(skel_current, cam.depthIm.shape) -
                            [box[0].start, box[1].start, 0]) / mask_interval
            skel_img_box = skel_img_box.clip(
                [0, 0, 0],
                [cam.depthIm.shape[0] - 1, cam.depthIm.shape[1] - 1, 9999])
            # B: Ray-cast constraints
            skel_current, skel_img_box = ray_cast_constraints(
                skel_current, skel_img_box, im_pos_full, surface_map,
                joint_size)

        # # Map back from mask to image
        skel_img = skel_img_box + [box[0].start, box[1].start, 0]

        # Update for next round
        skel_previous = skel_current.copy()
        # skel_previous = skel_init.copy()

        # ---------------------Accuracy --------------------------------------

        # Compute accuracy wrt standard Kinect data
        # skel_im_error = skel_msr_im[:,[1,0]] - skel_img[[0,2,3,4,5,6,7,8,9,10,11,12,13,14],:2]
        skel_current_kinect = convert_to_kinect(skel_current)
        try:
            skel_msr_im_box = np.array([
                skel_msr_im[:, 1] - box[0].start,
                skel_msr_im[:, 0] - box[1].start
            ]).T.clip([0, 0], [box_height - 1, box_width - 1])
            skel_xyz_error = im_pos[
                skel_msr_im_box[:, 0],
                skel_msr_im_box[:,
                                1]] - skel_current_kinect  #skel_current[[0,2,3,4,5,6,7,8,9,10,11,12],:]
            skel_l2 = np.sqrt(np.sum(skel_xyz_error**2, 1))
            # print skel_l2
            skel_correct = np.nonzero(skel_l2 < 150)[0]
            accuracy_measurements['per_joint'] += [skel_l2]
            accuracy_measurements['overall'] += [
                len(skel_correct) / float(len(skel_current_kinect)) * 100
            ]
            print "{0:0.2f}% joints correct".format(
                len(skel_correct) / float(len(skel_current_kinect)) * 100)
            print "Overall accuracy: ", np.mean(
                accuracy_measurements['overall'])
        except:
            pass

        print "Visible:", visible_joints

        # ----------------------Visualization-------------------------------------
        # l = line(skel_img_box[joint][0], skel_img_box[joint][1], features[feat][0], features[feat][1])
        # skimage.draw.set_color(cam.colorIm[box], l, (255,255,255))

        # Add circles to image
        cam.colorIm = np.ascontiguousarray(cam.colorIm)
        if 0:  #get_color:
            cam.colorIm = display_skeletons(
                cam.colorIm,
                skel_img[:, [1, 0, 2]] * np.array(visible_joints)[:, None], (
                    0,
                    255,
                ),
                skel_type='Other',
                skel_contraints=constraint_links)
            for i, s in enumerate(skel_img):
                # if i not in skel_correct:
                if i not in occlusion_set:
                    c = circle(s[0], s[1], 5)
                    cam.colorIm[c[0], c[1]] = (255, 0, 0)
            # cam.colorIm = display_skeletons(cam.colorIm, world2rgb(skel_init+im_pos_mean, [240,320])[:,[1,0]], skel_type='Other', skel_contraints=constraint_links)

        if 1:
            if len(face_detector.face_position) > 0:
                for (x, y) in face_detector.face_position:
                    pt1 = (int(y) + box[1].start - 15,
                           int(x) + box[0].start - 15)
                    pt2 = (pt1[0] + int(15), pt1[1] + int(15))
                    cv2.rectangle(cam.colorIm, pt1, pt2, (255, 0, 0), 3, 8, 0)
            if len(cam_skels) > 0:
                # cam.colorIm = display_skeletons(cam.colorIm[:,:,2], skel_msr_im, (255,), skel_type='Kinect')[:,:,None]
                cam.colorIm[:, :, 1] = display_skeletons(cam.colorIm[:, :, 2],
                                                         skel_msr_im, (255, ),
                                                         skel_type='Kinect')
            cam.visualize()
            cam.depthIm = local_binary_pattern(
                cam.depthIm * cam.foregroundMask, 50, 10)
            cv2.imshow("Depth", cam.depthIm / float(cam.depthIm.max()))
            # cam2.visualize()
            # embed()

        # 3D Visualization
        if 0:
            from mayavi import mlab
            # figure = mlab.figure(1, bgcolor=(0,0,0), fgcolor=(1,1,1))
            figure = mlab.figure(1, bgcolor=(1, 1, 1))
            figure.scene.disable_render = True
            mlab.clf()
            mlab.view(azimuth=-45, elevation=45, roll=0, figure=figure)
            mlab.points3d(-skel_current[:, 1],
                          -skel_current[:, 0],
                          skel_current[:, 2],
                          scale_factor=100.,
                          color=(.5, .5, .5))
            for c in constraint_links:
                x = np.array([skel_current[c[0]][0], skel_current[c[1]][0]])
                y = np.array([skel_current[c[0]][1], skel_current[c[1]][1]])
                z = np.array([skel_current[c[0]][2], skel_current[c[1]][2]])
                mlab.plot3d(-y, -x, z, tube_radius=25., color=(1, 0, 0))
            figure.scene.disable_render = False

        # 3-panel view
        if 0:
            subplot(2, 2, 1)
            scatter(skel_current[:, 1], skel_current[:, 2])
            for i, c in enumerate(constraint_links):
                plot([skel_current[c[0], 1], skel_current[c[1], 1]],
                     [skel_current[c[0], 2], skel_current[c[1], 2]])
            axis('equal')

            subplot(2, 2, 3)
            scatter(skel_current[:, 1], -skel_current[:, 0])
            for i, c in enumerate(constraint_links):
                plot([skel_current[c[0], 1], skel_current[c[1], 1]],
                     [-skel_current[c[0], 0], -skel_current[c[1], 0]])
            axis('equal')

            subplot(2, 2, 4)
            scatter(skel_current[:, 2], -skel_current[:, 0])
            for i, c in enumerate(constraint_links):
                plot([skel_current[c[0], 2], skel_current[c[1], 2]],
                     [-skel_current[c[0], 0], -skel_current[c[1], 0]])
            axis('equal')
            # show()

        # ------------------------------------------------------------

        video_writer.write(cam.colorIm[:, :, [2, 1, 0]])
        frame_count += 1
    print 'Done'
Пример #14
0
def main(device_id, record, base_dir, frame_difference_percent, get_skeleton, anonomize, viz, motion_lag_time=10, min_fps=0.5):
		'''
		---parameters---
		device_id
		record
		base_dir
		frame_difference_percent
		get_skeleton
		anonomize
		viz
		motion_lag_time
		min_fps
		'''

		'''------------ Setup Kinect ------------'''
		''' Physical Kinect '''
		depthDevice = RealTimeDevice(device=device_id, get_depth=True, get_color=True, get_skeleton=get_skeleton)
		depthDevice.start()

		maxFramerate = 100
		minFramerate = min_fps
		recentMotionTime = time.time()
		imgStoreCount = 100

		''' ------------- Main -------------- '''

		''' Setup time-based stuff '''
		prevTime = 0
		prevFrame = 0
		prevFrameTime = 0
		currentFrame = 0
		ms = time.time()
		prevFPSTime = time.time()
		diff = 0

		prevSec = 0;
		secondCount = 0
		prevSecondCountMax = 0

		''' Ensure base folder is there '''
		createDirectory(base_dir)
		skel_dir = None
		skel_filename = None
		maskDir = None
		maskName = None

		depthOld = []
		backgroundModel = None

		while 1:
				# try:
				if 1:
						depthDevice.update()
						colorRaw = depthDevice.colorIm
						depthRaw = depthDevice.depthIm
						users = depthDevice.users
						skel = None

						if len(depthOld) == imgStoreCount:
								depthOld.pop(0)

						''' If framerate is too fast then skip '''
						''' Keep this after update to ensure fast enough kinect refresh '''
						if (time.time() - float(ms))*1000 < 1000.0/maxFramerate:
								continue

						''' Get new time info '''
						time_ = time.localtime()
						day = str(time_.tm_yday)
						hour = str(time_.tm_hour)
						minute = str(time_.tm_min)
						second = str(time_.tm_sec)
						ms = str(time.time())
						ms_str = ms

						''' Look at how much of the image has changed '''
						if depthOld != []:
								mask = (depthRaw != 0) * (depthOld[0] != 0)
								diff = (((depthRaw - depthOld[0]).astype(np.int16) > 200)*mask).sum() / (float(mask.sum()) * 100.)

								''' We want to watch all video for at least 5 seconds after we seen motion '''
								''' This prevents problems where there is small motion that doesn't trigger the motion detector '''
								if diff > frame_difference_percent:
										recentMotionTime = time.time()
						depthOld.append(depthRaw)

						if anonomize:
							'''Background model'''
							if backgroundModel is None:
								bgSubtraction = AdaptiveMixtureOfGaussians(depthRaw, maxGaussians=3, learningRate=0.2, decayRate=0.9, variance=100**2)
								backgroundModel = bgSubtraction.getModel()
								continue
							else:
								bgSubtraction.update(depthRaw)

							backgroundModel = bgSubtraction.getModel()
							cv2.imshow("BG Model", backgroundModel/backgroundModel.max())
							foregroundMask = bgSubtraction.get_foreground(thresh=100)
							''' Find people '''
							foregroundMask, _, _ = extract_people(depthRaw, foregroundMask, minPersonPixThresh=5000, gradientFilter=True, gradThresh=15)
						else:
							foregroundMask = None

						''' Write to file if there has been substantial change. '''
						if diff > frame_difference_percent or time.time()-prevFrameTime > 1/minFramerate or time.time()-recentMotionTime < motion_lag_time:
								currentFrame += 1
								if depthRaw != []:

										''' Logical time '''
										if second != prevSec:
												prevSecondCountMax = secondCount
												secondCount = 0
												prevSec = second
										else:
												secondCount = int(secondCount) + 1

										secondCount = str(secondCount)
										if len(ms_str) == 1:
												ms_str = '0' + ms_str
										if len(secondCount) == 1:
												secondCount = '0' + secondCount

										''' Keep track of framerate '''
										if prevTime != second:
												prevTime = second
												print "FPS: {0:.1f} Diff: {1:.1f}%".format((currentFrame-prevFrame)/(time.time()-prevFPSTime), diff)
												prevFrame = currentFrame
												prevFPSTime = time.time()

										''' Create folder/file names '''
										if record:
											if 1:
												''' Version 1. 2012 '''
												ms_str = str(ms)[str(ms).find(".")+1:]
												depth_dir = base_dir+'depth/'+day+"/"+hour+"/"+minute+"/device_"+str(device_id)
												depth_filename = depth_dir + "/depth_"+day+"_"+hour+"_"+minute+"_"+second+"_"+secondCount+"_"+ms_str+".png"

												color_dir = base_dir+'color/'+day+"/"+hour+"/"+minute+"/device_"+str(device_id)
												color_filename = color_dir + "/color_"+day+"_"+hour+"_"+minute+"_"+second+"_"+secondCount+"_"+ms_str+".jpg"

												if get_skeleton:
													skel_dir = base_dir+'skel/'+day+"/"+hour+"/"+minute+"/device_"+str(device_id)
													skel_filename = skel_dir + "/skel_"+day+"_"+hour+"_"+minute+"_"+second+"_"+secondCount+"_"+ms_str+"_.dat"
												if anonomize:
													maskDir = base_dir+'mask/'+day+"/"+hour+"/"+minute+"/device_"+str(device_id)
													maskName = maskDir + "/mask_"+day+"_"+hour+"_"+minute+"_"+second+"_"+secondCount+"_"+ms_str+".jpg"
											else:
												''' Version 2. April 2013 '''
												base_sub_dir = "{:s}device_{:d}/{:s}/{:s}/{:s}".format(base_dir,device_id,day,hour,minute)
												depth_dir = "{:s}/depth".format(base_sub_dir)
												color_dir = "{:s}/color".format(base_sub_dir)
												depth_filename = "{:s}/depth_{:s}_{:s}_{:s}_{:s}_{:s}_{:s}_.png".format(depth_dir,day,hour,minute,second,secondCount,ms_str)
												color_filename = "{:s}/color_{:s}_{:s}_{:s}_{:s}_{:s}_{:s}_.jpg".format(color_dir,day,hour,minute,second,secondCount,ms_str)

												if get_skeleton:
													skel_dir = "{:s}/skel".format(base_sub_dir)
													skel_filename = "{:s}/skel_{:s}_{:s}_{:s}_{:s}_{:s}_{:s}_.dat".format(skel_dir,day,hour,minute,second,secondCount,ms_str)

												if anonomize:
													maskDir = "{:s}/mask".format(base_sub_dir)
													maskName = "{:s}/mask_{:s}_{:s}_{:s}_{:s}_{:s}_{:s}_.jpg".format(skel_dir,day,hour,minute,second,secondCount,ms_str)

											''' Create folders if they doesn't exist '''
											createDirectory(depth_dir)
											createDirectory(color_dir)
											if get_skeleton:
												createDirectory(skel_dir)
											if anonomize:
												createDirectory(maskDir)

											''' Save data '''
											save_frame(depth_filename, depthRaw, color_filename, colorRaw, skel_filename, users, maskName=maskName, mask=foregroundMask)

										prevFrameTime = time.time()

								''' Display skeletons '''
								if viz:
									d = np.array(depthRaw)
									d /= (np.nanmin([d.max(), 2**16])/256.0)
									d = d.astype(np.uint8)

									if get_skeleton:
										for u_key in users.keys():
												u = users[u_key]
												pt = skel2depth(np.array([u.com]))[0]
												w = 10
												d[pt[1]-w:pt[1]+w, pt[0]-w:pt[0]+w] = 255
												w = 3
												if u.tracked:
														pts = skel2depth(np.array(u.jointPositions.values()), d.shape)
														d = display_skeletons(d, pts, (100,0,0), skel_type='Kinect')


									if 1:
											cv2.imshow("imageD", d)
									if 0:
											cv2.imshow("imageM", colorRaw + (255-colorRaw)*(foregroundMask>0)[:,:,np.newaxis] + 50*(((foregroundMask)[:,:,np.newaxis])))
									if 1:
											cv2.imshow("imageC", colorRaw)

									ret = cv2.waitKey(10)
									if ret >= 0:
											break
Пример #15
0
def main(anonomization=False):
	# Setup kinect data player
	# cam = KinectPlayer(base_dir='./', bg_subtraction=False, get_depth=True, get_color=True, get_skeleton=False)
	# actions = [2, 5, 7]
	actions = [2]
	actions_labels = ['JumpingJacks', 'Waving', 'Clapping']
	action = 'JumpingJacks'
	subjects = range(1,10)
	cam = MHADPlayer(base_dir='/Users/colin/Data/BerkeleyMHAD/', kinect=1, actions=actions, subjects=subjects, reps=[1], get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
	if anonomization:
		''' bg_type can be:
				'box'[param=max_depth]
				'static'[param=background]
				'mean'
				'median'
				'adaptive_mog'

				See BasePlayer for more details
		'''
		cam.set_bg_model(bg_type='box', param=2600)

	# Test HOG pedestrian detector
	# cv2.HOGDescriptor_getDefaultPeopleDetector()
	# imshow(color[people])


	body_data = [[]]
	framerate = 1
	prev_n = len(cam.kinect_folder_names)
	action_idx = 0
	# embed()
	while cam.next(framerate):
		if len(cam.kinect_folder_names) != prev_n:
			# action_idx += 1
			body_data += [[]]
			prev_n = len(cam.kinect_folder_names) 
		body_data[-1] += [cam.users_uv[0]]

		continue



		if 0:
			people_all = list(cv.HOGDetectMultiScale(cv.fromarray(cam.colorIm.mean(-1).astype(np.uint8)), cv.CreateMemStorage(0), hit_threshold=-1.5))
			print len(people_all), " people detected"
			for i,people in enumerate(people_all):
				# embed()
				try:
					print people
					# tmp = cam.colorIm[people[0][0]:people[0][0]+people[1][0], people[0][1]:people[0][1]+people[1][1]]
					# tmp = cam.colorIm[people[0][1]:people[0][1]+people[1][1], people[0][0]:people[0][0]+people[1][0]]
					cam.colorIm[people[0][1]:people[0][1]+people[1][1], people[0][0]:people[0][0]+people[1][0]] += 50
					# cv2.imshow("Body2 "+str(i), tmp)
					# subplot(4, len(people_all)/4, i + 1)
					# imshow(tmp)

					# tmp = cam.colorIm[people[0][0]:people[0][0]+people[0][1], people[1][0]:people[1][0]+people[1][1]]
					# cv2.imshow("Body1 "+str(i), tmp)
					# tmp = cam.colorIm[people[1][0]:people[1][0]+people[1][1], people[0][0]:people[0][0]+people[0][1]]
					# print tmp
					# cv2.imshow("Body "+str(i), tmp)
				except:
					pass
			# show()

		if anonomization and cam.mask is not None:

			mask = (sm.imresize(cam.mask, [480,640]) > 0).copy()
			mask[40:170, 80:140] = True # person in background
			px = draw.circle(145,285, 40)
			mask[px] = True

			# Version 1 - Blur + Circle
			color = cam.colorIm.copy()
			color[mask] = cv2.GaussianBlur(color, (29,29), 50)[mask]

			subplot(1,3,1)
			imshow(color)

			# Version 2 - Noise on mask
			color = cam.colorIm.copy()
			noise_key = np.random.randint(0, 255, cam.colorIm.shape).astype(np.uint8)
			color[mask] = color[mask]+noise_key[mask]

			subplot(1,3,2)
			imshow(color)

			# Version 3 - All noise
			color = cam.colorIm.copy()
			color = color+noise_key

			subplot(1,3,3)
			imshow(color)

			show()


		# cam.colorIm = cam.colorIm[:,:,[2,1,0]]
			# cam.colorIm *= mask[:,:,None]
		# cam.visualize(color=True, depth=True, text=True, colorize=True, depth_bounds=[0,4000])
		# cam.visualize()
		cam.colorIm = display_skeletons(cam.colorIm, cam.users_uv[0], skel_type='Kinect', color=(0,255,0))
		cam.visualize()


		body_data[actions_labels[action_idx]] += [cam.users_uv[0]]
		# cam.visualize(color=True, depth=True, text=False, colorize=False, depth_bounds=None)

	print 'Done'

	# Pause at the end
	
	# embed()
	import scipy.io as si
	si.matlab.savemat(action+".mat", {'data':body_data})
Пример #16
0
def main(visualize=False, learn=False, actions=None, subjects=None, n_frames=220):
	# learn = True
	# learn = False
	if actions is []:
		actions = [2]
	if subjects is []:
		subjects = [2]
	# actions = [1]
	# actions = [1, 2, 3, 4, 5]
	# subjects = [1]
	if 1:
		MHAD = True
		cam = MHADPlayer(base_dir='/Users/colin/Data/BerkeleyMHAD/', kinect=1, actions=actions, subjects=subjects, reps=[1], get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
	else:
		MHAD = False
		cam = KinectPlayer(base_dir='./', device=1, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
		bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_A.tif')
		# cam = KinectPlayer(base_dir='./', device=2, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
		# bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_B.tif')
		cam.bgSubtraction.backgroundModel = np.array(bg.getdata()).reshape([240,320]).clip(0, 4500)
	height, width = cam.depthIm.shape
	skel_previous = None

	face_detector = FaceDetector()
	hand_detector = HandDetector(cam.depthIm.shape)
	# curve_detector = CurveDetector(cam.depthIm.shape)

	# Video writer
	# video_writer = cv2.VideoWriter("/Users/colin/Desktop/test.avi", cv2.cv.CV_FOURCC('M','J','P','G'), 15, (320,240))

	# Save Background model
	# im = Image.fromarray(cam.depthIm.astype(np.int32), 'I')
	# im.save("/Users/Colin/Desktop/k2.png")

	# Setup pose database
	append = True
	append = False
	# pose_database = PoseDatabase("PoseDatabase.pkl", learn=learn, search_joints=[0,4,7,10,13], append=append)
	pose_database = PoseDatabase("PoseDatabase.pkl", learn=learn, search_joints=[0,2,4,5,7,10,13], append=append)

	# Setup Tracking
	skel_init, joint_size, constraint_links, features_joints,skel_parts, convert_to_kinect = get_14_joint_properties()
	constraint_values = []
	for c in constraint_links:
		constraint_values += [np.linalg.norm(skel_init[c[0]]-skel_init[c[1]], 2)]
	constraint_values = np.array(constraint_values)

	skel_current = None#skel_init.copy()
	skel_previous = None#skel_current.copy()

	# Evaluation
	accuracy_all_db = []
	accuracy_all_track = []
	joint_accuracy_db = []
	joint_accuracy_track = []
	# geo_accuracy = []
	# color_accuracy = []
	# lbp_accuracy = []

	frame_count = 0
	frame_rate = 1
	if not MHAD:
		cam.next(350)
	frame_prev = 0
	# try:
	if 1:
		while cam.next(frame_rate):# and frame_count < n_frames:
			if frame_count - frame_prev > 100:
				print ""
				print "Frame #{0:d}".format(frame_count)
				frame_prev = frame_count

			if not MHAD:
				if len(cam.users) == 0:
					continue
				else:
					# cam.users = [np.array(cam.users[0]['jointPositions'].values())]
					if np.any(cam.users[0][0] == -1):
						continue
					cam.users[0][:,1] *= -1
					cam.users_uv_msr = [cam.camera_model.world2im(cam.users[0], [240,320])]

			# Apply mask to image
			if MHAD:
				mask = cam.get_person(2) > 0
			else:
				mask = cam.get_person() > 0
				if np.all(mask==False):
					continue

			im_depth =  cam.depthIm
			cam.depthIm[cam.depthIm>3000] = 0
			im_color = cam.colorIm*mask[:,:,None]
			cam.colorIm *= mask[:,:,None]
			pose_truth = cam.users[0]
			pose_truth_uv = cam.users_uv_msr[0]

			# Get bounding box around person
			box = nd.find_objects(mask)[0]
			d = 20
			# Widen box
			box = (slice(np.maximum(box[0].start-d, 0), \
					np.minimum(box[0].stop+d, height-1)), \
				   slice(np.maximum(box[1].start-d, 0), \
					np.minimum(box[1].stop+d, width-1)))
			box_corner = [box[0].start,box[1].start]

			''' ---------- ----------------------------------- --------'''
			''' ----------- Feature Detector centric approach ---------'''
			''' ---------- ----------------------------------- --------'''

			''' ---- Calculate Detectors ---- '''
			# Face detection
			face_detector.run(im_color[box])
			# Skin detection
			hand_markers = hand_detector.run(im_color[box], n_peaks=3)
			# Calculate Geodesic Extrema
			im_pos = cam.camera_model.im2PosIm(cam.depthIm*mask)[box] * mask[box][:,:,None]
			geodesic_markers = geodesic_extrema_MPI(im_pos, iterations=5, visualize=False)
			_, geo_map = geodesic_extrema_MPI(im_pos, iterations=1, visualize=True)
			geodesic_markers_pos = im_pos[geodesic_markers[:,0], geodesic_markers[:,1]]

			markers = list(geodesic_markers) + list(hand_markers) #+ list(lop_markers) + curve_markers
			markers = np.array([list(x) for x in markers])

			''' ---- Database lookup ---- '''
			if 1:
				pts_mean = im_pos[(im_pos!=0)[:,:,2]].mean(0)
				if learn:
					# Normalize pose
					pose_uv = cam.users_uv[0]
					if np.any(pose_uv==0):
						print "skip"
						frame_count += frame_rate
						continue
					pose_database.update(pose_truth - pts_mean)

				else:
					# Concatenate markers
					markers = list(geodesic_markers) + hand_markers
					markers = np.array([list(x) for x in markers])

					# Normalize pose
					pts = im_pos[markers[:,0], markers[:,1]]
					pts = np.array([x for x in pts if x[0] != 0])
					pts -= pts_mean

					# Get closest pose
					pose = pose_database.query(pts, knn=5)
					# embed()
					for i in range(5):
						pose_tmp = cam.camera_model.world2im(pose[i]+pts_mean, cam.depthIm.shape)
						cam.colorIm = display_skeletons(cam.colorIm, pose_tmp, skel_type='Kinect', color=(0,i*40+50,0))
					pose = pose[0]

					# im_pos -= pts_mean
					# R,t = IterativeClosestPoint(pose, im_pos.reshape([-1,3])-pts_mean, max_iters=5, min_change=.001, pt_tolerance=10000)
					# pose = np.dot(R.T, pose.T).T - t
					# pose = np.dot(R, pose.T).T + t

					pose += pts_mean
					pose_uv = cam.camera_model.world2im(pose, cam.depthIm.shape)

					# print pose
					surface_map = nd.distance_transform_edt(-nd.binary_erosion(mask[box]), return_distances=False, return_indices=True)
					try:
						pose_uv[:,:2] = surface_map[:, pose_uv[:,0]-box_corner[0], pose_uv[:,1]-box_corner[1]].T + [box_corner[0], box_corner[1]]
					except:
						pass
					pose = cam.camera_model.im2world(pose_uv, cam.depthIm.shape)
					# print pose


			''' ---- Tracker ---- '''
			# surface_map = nd.distance_transform_edt(-mask[box], return_distances=False, return_indices=True)
			# surface_map = nd.distance_transform_edt(im_pos[:,:,2]==0, return_distances=False, return_indices=True)

			if skel_previous is None:
			# if 1:
				skel_previous = pose.copy()
				skel_current = pose.copy()
				skel_previous_uv = pose_uv.copy()
				skel_current_uv = pose_uv.copy()

			for _ in range(1):

				# ---- (Step 1A) Find feature coordespondences ----
				try:
					skel_previous_uv[:,:2] = surface_map[:, skel_previous_uv[:,0]-box_corner[0], skel_previous_uv[:,1]-box_corner[1]].T + [box_corner[0], box_corner[1]]
				except:
					pass
				skel_current = cam.camera_model.im2world(skel_previous_uv, cam.depthIm.shape)

				# Alternative method: use kdtree
				## Calc euclidian distance between each pixel and all joints
				px_corr = np.zeros([im_pos.shape[0], im_pos.shape[1], len(skel_current)])
				# for i,s in enumerate(pose):
				# for i,s in enumerate(skel_current):
					# px_corr[:,:,i] = np.sqrt(np.sum((im_pos - s)**2, -1))# / joint_size[i]**2
				# for i,s in enumerate(pose_uv):

				# Geodesics
				for i,s in enumerate(skel_previous_uv):
					''' Problem: need to constrain pose_uv to mask '''
					_, geo_map = geodesic_extrema_MPI(im_pos, [s[0]-box_corner[0],s[1]-box_corner[1]], iterations=1, visualize=True)
					px_corr[:,:,i] = geo_map
					subplot(2,7,i+1)
					# imshow(geo_map, vmin=0, vmax=2000)
					# axis('off')
					px_corr[geo_map==0,i] = 9999
				cv2.imshow('gMap', (px_corr.argmin(-1)+1)/15.*mask[box])
				## Handle occlusions by argmax'ing over set of skel parts
				# visible_configurations = list(it.product([0,1], repeat=5))[1:]
				visible_configurations = [
											# [0,1,1,1,1],
											# [1,0,0,0,0],
											[1,1,1,1,1]
										]
				px_visibility_label = np.zeros([im_pos.shape[0], im_pos.shape[1], len(visible_configurations)], dtype=np.uint8)
				visible_scores = np.ones(len(visible_configurations))*np.inf
				# Try each occlusion configuration set
				for i,v in enumerate(visible_configurations):
					visible_joints = list(it.chain.from_iterable(skel_parts[np.array(v)>0]))
					px_visibility_label[:,:,i] = np.argmin(px_corr[:,:,visible_joints], -1)#.reshape([im_pos.shape[0], im_pos.shape[1]])
					visible_scores[i] = np.min(px_corr[:,:,visible_joints], -1).sum()
				# Choose best occlusion configuration
				occlusion_index = np.argmin(visible_scores)
				occlusion_configuration = visible_configurations[occlusion_index]
				occlusion_set = list(it.chain.from_iterable(skel_parts[np.array(visible_configurations[occlusion_index])>0]))
				# Choose label for pixels based on occlusion configuration
				px_label = px_visibility_label[:,:,occlusion_index]*mask[box]
				px_label_flat = px_visibility_label[:,:,occlusion_index][mask[box]].flatten()

				visible_joints = [1 if x in occlusion_set else 0 for x in range(len(pose))]
				# print visible_joints

				# Project distance to joint's radius
				px_joint_displacement = im_pos[mask[box]] - skel_current[px_label_flat]
				px_joint_magnitude = np.sqrt(np.sum(px_joint_displacement**2,-1))
				joint_mesh_pos = skel_current[px_label_flat] + px_joint_displacement*(joint_size[px_label_flat]/px_joint_magnitude)[:,None]
				px_joint_displacement = joint_mesh_pos - im_pos[mask[box]]
				# Ensure pts aren't too far away
				px_joint_displacement[np.abs(px_joint_displacement) > 500] = 0
				# embed()
				if 0:
					x = im_pos.copy()*0
					x[mask[box]] = joint_mesh_pos

					for i in range(3):
						subplot(1,4,i+1)
						imshow(x[:,:,i])
						axis('off')
					subplot(1,4,4)
					imshow((px_label+1)*mask[box])

				 # Calc the correspondance change in position for each joint
				correspondence_displacement = np.zeros([len(skel_current), 3])
				ii = 0
				for i,_ in enumerate(skel_current):
					if i in occlusion_set:
						labels = px_label_flat==i
						correspondence_displacement[i] = np.sum(px_joint_displacement[px_label_flat==ii], 0) / np.sum(px_joint_displacement[px_label_flat==ii]!=0)
						ii+=1
				correspondence_displacement = np.nan_to_num(correspondence_displacement)
				# print correspondence_displacement
				# Viz correspondences
				if 0:
					x = im_pos.copy()*0
					x[mask[box]] = px_joint_displacement

					for i in range(3):
						subplot(1,4,i+1)
						imshow(x[:,:,i])
						axis('off')
					subplot(1,4,4)
					imshow((px_label+1)*mask[box])
					# embed()
					# for j in range(3):
					# 	for i in range(14):
					# 		subplot(3,14,j*14+i+1)
					# 		imshow(x[:,:,j]*((px_label==i)*mask[box]))
					# 		axis('off')
					show()

				# ---- (Step 2) Update pose state, x ----
				lambda_p = .0
				lambda_c = 1.
				skel_prev_difference = (skel_current - skel_previous)
				# print skel_prev_difference
				skel_current = skel_previous \
								+ lambda_p  * skel_prev_difference \
								- lambda_c  * correspondence_displacement#\

				# ---- (Step 3) Add constraints ----
				if 1:
					# A: Link lengths / geometry
					# skel_current = link_length_constraints(skel_current, constraint_links, constraint_values, alpha=.5)
					skel_current = geometry_constraints(skel_current, joint_size, alpha=0.5)
					skel_current = collision_constraints(skel_current, constraint_links)

					skel_img_box = (cam.camera_model.world2im(skel_current, cam.depthIm.shape) - [box[0].start, box[1].start, 0])#/mask_interval
					skel_img_box = skel_img_box.clip([0,0,0], [box[0].stop-box[0].start-1, box[1].stop-box[1].start-1, 9999])
					# skel_img_box = skel_img_box.clip([0,0,0], [cam.depthIm.shape[0]-1, cam.depthIm.shape[1]-1, 9999])
					# B: Ray-cast constraints
					# embed()
					skel_current, skel_current_uv = ray_cast_constraints(skel_current, skel_img_box, im_pos, surface_map, joint_size)
					# skel_img_box -= [box[0].start, box[1].start, 0]

					# # Map back from mask to image
					# try:
					# 	skel_current_uv[:,:2] = surface_map[:, skel_img_box[:,0], skel_img_box[:,1]].T# + [box_corner[0], box_corner[1]]
					# except:
					# 	pass
					prob = link_length_probability(skel_current, constraint_links, constraint_values, 100)
					# print "Prob:", np.mean(prob), np.min(prob), prob
					print frame_count
					thresh = .05
					if np.min(prob) < thresh:# and frame_count > 1:
						print 'Resetting pose'
						for c in constraint_links[prob<thresh]:
							for cc in c:
								skel_current_uv[c] = pose_uv[c] - [box[0].start, box[1].start, 0]
								skel_current[c] = pose[c]
						# skel_current_uv = pose_uv.copy() - [box[0].start, box[1].start, 0]
						# skel_current = pose.copy()

					skel_current_uv = skel_current_uv + [box[0].start, box[1].start, 0]
					skel_current = cam.camera_model.im2world(skel_current_uv, cam.depthIm.shape)
				else:
					skel_current_uv = (cam.camera_model.world2im(skel_current, cam.depthIm.shape))
					# skel_img_box = skel_img_box.clip([0,0,0], [cam.depthIm.shape[0]-1, cam.depthIm.shape[1]-1, 9999])


			# Update for next round
			skel_previous = skel_current.copy()
			skel_previous_uv = skel_current_uv.copy()


			''' ---- Accuracy ---- '''
			# embed()
			if 1 and not learn:
				# pose_truth = cam.users[0]
				error_db = pose_truth - pose
				error_track = pose_truth - skel_current
				# print "Error", error
				error_l2_db = np.sqrt(np.sum(error_db**2, 1))
				error_l2_track = np.sqrt(np.sum(error_track**2, 1))
				joint_accuracy_db += [error_l2_db]
				joint_accuracy_track += [error_l2_track]
				accuracy_db = np.sum(error_l2_db < 150) / 14.
				accuracy_track = np.sum(error_l2_track < 150) / 14.
				print "Current db:", accuracy_db, error_l2_db.mean()
				print "Current track:", accuracy_track, error_l2_track.mean()
				print ""
				accuracy_all_db += [accuracy_db]
				accuracy_all_track += [accuracy_track]
				# print "Running avg:", np.mean(accuracy_all)
				# print "Joint avg (per-joint):", np.mean(joint_accuracy_all, -1)
				# print "Joint avg (overall):", np.mean(joint_accuracy_all)

			''' --- Visualization --- '''

			display_markers(cam.colorIm, hand_markers[:2], box, color=(0,250,0))
			if len(hand_markers) > 2:
				display_markers(cam.colorIm, [hand_markers[2]], box, color=(0,200,0))
			display_markers(cam.colorIm, geodesic_markers, box, color=(200,0,0))
			# display_markers(cam.colorIm, curve_markers, box, color=(0,100,100))
			# display_markers(cam.colorIm, lop_markers, box, color=(0,0,200))

			cam.colorIm = display_skeletons(cam.colorIm, pose_truth_uv, skel_type='Kinect', color=(0,255,0))
			cam.colorIm = display_skeletons(cam.colorIm, pose_uv, skel_type='Kinect')
			cam.colorIm = display_skeletons(cam.colorIm, skel_current_uv, skel_type='Kinect', color=(0,0,255))
			# cam.visualize(color=True, depth=False)
			cam.visualize(color=True, depth=True)

			# embed()
			# ------------------------------------------------------------

			# video_writer.write((geo_clf_map/float(geo_clf_map.max())*255.).astype(np.uint8))
			# video_writer.write(cam.colorIm[:,:,[2,1,0]])

			frame_count += frame_rate
	# except:
		# pass


	print "-- Results for subject {:d} action {:d}".format(subjects[0],actions[0])
	print "Running avg (db):", np.mean(accuracy_all_db)
	print "Running avg (track):", np.mean(accuracy_all_track)
	print "Joint avg (overall db):", np.mean(joint_accuracy_db)
	print "Joint avg (overall track):", np.mean(joint_accuracy_track)
	# print 'Done'

	embed()
	return
def main(visualize=False, learn=False, actions=[1], subjects=[1], n_frames=220):

	# search_joints=[0,2,4,5,7,10,13]
	search_joints=range(14)
	# interactive = True
	interactive = False
	save_results = False
	if 0:
		learn = False
		# learn = learn
	else:
		learn = True
		actions = [1]
		subjects = [1]
		# actions = range(1,10)
		# subjects = range(1,9)


	if 1:
		dataset = 'MHAD'
		cam = MHADPlayer(base_dir='/Users/colin/Data/BerkeleyMHAD/', kinect=1, actions=actions, subjects=subjects, reps=[1], get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
	elif 0:
		dataset = 'JHU'
		cam = KinectPlayer(base_dir='./', device=1, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
		bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_A.tif')
		# bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/Wall_Background_A.tif')
		# bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/Office_Background_A.tif')
		# bg = Image.open('/Users/colin/Data/WICU_May2013_C2/WICU_C2_Background.tif')
		# cam = KinectPlayer(base_dir='./', device=2, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
		# bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_B.tif')
		cam.bgSubtraction.backgroundModel = np.array(bg.getdata()).reshape([240,320]).clip(0, 4500) - 000.
	else:
		# Realtime
		dataset = 'RT'
		cam = RealtimePlayer(device=0, edit=True, get_depth=True, get_color=True, get_skeleton=True)
		# cam.set_bg_model('box', 2500)
		tmp = cam.depthIm
		tmp[tmp>4000] = 4000
		cam.set_bg_model(bg_type='static', param=tmp)

	# embed()
	height, width = cam.depthIm.shape
	skel_previous = None

	face_detector = FaceDetector()
	hand_detector = HandDetector(cam.depthIm.shape)
	n_joints = 14
	# gmm = GMM(n_components=n_joints)
	kmeans = KMeans(n_clusters=n_joints, n_init=4, max_iter=100)	

	# Video writer
	# video_writer = cv2.VideoWriter("/Users/colin/Desktop/test.avi", cv2.cv.CV_FOURCC('M','J','P','G'), 15, (640,480))

	# Save Background model
	# im = Image.fromarray(cam.depthIm.astype(np.int32), 'I')
	# im.save("/Users/Colin/Desktop/k2.png")

	# Setup pose database
	append = True
	# append = False
	# pose_database = PoseDatabase("PoseDatabase.pkl", learn=learn, search_joints=[0,4,7,10,13], append=append)
	# pose_database = PoseDatabase("PoseDatabase.pkl", learn=learn, search_joints=search_joints,
									# append=append, scale=1.1, n_clusters=-1)#1000
	pose_database = PoseDatabase("PoseDatabase.pkl", learn=learn, search_joints=search_joints,
									append=append, scale=1.0, n_clusters=1500)
	pose_prob = np.ones(len(pose_database.database), dtype=np.float)/len(pose_database.database)
	# embed()

	# Setup Tracking
	skel_init, joint_size, constraint_links, features_joints,skel_parts, convert_to_kinect = get_14_joint_properties()
	constraint_values = []
	for c in constraint_links:
		constraint_values += [np.linalg.norm(skel_init[c[0]]-skel_init[c[1]], 2)]
	constraint_values = np.array(constraint_values)

	skel_current = None#skel_init.copy()
	skel_previous = None#skel_current.copy()
	skel_previous_uv = None

	# Evaluation
	accuracy_all_db = []
	accuracy_all_track = []
	joint_accuracy_db = []
	joint_accuracy_track = []
	if not learn:
		try:
			results = pickle.load(open('Accuracy_Results.pkl'))
		except:
			results = { 'subject':[], 		'action':[],		'accuracy_all':[],
						'accuracy_mean':[],	'joints_all':[],
						'joint_mean':[],	'joint_median':[]}

	frame_count = 0
	frame_rate = 10
	if dataset == 'JHU':
		cam.next(350)
		# cam.next(700)
		pass
	frame_prev = 0
	try:
	# if 1:
		while cam.next(frame_rate):# and frame_count < n_frames:
			# Print every once in a while
			if frame_count - frame_prev > 99:
				print ""
				print "Frame #{0:d}".format(frame_count)
				frame_prev = frame_count

			if dataset in ['MHAD', 'JHU']:
				users = deepcopy(cam.users)
			else:
				users = deepcopy(cam.user_skels)

			ground_truth = False
			if dataset in ['RT','JHU']:
				if len(users) > 0:
					if not np.any(users[0][0] == -1):
						ground_truth = True
						users[0][:,1] *= -1
						cam.users_uv_msr = [cam.camera_model.world2im(users[0], cam.depthIm.shape)]
			else:
				ground_truth = True

			# Apply mask to image
			mask = cam.get_person(200) == 1 # > 0
			# cv2.imshow('bg',(mask*255).astype(np.uint8))
			# cv2.imshow('bg',cam.colorIm)
			# cv2.waitKey(1)
			if type(mask)==bool or np.all(mask==False):
				# print "No mask"
				continue
			# cv2.imshow('bg',cam.bgSubtraction.backgroundModel)
			# cv2.imshow('bg',(mask*255).astype(np.uint8))

			im_depth =  cam.depthIm
			# if dataset in ['RT']:
				# cam.depthIm[cam.depthIm>2500] = 0
			if cam.colorIm is not None:
				im_color = cam.colorIm*mask[:,:,None]
				cam.colorIm *= mask[:,:,None]
			if ground_truth:
				pose_truth = users[0]
				pose_truth_uv = cam.users_uv_msr[0]

			# Get bounding box around person
			box = nd.find_objects(mask)[0]
			d = 20
			# Widen box
			box = (slice(np.maximum(box[0].start-d, 0), \
					np.minimum(box[0].stop+d, height-1)), \
				   slice(np.maximum(box[1].start-d, 0), \
					np.minimum(box[1].stop+d, width-1)))
			box_corner = [box[0].start,box[1].start]
			mask_box = mask[box]

			''' ---------- ----------------------------------- --------'''
			''' ---------- ----------------------------------- --------'''

			''' ---- Calculate Detectors ---- '''
			# Face detection
			# face_detector.run(im_color[box])
			# Skin detection
			# hand_markers = hand_detector.run(im_color[box], n_peaks=3)
			hand_markers = []
			# Calculate Geodesic Extrema
			im_pos = cam.camera_model.im2PosIm(cam.depthIm*mask)[box]
			# geodesic_markers = geodesic_extrema_MPI(im_pos, iterations=5, visualize=False)
			
			if 1:
				''' Find pts using kmeans or gmm '''
				pts = im_pos[np.nonzero(im_pos)].reshape([-1,3])
				# gmm.fit(pts)
				kmeans.fit(pts)
				# pts = cam.camera_model.world2im(gmm.means_)
				pts = cam.camera_model.world2im(kmeans.cluster_centers_)
				geodesic_markers = pts[:,:2] - box_corner
			else:
				''' Find pts using geodesic extrema '''
				geodesic_markers = geodesic_extrema_MPI(im_pos, iterations=10, visualize=False)
				if len(geodesic_markers) == 0:
					print "No markers"
					continue

			# Concatenate markers
			markers = list(geodesic_markers) + list(hand_markers) #+ list(lop_markers) + curve_markers
			markers = np.array([list(x) for x in markers])
			if np.any(markers==0):
				print "Bad markers"
				continue

			''' ---- Database lookup ---- '''
			time_t0 = time.time()
			pts_mean = im_pos[(im_pos!=0)[:,:,2]].mean(0)
			if learn and ground_truth:
				# pose_uv = pose_truth_uv
				if np.any(pose_truth_uv==0):
					frame_count += frame_rate
					if not interactive:
						continue

				# Markers can be just outside of bounds
				markers = list(geodesic_markers) + hand_markers
				markers = np.array([list(x) for x in markers])
				# pose_database.update(pose_truth-pts_mean, keys=im_pos[markers[:,0],markers[:,1]]-pts_mean)
				pose_database.update(pose_truth-pts_mean)
				if not interactive:
					continue
			# else:
			if 1:
				# Normalize pose
				pts = im_pos[markers[:,0], markers[:,1]]
				pts = np.array([x for x in pts if x[0] != 0])
				pts -= pts_mean

				# Get closest pose
				# Based on markers/raw positions
				# poses_obs, pose_error = pose_database.query(pts, knn=1, return_error=True)
				pose_error = pose_query(pts, np.array(pose_database.database), search_joints=search_joints)
				# pose_error = query_error(pts, pose_database.trees, search_joints=search_joints)

				# Based on markers/keys:
				# pts = im_pos[markers[:,0], markers[:,1]] - pts_mean
				# # poses, pose_error = pose_database.query_tree(pts, knn=len(pose_database.database), return_error=True)
				# # poses, pose_error = pose_database.query_flann(pts, knn=len(pose_database.database), return_error=True)
				# pose_error = np.sqrt(np.sum((pose_database.keys - pts.reshape([27]))**2, 1))

				observation_variance = 100.
				prob_obervation = np.exp(-pose_error / observation_variance) / np.sum(np.exp(-pose_error/observation_variance))

				# subplot(2,2,1)
				# plot(prob_obervation)
				# subplot(2,2,2)
				# plot(prob_motion)
				# subplot(2,2,3)
				# plot(pose_prob_new)
				# subplot(2,2,4)
				# plot(pose_prob)
				# show()

				# inference = 'NN'
				inference = 'Bayes'
				# inference = 'PF'
				if inference=='NN': # Nearest neighbor
					poses_obs, _ = pose_database.query(pts, knn=1, return_error=True)
					poses = [poses_obs[0]]

				elif inference=='Bayes': # Bayes
					if frame_count is 0:
						poses_obs, _ = pose_database.query(pts, knn=1, return_error=True)
						skel_previous = poses_obs[0].copy()
					# poses_m, pose_m_error = pose_database.query(skel_previous-pts_mean, knn=1, return_error=True)
					pose_m_error = pose_query(skel_previous-pts_mean, np.array(pose_database.database), search_joints=search_joints)
					# poses_m, pose_m_error = pose_database.query(skel_previous-pts_mean+(np.random.random([3,14])-.5).T*30, knn=5, return_error=True)
					motion_variance = 10000.
					prob_motion = np.exp(-pose_m_error / motion_variance) / np.sum(np.exp(-pose_m_error/motion_variance))
					pose_prob_new = prob_obervation*prob_motion
					if pose_prob_new.shape == pose_prob.shape:
						pose_prob = (pose_prob_new+pose_prob).T/2.
					else:
						pose_prob = pose_prob_new.T
					prob_sorted = np.argsort(pose_prob)
					poses = [pose_database.database[np.argmax(pose_prob)]]

					# poses = pose_database.database[prob_sorted[-1:]]

				# Particle Filter
				elif inference=='PF':
					prob_sorted = np.argsort(pose_prob)
					poses = pose_database.database[prob_sorted[-5:]]

				## ICP
				# im_pos -= pts_mean
				# R,t = IterativeClosestPoint(pose, im_pos.reshape([-1,3])-pts_mean, max_iters=5, min_change=.001, pt_tolerance=10000)
				# pose = np.dot(R.T, pose.T).T - t
				# pose = np.dot(R, pose.T).T + t

				# scale = 1.
				# poses *= scale

				poses += pts_mean
			# print "DB time:", time.time() - time_t0
			''' ---- Tracker ---- '''
			surface_map = nd.distance_transform_edt(-nd.binary_erosion(mask_box), return_distances=False, return_indices=True)

			if skel_previous_uv is None:
				skel_previous = poses[0].copy()
				skel_current = poses[0].copy()
				pose_tmp = cam.camera_model.world2im(poses[0], cam.depthIm.shape)
				skel_previous_uv = pose_tmp.copy()
				skel_current_uv = pose_tmp.copy()

			pose_weights = np.zeros(len(poses), dtype=np.float)
			pose_updates = []
			pose_updates_uv = []

			time_t0 = time.time()
			# 2) Sample poses
			if inference in ['PF', 'Bayes']:
				for pose_i, pose in enumerate(poses):

					skel_current = skel_previous.copy()
					skel_current_uv = skel_previous_uv.copy()

					pose_uv = cam.camera_model.world2im(pose, cam.depthIm.shape)
					try:
						pose_uv[:,:2] = surface_map[:, pose_uv[:,0]-box_corner[0], pose_uv[:,1]-box_corner[1]].T + [box_corner[0], box_corner[1]]
					except:
						pass
					pose = cam.camera_model.im2world(pose_uv, cam.depthIm.shape)

					# ---- (Step 2) Update pose state, x ----
					correspondence_displacement = skel_previous - pose
					lambda_p = .0
					lambda_c = 1.
					skel_prev_difference = (skel_current - skel_previous)
					# print skel_prev_difference
					skel_current = skel_previous \
									+ lambda_p  * skel_prev_difference \
									- lambda_c  * correspondence_displacement#\

					# ---- (Step 3) Add constraints ----
					# A: Link lengths / geometry
					# skel_current = link_length_constraints(skel_current, constraint_links, constraint_values, alpha=.5)
					# skel_current = geometry_constraints(skel_current, joint_size, alpha=0.5)
					# skel_current = collision_constraints(skel_current, constraint_links)

					skel_current_uv = (cam.camera_model.world2im(skel_current, cam.depthIm.shape) - [box[0].start, box[1].start, 0])#/mask_interval
					skel_current_uv = skel_current_uv.clip([0,0,0], [box[0].stop-box[0].start-1, box[1].stop-box[1].start-1, 9999])
					# B: Ray-cast constraints
					skel_current, skel_current_uv = ray_cast_constraints(skel_current, skel_current_uv, im_pos, surface_map, joint_size)

					# Map back from mask to image
					# try:
						# skel_current_uv[:,:2] = surface_map[:, skel_current_uv[:,0], skel_current_uv[:,1]].T# + [box_corner[0], box_corner[1]]
					# except:
						# pass

					# ---- (Step 4) Update the confidence ----
					if inference=='PF':
						time_t1 = time.time()
						## Calc distance between each pixel and all joints
						px_corr = np.zeros([im_pos.shape[0], im_pos.shape[1], 14])
						for i,s in enumerate(skel_current):
							px_corr[:,:,i] = np.sqrt(np.sum((im_pos - s)**2, -1))# / joint_size[i]**2

						# for i,s in enumerate(pose_uv):
						# for i,s in enumerate(skel_current_uv):
						# 	''' Problem: need to constrain pose_uv to mask '''
							# _, geo_map = geodesic_extrema_MPI(im_pos, [s[0],s[1]], iterations=1, visualize=True)
							# px_corr[:,:,i] = geo_map
							# subplot(2,7,i+1)
							# imshow(geo_map, vmin=0, vmax=2000)
							# axis('off')
							# px_corr[geo_map==0,i] = 9999

						px_label = np.argmin(px_corr, -1)*mask_box
						px_label_flat = px_label[mask_box].flatten()

						# cv2.imshow('gMap', (px_corr.argmin(-1)+1)/15.*mask_box)
						# cv2.waitKey(1)

						# Project distance to joint's radius
						px_joint_displacement = im_pos[mask_box] - skel_current[px_label_flat]
						px_joint_magnitude = np.sqrt(np.sum(px_joint_displacement**2,-1))
						joint_mesh_pos = skel_current[px_label_flat] + px_joint_displacement*(joint_size[px_label_flat]/px_joint_magnitude)[:,None]
						px_joint_displacement = joint_mesh_pos - im_pos[mask_box]
						# Ensure pts aren't too far away (these are noise!)
						px_joint_displacement[np.abs(px_joint_displacement) > 500] = 0

						if 0:
							x = im_pos.copy()*0
							x[mask_box] = joint_mesh_pos

							for i in range(3):
								subplot(1,4,i+1)
								imshow(x[:,:,i])
								axis('off')
							subplot(1,4,4)
							imshow((px_label+1)*mask_box)

						# Calc the correspondance change in position for each joint
						correspondence_displacement = np.zeros([len(skel_current), 3])
						ii = 0
						for i,_ in enumerate(skel_current):
							labels = px_label_flat==i
							correspondence_displacement[i] = np.sum(px_joint_displacement[px_label_flat==ii], 0) / np.sum(px_joint_displacement[px_label_flat==ii]!=0)
							ii+=1
						correspondence_displacement = np.nan_to_num(correspondence_displacement)


					# print "time:", time.time() - time_t1
					# Likelihood
					motion_variance = 500
					prob_motion = np.exp(-np.mean(np.sum((pose-skel_previous)**2,1)/motion_variance**2))

					if inference == 'PF':
						correspondence_variance = 40
						prob_coor 	= np.exp(-np.mean(np.sum(correspondence_displacement**2,1)/correspondence_variance**2))
						prob = prob_motion * prob_coor
					prob = prob_motion

					# Viz correspondences
					# x = im_pos.copy()*0
					# x[mask_box] = px_joint_displacement

					# for i in range(3):
					# 	subplot(1,4,i+1)
					# 	imshow(x[:,:,i])
					# 	axis('off')
					# subplot(1,4,4)
					# imshow((px_label+1)*mask_box)
					# # embed()
					# # for j in range(3):
					# # 	for i in range(14):
					# # 		subplot(3,14,j*14+i+1)
					# # 		imshow(x[:,:,j]*((px_label==i)*mask_box))
					# # 		axis('off')
					# show()

					# prob = link_length_probability(skel_current, constraint_links, constraint_values, 100)

					# print frame_count
					# print "Prob:", np.mean(prob)#, np.min(prob), prob
					# thresh = .05
					# if np.min(prob) < thresh:
					# 	# print 'Resetting pose'
					# 	for c in constraint_links[prob<thresh]:
					# 		for cc in c:
					# 			skel_current_uv[c] = pose_uv[c] - [box[0].start, box[1].start, 0]
					# 			skel_current[c] = pose[c]
						# skel_current_uv = pose_uv.copy() - [box[0].start, box[1].start, 0]
						# skel_current = pose.copy()

					skel_current_uv = skel_current_uv + [box[0].start, box[1].start, 0]
					skel_current = cam.camera_model.im2world(skel_current_uv, cam.depthIm.shape)
					# print 'Error:', np.sqrt(np.sum((pose_truth-skel_current)**2, 0))
					pose_weights[pose_i] = prob
					# pose_updates += [skel_current.copy()]
					# pose_updates_uv += [skel_current_uv.copy()]
					pose_updates += [pose.copy()]
					pose_updates_uv += [pose_uv.copy()]

					if cam.colorIm is not None:
						cam.colorIm = display_skeletons(cam.colorIm, skel_current_uv, skel_type='Kinect', color=(0,0,pose_i*40+50))
					else:
						cam.depthIm = display_skeletons(cam.depthIm, skel_current_uv, skel_type='Kinect', color=(0,0,pose_i*40+50))
					# cam.colorIm = display_skeletons(cam.colorIm, pose_uv, skel_type='Kinect', color=(0,pose_i*40+50,pose_i*40+50))
				# print "Tracking time:", time.time() - time_t0
				# Update for next round

				pose_ind = np.argmax(pose_weights)
				# print "Pickled:", pose_ind
				skel_previous = pose_updates[pose_ind].copy()
				skel_previous_uv = pose_updates_uv[pose_ind].copy()
				# print pose_weights
			else:
				pose = poses[0]
				skel_previous = pose.copy()
				pose_uv = cam.camera_model.world2im(skel_previous, cam.depthIm.shape)
				skel_current_uv = pose_uv.copy()
				skel_previous_uv = pose_uv.copy()

			''' ---- Accuracy ---- '''
			if ground_truth:
				error_track = pose_truth - skel_previous
				error_track *= np.any(pose_truth!=0, 1)[:,None]
				error_l2_track = np.sqrt(np.sum(error_track**2, 1))
				joint_accuracy_track += [error_l2_track]
				accuracy_track = np.sum(error_l2_track < 150) / n_joints
				accuracy_all_track += [accuracy_track]				
				print "Current track: {}% {} mm".format(accuracy_track, error_l2_track.mean())
				print "Running avg (track):", np.mean(accuracy_all_track)
				# print "Joint avg (overall track):", np.mean(joint_accuracy_track)
				print ""

			''' --- Visualization --- '''
			if visualize:
				display_markers(cam.colorIm, hand_markers[:2], box, color=(0,250,0))
				if len(hand_markers) > 2:
					display_markers(cam.colorIm, [hand_markers[2]], box, color=(0,200,0))
				display_markers(cam.colorIm, geodesic_markers, box, color=(200,0,0))
				# display_markers(cam.colorIm, curve_markers, box, color=(0,100,100))
				# display_markers(cam.colorIm, lop_markers, box, color=(0,0,200))

				if ground_truth:
					cam.colorIm = display_skeletons(cam.colorIm, pose_truth_uv, skel_type='Kinect', color=(0,255,0))
				cam.colorIm = display_skeletons(cam.colorIm, skel_current_uv, skel_type='Kinect', color=(255,0,0))
				cam.visualize(color=True, depth=False)

			# ------------------------------------------------------------

			# video_writer.write((geo_clf_map/float(geo_clf_map.max())*255.).astype(np.uint8))
			# video_writer.write(cam.colorIm[:,:,[2,1,0]])

			frame_count += frame_rate
			print "Frame:", frame_count
	except:
		traceback.print_exc(file=sys.stdout)
		pass


	try:
		print "-- Results for subject {:d} action {:d}".format(subjects[0],actions[0])
	except:
		pass
	# print "Running avg (db):", np.mean(accuracy_all_db)
	print "Running mean (track):", np.mean(accuracy_all_track)
	# print "Joint avg (overall db):", np.mean(joint_accuracy_db)
	print "Joint mean (overall track):", np.mean(joint_accuracy_track)
	print "Joint median (overall track):", np.median(joint_accuracy_track)
	# print 'Done'

	embed()
	if learn:
		pose_database.save()
	elif save_results:
		# Save results:
		results['subject'] += [subjects[0]]
		results['action'] += [actions[0]]
		results['accuracy_all'] += [accuracy_all_track]
		results['accuracy_mean'] += [np.mean(accuracy_all_track)]
		results['joints_all'] += [joint_accuracy_track]
		results['joint_mean'] += [np.mean(joint_accuracy_track)]
		results['joint_median'] += [np.median(joint_accuracy_track)]
		pickle.dump(results, open('/Users/colin/Data/BerkeleyMHAD/Accuracy_Results.pkl', 'w'))
Пример #18
0
def main(get_depth, get_color, get_skeleton, visualize):
	# fill = True
	fill = False
	get_color = True
	# VP = KinectPlayer(base_dir='./', device=device, get_depth=get_depth, get_color=get_color, get_skeleton=get_skeleton, get_mask=get_mask)
	# VP = KinectPlayer(base_dir='./', device=1, bg_subtraction=True, get_depth=get_depth, get_color=get_color, get_skeleton=get_skeleton, fill_images=fill)
	VP = KinectPlayer(base_dir='./', device=2, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=False, fill_images=fill)
	cam_count = 1
	if cam_count == 2:
		VP2 = KinectPlayer(base_dir='./', device=2, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=False, fill_images=fill)
		# Transformation matrix from first to second camera
		# data = pickle.load(open("./Registration.dat", 'r'))
		# transform_c1_to_c2 = data['transform']

	# print 'aaaaaaaaaaaaaaaa'
	# embed()

	while VP.next():
		# VP.update_background()
		# Transform skels from cam1 to cam2
		if get_skeleton:
			VP_skels = [np.array(VP.users[s]['jointPositions'].values()) for s in VP.users.keys()]
		if cam_count == 2:
			VP2.sync_cameras(VP)
			if get_skeleton:
				VP2_skels = transform_skels(VP_skels, transform_c1_to_c2)

		VP.colorIm = VP.colorIm[:,:,[2,1,0]]

		# im_tmp = np.dstack([VP.depthIm/float(VP.depthIm.max()),\
		# 					VP.depthIm/float(VP.depthIm.max()),\
		# 					VP.colorIm.mean(-1)/255])
		# im = felzenszwalb(im_tmp, scale=255)
		# im = felzenszwalb(VP.depthIm/float(VP.depthIm.max()), scale=255)

		# im = VP.depthIm/float(VP.depthIm.max()) * VP.
		# im = felzenszwalb(im, scale=255)
		# cv2.imshow("seg", im/float(im.max()))

		# cv2.waitKey(10)
		# embed()

		# Geodesic extrema
		if 0:
			if VP.foregroundMask is not None:
				im = VP.depthIm	* (VP.foregroundMask>0)
				# cv2.imshow("im--", im/float(im.max()))
				if 1:#(im>0).sum() > 1000:
					# Extract person
					labelMask, boxes, labels, px_counts= extract_people(im, VP.foregroundMask, minPersonPixThresh=3000)
					# print labels, px_counts
					if len(labels) > 0:
						max_ind = np.argmax(px_counts)
						mask = labelMask==max_ind+1
						im[-mask] = 0

						edge_thresh = 200#10
						gradients = np.gradient(im)
						mag = np.sqrt(gradients[0]**2+gradients[1]**2)
						im[mag>edge_thresh] = 0

						# Segmentation experiment
						# im_s = VP.depthIm/float(VP.depthIm.max())
						# im_s = felzenszwalb(im, scale=255)
						# cv2.imshow("seg", im_s/float(im_s.max()))

						x,y = nd.center_of_mass(im)
						if im[x,y] == 0:
							tmp = np.nonzero(im>0)
							x,y = [tmp[0][0], tmp[1][0]]
						# min_map = geodesic_extrema_MPI(im, centroid=[x,y], iterations=15)
						extrema = geodesic_extrema_MPI(im, centroid=[x,y], iterations=15)
						# embed()

						# for e, i in zip(extrema, range(20)):
						# 	if 0 < i < 6:
						# 		box_color = [255, 0, 0]
						# 	elif i==0:
						# 		box_color = [0, 0, 255]
						# 	else:
						# 		box_color = [255,255,255]
						# 	VP.colorIm[e[0]-4:e[0]+5, e[1]-4:e[1]+5] = box_color

						# cv2.imshow("ExtremaB", min_map/float(min_map.max()))
						# cv2.waitKey(500)
						cv2.waitKey(20)

		# cv2.imshow("bg model", VP.backgroundModel/float(VP.backgroundModel.max()))
		# cv2.imshow("foregroundMask", ((VP.foregroundMask>0)*255).astype(np.uint8))
		if visualize:
			if cam_count == 2:
				for s in VP2_skels:
					VP2.depthIm = display_skeletons(VP2.depthIm, s, (VP2.depthIm.max(),), skel_type='Kinect')
				VP2.visualize()
				VP2.playback_control()
			VP.visualize()
Пример #19
0
def get_per_pixel_joints(im_depth, skel, alg='geodesic', radius=5):
    '''
	Find the closest joint to each pixel using geodesic distances.
	---Paramaters---
	im_depth : should be masked depth image
	skel : in image coords
	alg : 'geodesic' or 'circular'
	radius : [only for circular]
	'''
    height, width = im_depth.shape
    distance_ims = np.empty([height, width, N_SKEL_JOINTS])
    MAX_VALUE = 32000

    # Get rid of edges around joints
    edge_thresh = 200  #10
    gradients = np.gradient(im_depth)
    mag = np.sqrt(gradients[0]**2 + gradients[1]**2)
    im_depth[mag > edge_thresh] = 0

    joints_out_of_bounds = np.abs(im_depth[skel[:, 0], skel[:, 1]] -
                                  skel[:, 2]) > 100

    # Only look at major joints
    for i, j in zip(SKEL_JOINTS, range(N_SKEL_JOINTS)):
        if skel[i] in joints_out_of_bounds:
            distance_ims[:, :, j] = MAX_VALUE
            continue
        pos = skel[i]

        if alg == 'geodesic':
            x = np.maximum(np.minimum(pos[1], height - 1), 0)
            y = np.maximum(np.minimum(pos[0], width - 1), 0)
            # if j == 0:
            # 	pts, min_map = generateKeypoints(np.ascontiguousarray(im_depth), centroid=[x,y], iterations=10, scale=6)

            im_dist = distance_map(np.ascontiguousarray(im_depth),
                                   centroid=[x, y],
                                   scale=6)
            distance_ims[:, :, j] = im_dist

            if 0:
                radius = 5
                x = np.maximum(np.minimum(pos[1], height - 1 - radius), radius)
                y = np.maximum(np.minimum(pos[0], width - 1 - radius), radius)
                # print x,y
                pts = circle(x, y, radius)
                # print pts[0]
                max_ = distance_ims[distance_ims[:, :, j] < MAX_VALUE, j].max()
                distance_ims[distance_ims[:, :, j] >= MAX_VALUE,
                             j] = max_ + 100
                distance_ims[pts[0], pts[1], j] = max_ + 100
                figure(1)
                subplot(3, 5, j + 1)
                imshow(distance_ims[:, :, j])
                axis('off')
                # subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.1, hspace=.1)
                tight_layout()
                subplots_adjust(left=.001,
                                bottom=.001,
                                wspace=.003,
                                hspace=.003)

        elif alg == 'circular':
            x = np.maximum(np.minimum(pos[1], height - 1 - radius), radius)
            y = np.maximum(np.minimum(pos[0], width - 1 - radius), radius)
            pts = draw.circle(x, y, radius)
            closest_pos[pts] = i
        else:
            print "No algorithm type in 'get_per_pixel_joints'"

    if alg == 'geodesic':
        closest_pos = np.argmin(distance_ims, -1).astype(np.uint8)
        closest_pos_all = np.argsort(distance_ims, -1).astype(np.uint8)
    elif alg == 'circular':
        closest_pos = np.zeros_like(im_depth)

    #Change all background pixels
    # mask = im_depth!=0
    # mask = (distance_ims.max(-1)<32000)
    mask = im_depth != 0
    closest_pos[-mask] = N_MSR_JOINTS + 1

    if 0:
        # Reorder for occlusions
        skel_depths = np.array([skel[i, 2] for i in SKEL_JOINTS])
        skel_XYZ = np.array([skel[i] for i in SKEL_JOINTS])
        pos_order = np.argsort(skel_depths).tolist()
        pos_order.reverse()

        residual = im_depth[mask] - skel_depths[closest_pos[mask]]
        im_tmp = np.zeros_like(im_depth)
        im_tmp[mask] = residual
        closest_arg = np.argmin(distance_ims + skel_depths, -1)
        closest_arg[-mask] = -1

        # If geo dist < euc distance then kill
        # Go from back to front. Only care about things ahead
        from scipy.spatial import distance
        # euclid_dists = distance.squareform(distance.pdist(depth2world(skel_XYZ, [240,320])))
        euclid_dists = distance.squareform(distance.pdist(skel_XYZ))
        geo_dists = np.zeros_like(euclid_dists)

        for i in xrange(len(SKEL_JOINTS)):
            p = pos_order[i]
            # If a joint is behind it, don't care -- set to infinity
            geo_dists[p, :] = [
                distance_ims[skel[j][0], skel[j][1],
                             p] if j in pos_order[i:] else np.inf
                for j in SKEL_JOINTS
            ]

        # Check if it's incorrect at least 2x
        removed_joints = []
        err = (geo_dists * 2. < euclid_dists)
        for i in xrange(len(err)):
            if err[i].sum(0) >= 1:
                # removed_joints += [i]
                distance_ims[:, :, i] = MAX_VALUE

        closest_pos_e = np.argmin(distance_ims, -1).astype(np.uint8)
        closest_pos_e[-mask] = N_MSR_JOINTS + 1

        subplot(2, 2, 1)
        closest_pos = display_skeletons(closest_pos,
                                        skel,
                                        color=(23, ),
                                        skel_type='Low')
        imshow(closest_pos)
        axis('off')
        subplot(2, 2, 2)
        imshow(closest_pos_e)
        axis('off')
        subplot(2, 2, 3)
        imshow(closest_pos_e == closest_pos)
        axis('off')
        # blank = np.ones(300,300)
        # removed_text = ''

        # for i in removed_joints:
        # removed_text += str(i)+" "
        # cv2.putText()
        tight_layout()
        subplots_adjust(left=.001, bottom=.001, wspace=.003, hspace=.003)
        show()

    # embed()

    # closest_pos_e[im_depth==0] = N_MSR_JOINTS+1

    # closest_pos2[-mask] = N_MSR_JOINTS+1
    # closest_pos2[closest_pos>=32000] = N_MSR_JOINTS+1
    # closest_arg[im_depth==0] = N_MSR_JOINTS+1

    # figure(1); imshow(closest_arg);
    # figure(3); imshow(closest_pos2)

    # # Reorder
    # im_order = np.zeros_like(im_depth)-1
    # for p in range(len(pos_order)):
    # 	mask_tmp = closest_pos==p
    # 	dists_tmp = distance_ims[mask_tmp, p] + skel[pos_order[p],2]
    # 	im_order[mask_tmp] = np.maximum(im_order[mask_tmp], dists_tmp)

    # figure(100)
    # imshow(closest_pos)
    # figure(101)
    # imshow(im_depth)
    # show()
    # embed()
    return closest_pos
Пример #20
0
def main(visualize=False,
         learn=False,
         actions=None,
         subjects=None,
         n_frames=220):
    # learn = True
    # learn = False
    if actions is []:
        actions = [2]
    if subjects is []:
        subjects = [2]
    # actions = [1]
    # actions = [1, 2, 3, 4, 5]
    # subjects = [1]
    if 1:
        MHAD = True
        cam = MHADPlayer(base_dir='/Users/colin/Data/BerkeleyMHAD/',
                         kinect=1,
                         actions=actions,
                         subjects=subjects,
                         reps=[1],
                         get_depth=True,
                         get_color=True,
                         get_skeleton=True,
                         fill_images=False)
    else:
        MHAD = False
        cam = KinectPlayer(base_dir='./',
                           device=2,
                           bg_subtraction=True,
                           get_depth=True,
                           get_color=True,
                           get_skeleton=True,
                           fill_images=False)
        bg = Image.open(
            '/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_A.tif')
        bg = Image.open(
            '/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_B.tif')
        cam.bgSubtraction.backgroundModel = np.array(bg.getdata()).reshape(
            [240, 320]).clip(0, 4500)
    height, width = cam.depthIm.shape
    skel_previous = None

    # clf_geo = pickle.load(open('geodesic_svm_sorted_scaled_5class.pkl'))
    # clf_color,color_approx = pickle.load(open('color_histogram_approx_svm_5class.pkl'))
    # clf_lbp,lbp_approx = pickle.load(open('lbp_histogram_approx_svm_5class.pkl'))

    face_detector = FaceDetector()
    hand_detector = HandDetector(cam.depthIm.shape)
    curve_detector = CurveDetector(cam.depthIm.shape)

    # Video writer
    # video_writer = cv2.VideoWriter("/Users/colin/Desktop/test.avi", cv2.cv.CV_FOURCC('M','J','P','G'), 15, (320,240))

    # Save Background model
    # im = Image.fromarray(cam.depthIm.astype(np.int32), 'I')
    # im.save("/Users/Colin/Desktop/k2.png")

    # Setup pose database
    append = True
    append = False
    pose_database = PoseDatabase("PoseDatabase.pkl",
                                 learn=learn,
                                 search_joints=[0, 4, 7, 10, 13],
                                 append=append)

    # Per-joint classification
    head_features = []
    hand_features = []
    feet_features = []
    joint_features = {
        'geodesic': [None] * 14,
        'color_histograms': [None] * 14,
        'lbp': [None] * 14
    }

    # Evaluation
    accuracy_all = []
    joint_accuracy_all = []
    geo_accuracy = []
    color_accuracy = []
    lbp_accuracy = []

    frame_count = 0
    frame_rate = 2
    if not MHAD:
        cam.next(350)
    frame_prev = 0
    try:
        # if 1:
        while cam.next(frame_rate):  # and frame_count < n_frames:
            if frame_count - frame_prev > 100:
                print ""
                print "Frame #{0:d}".format(frame_count)
                frame_prev = frame_count

            if not MHAD:
                if len(cam.users) == 0:
                    continue
                else:
                    # cam.users = [np.array(cam.users[0]['jointPositions'].values())]
                    if np.any(cam.users[0][0] == -1):
                        continue
                    cam.users[0][:, 1] *= -1
                    cam.users_uv_msr = [
                        cam.camera_model.world2im(cam.users[0], [240, 320])
                    ]

            # Apply mask to image
            if MHAD:
                mask = cam.get_person(2) > 0
            else:
                mask = cam.get_person() > 0
                if np.all(mask == False):
                    continue

            im_depth = cam.depthIm
            cam.depthIm[cam.depthIm > 3000] = 0
            im_color = cam.colorIm * mask[:, :, None]
            cam.colorIm *= mask[:, :, None]
            pose_truth = cam.users[0]
            pose_truth_uv = cam.users_uv_msr[0]

            # Get bounding box around person
            box = nd.find_objects(mask)[0]
            d = 20
            # Widen box
            box = (slice(np.maximum(box[0].start-d, 0), \
              np.minimum(box[0].stop+d, height-1)), \
                slice(np.maximum(box[1].start-d, 0), \
              np.minimum(box[1].stop+d, width-1)))
            box_corner = [box[0].start, box[1].start]
            ''' ---------- ----------------------------------- --------'''
            ''' ----------- Feature Detector centric approach ---------'''
            ''' ---------- ----------------------------------- --------'''
            ''' ---- Calculate Detectors ---- '''
            # Face detection
            face_detector.run(im_color[box])
            # Skin detection
            hand_markers = hand_detector.run(im_color[box], n_peaks=3)
            # curve detection
            # curve_markers = curve_detector.run((im_depth*mask)[box], n_peaks=3)
            # Calculate LBPs ##Max P=31 for LBPs becuase of datatype
            # x = local_occupancy_pattern(cam.depthIm[box]*mask[box], [5,5,5],[3,3,3])
            # lop_texture = local_binary_pattern_depth(cam.depthIm[box]*mask[box], 10, 20, px_diff_thresh=100)*mask[box]
            # lop_markers = []#peak_local_max(lop_texture, min_distance=20, num_peaks=5, exclude_border=False)
            # lbp_texture = local_binary_pattern(cam.depthIm[box]*mask[box], 6, 20)*mask[box]
            # Calculate Geodesic Extrema
            im_pos = cam.camera_model.im2PosIm(
                cam.depthIm * mask)[box] * mask[box][:, :, None]
            geodesic_markers = geodesic_extrema_MPI(im_pos,
                                                    iterations=5,
                                                    visualize=False)
            # geodesic_markers, geo_map = geodesic_extrema_MPI(im_pos, iterations=5, visualize=True)
            geodesic_markers_pos = im_pos[geodesic_markers[:, 0],
                                          geodesic_markers[:, 1]]

            markers = list(geodesic_markers) + list(
                hand_markers)  #+ list(lop_markers) + curve_markers
            markers = np.array([list(x) for x in markers])

            if 1:
                ''' ---- Database lookup ---- '''
                pts_mean = im_pos[(im_pos != 0)[:, :, 2]].mean(0)
                if learn:
                    # Normalize pose
                    pose_uv = cam.users_uv[0]
                    if np.any(pose_uv == 0):
                        print "skip"
                        frame_count += frame_rate
                        continue
                    # print pose_truth[2], pts_mean
                    pose_database.update(pose_truth - pts_mean)

                else:
                    # Concatenate markers
                    markers = list(geodesic_markers) + hand_markers
                    # markers = list(geodesic_markers) + list(lop_markers) + curve_markers + hand_markers
                    markers = np.array([list(x) for x in markers])

                    # Normalize pose
                    pts = im_pos[markers[:, 0], markers[:, 1]]
                    pts = np.array([x for x in pts if x[0] != 0])
                    pts -= pts_mean

                    # Get closest pose
                    pose = pose_database.query(pts, knn=1)
                    # pose = pose_database.weighted_query(pts, knn=1)

                    # pose = pose_database.reverse_query(pts[:,[1,0,2]])

                    # im_pos -= pts_mean
                    # R,t = IterativeClosestPoint(pose, im_pos.reshape([-1,3])-pts_mean, max_iters=5, min_change=.001, pt_tolerance=10000)
                    # pose = np.dot(R.T, pose.T).T - t
                    # pose = np.dot(R, pose.T).T + t

                    pose += pts_mean
                    pose_uv = cam.camera_model.world2im(
                        pose, cam.depthIm.shape)

                    # Constrain
                    if 0:
                        try:
                            ''' This does worse because the joint may fall to a different part of the body (e.g. hand to torso) which throws the error upward '''

                            surface_map = nd.distance_transform_edt(
                                im_pos[:, :, 2] == 0,
                                return_distances=False,
                                return_indices=True)
                            pose_uv[:, :2] = surface_map[:, pose_uv[:, 0] -
                                                         box_corner[0],
                                                         pose_uv[:, 1] -
                                                         box_corner[1]].T + [
                                                             box_corner[0],
                                                             box_corner[1]
                                                         ]
                            pose = cam.camera_model.im2world(pose_uv)

                            # skel_current = link_length_constraints(skel_current, constraint_links, constraint_values, alpha=.5)
                            # skel_current = geometry_constraints(skel_current, joint_size, alpha=0.5)
                            # skel_current = collision_constraints(skel_current, constraint_links)
                            # embed()
                            # pose_uv_box = pose_uv - [box_corner[0], box_corner[1], 0]
                            # pose_uv_box = pose_uv_box.clip([0,0,0], [cam.depthIm.shape[0]-1, cam.depthIm.shape[1]-1, 9999])
                            # joint_size = np.array([75]*14)
                            # pose_n, pose_uv_n = ray_cast_constraints(pose, pose_uv_box, im_pos, surface_map, joint_size)
                            # print 'Pose',pose,pose_n
                            # pose = pose_n
                            # pose_uv = pose_uv_n + [box_corner[0], box_corner[1], 0]

                        except:
                            print 'error constraining'

                    # skel_previous = np.array(pose, copy=True)

            display_markers(cam.colorIm,
                            hand_markers[:2],
                            box,
                            color=(0, 250, 0))
            if len(hand_markers) > 2:
                display_markers(cam.colorIm, [hand_markers[2]],
                                box,
                                color=(0, 200, 0))
            display_markers(cam.colorIm,
                            geodesic_markers,
                            box,
                            color=(200, 0, 0))
            # display_markers(cam.colorIm, curve_markers, box, color=(0,100,100))
            # display_markers(cam.colorIm, lop_markers, box, color=(0,0,200))

            if 0:
                ''' ---------- ----------------------------------- --------'''
                ''' ---------- Feature Descriptor centric approach --------'''
                ''' ---------- ----------------------------------- --------'''
                ''' ---- Calculate Descriptors ---- '''
                hand_markers = np.array(hand_markers)
                # Geodesics
                geodesic_features = relative_marker_positions(
                    im_pos, geodesic_markers_pos[:, [1, 0, 2]])
                geodesic_features = np.sort(geodesic_features)
                # Color Histogram
                skin = skimage.exposure.rescale_intensity(
                    hand_detector.im_skin, out_range=[0, 255]).astype(np.uint8)
                color_histograms = local_histograms(
                    skin, n_bins=5, max_bound=255,
                    patch_size=11) * mask[box][:, :, None]
                # LBP Histogram
                lbp_texture = local_binary_pattern(
                    cam.depthIm[box] * mask[box], 6, 5) * mask[box]
                lbp_histograms = local_histograms(
                    lbp_texture.astype(np.uint8),
                    n_bins=10,
                    max_bound=2**6,
                    patch_size=11) * mask[box][:, :, None]
                # for i in range(10):
                # 	subplot(2,5,i+1)
                # 	imshow(lbp_histograms[:,:,i])
                ''' ---- Per Joint Learning ---- '''
                if learn:
                    for ii, i in enumerate(pose_truth_uv):
                        if i[0] != 0:
                            try:
                                if joint_features['geodesic'][ii] is None:
                                    joint_features['geodesic'][
                                        ii] = geodesic_features[i[1] -
                                                                box_corner[0],
                                                                i[0] -
                                                                box_corner[1]]
                                else:
                                    joint_features['geodesic'][ii] = np.vstack(
                                        [
                                            joint_features['geodesic'][ii],
                                            (geodesic_features[i[1] -
                                                               box_corner[0],
                                                               i[0] -
                                                               box_corner[1]])
                                        ])

                                if joint_features['color_histograms'][
                                        ii] is None:
                                    joint_features['color_histograms'][
                                        ii] = color_histograms[i[1] -
                                                               box_corner[0],
                                                               i[0] -
                                                               box_corner[1]]
                                else:
                                    joint_features['color_histograms'][
                                        ii] = np.vstack([
                                            joint_features['color_histograms']
                                            [ii],
                                            deepcopy(color_histograms[
                                                i[1] - box_corner[0],
                                                i[0] - box_corner[1]])
                                        ])

                                if joint_features['lbp'][ii] is None:
                                    joint_features['lbp'][ii] = lbp_histograms[
                                        i[1] - box_corner[0],
                                        i[0] - box_corner[1]]
                                else:
                                    joint_features['lbp'][ii] = np.vstack([
                                        joint_features['lbp'][ii],
                                        deepcopy(lbp_histograms[i[1] -
                                                                box_corner[0],
                                                                i[0] -
                                                                box_corner[1]])
                                    ])

                            except:
                                print "error"
                ''' ---- Per Joint Classification ---- '''
                if not learn:
                    try:
                        # Geodesic clasification
                        tmp = geodesic_features.reshape([-1, 6])
                        tmp = np.array([x / x[-1] for x in tmp])
                        tmp = np.nan_to_num(tmp)
                        geo_clf_map = clf_geo.predict(tmp).reshape(
                            im_pos.shape[:2]) * mask[box]
                        geo_clf_labels = geo_clf_map[
                            pose_truth_uv[[0, 1, 4, 7, 10, 13], 1] -
                            box_corner[0],
                            pose_truth_uv[[0, 1, 4, 7, 10, 13], 0] -
                            box_corner[1]]
                        geo_accuracy += [
                            geo_clf_labels == [0, 1, 4, 7, 10, 13]
                        ]
                        print 'G', np.mean(
                            geo_accuracy,
                            0), geo_clf_labels == [0, 1, 4, 7, 10, 13]
                        cv2.imshow('Geo',
                                   geo_clf_map / float(geo_clf_map.max()))
                    except:
                        pass

                    try:
                        # Color histogram classification
                        color_test = color_approx.transform(
                            color_histograms.reshape([-1, 5]))
                        color_clf_map = clf_color.predict(color_test).reshape(
                            im_pos.shape[:2]) * mask[box]
                        color_clf_labels = color_clf_map[
                            pose_truth_uv[[0, 1, 4, 7, 10, 13], 1] -
                            box_corner[0],
                            pose_truth_uv[[0, 1, 4, 7, 10, 13], 0] -
                            box_corner[1]]
                        color_accuracy += [
                            color_clf_labels == [0, 1, 4, 7, 10, 13]
                        ]
                        print 'C', np.mean(
                            color_accuracy,
                            0), color_clf_labels == [0, 1, 4, 7, 10, 13]
                        cv2.imshow('Col',
                                   color_clf_map / float(color_clf_map.max()))
                    except:
                        pass

                    try:
                        # lbp histogram classification
                        lbp_test = color_approx.transform(
                            lbp_histograms.reshape([-1, 10]))
                        lbp_clf_map = clf_lbp.predict(lbp_test).reshape(
                            im_pos.shape[:2]) * mask[box]
                        lbp_clf_labels = lbp_clf_map[
                            pose_truth_uv[[0, 1, 4, 7, 10, 13], 1] -
                            box_corner[0],
                            pose_truth_uv[[0, 1, 4, 7, 10, 13], 0] -
                            box_corner[1]]
                        lbp_accuracy += [
                            lbp_clf_labels == [0, 1, 4, 7, 10, 13]
                        ]
                        print 'L', np.mean(
                            lbp_accuracy,
                            0), lbp_clf_labels == [0, 1, 4, 7, 10, 13]
                        cv2.imshow('LBP',
                                   lbp_clf_map / float(lbp_clf_map.max()))
                    except:
                        pass

                pose_uv = pose_truth_uv
                pose = pose_truth

            # ''' ---- Accuracy ---- '''
            if 1 and not learn:
                # pose_truth = cam.users[0]
                error = pose_truth - pose
                # print "Error", error
                error_l2 = np.sqrt(np.sum(error**2, 1))
                # error_l2 = np.sqrt(np.sum(error[:,:2]**2, 1))
                joint_accuracy_all += [error_l2]
                accuracy = np.sum(error_l2 < 150) / 14.
                accuracy_all += [accuracy]
                print "Current", accuracy
                # print "Running avg:", np.mean(accuracy_all)
                # print "Joint avg (per-joint):", np.mean(joint_accuracy_all, -1)
                # print "Joint avg (overall):", np.mean(joint_accuracy_all)
            ''' --- Visualization --- '''
            cam.colorIm = display_skeletons(cam.colorIm,
                                            pose_truth_uv,
                                            skel_type='Kinect',
                                            color=(0, 255, 0))
            cam.colorIm = display_skeletons(cam.colorIm,
                                            pose_uv,
                                            skel_type='Kinect')
            cam.visualize()

            # print "Extrema:", geo_clf_map[geodesic_markers[:,0], geodesic_markers[:,1]]
            # print "Skin:", geo_clf_map[hand_markers[:,0], hand_markers[:,1]]
            # print "Skin val:", hand_detector.skin_match[hand_markers[:,0], hand_markers[:,1]]
            # hand_data += [[x[0] for x in hand_markers],
            # [x[1] for x in hand_markers],
            # list(hand_detector.skin_match[hand_markers[:,0], hand_markers[:,1]])]

            # ------------------------------------------------------------

            # video_writer.write((geo_clf_map/float(geo_clf_map.max())*255.).astype(np.uint8))
            # video_writer.write(cam.colorIm[:,:,[2,1,0]])

            frame_count += frame_rate
    except:
        pass

    print "-- Results for subject {:d} action {:d}".format(
        subjects[0], actions[0])
    print "Running avg:", np.mean(accuracy_all)
    print "Joint avg (overall):", np.mean(joint_accuracy_all)
    # print 'Done'
    if learn:
        pose_database.save()
        print 'Pose database saved'

    embed()
    return
    ''' --- Format Geodesic features ---'''
    geodesics_train = []
    geodesics_labels = []
    for i in xrange(len(joint_features['geodesic'])):
        # joint_features['geodesic'][i] = np.array([np.sort(x) for x in joint_features['geodesic'][i] if x[0] != 0])
        joint_features['geodesic'][i] = np.array(
            [x / x.max() for x in joint_features['geodesic'][i] if x[0] != 0])
        ii = i
        if i not in [0, 1, 4, 7, 10, 13]:
            ii = 1
        else:
            geodesics_labels += [
                i * np.ones(len(joint_features['geodesic'][i]))
            ]
    geodesics_train = np.vstack(
        [joint_features['geodesic'][x] for x in [0, 1, 4, 7, 10, 13]])
    # geodesics_train = np.vstack(joint_features['geodesic'])
    geodesics_labels = np.hstack(geodesics_labels)

    figure(1)
    title('Distances of each joint to first 6 geodesic extrema')
    for i in range(14):
        subplot(4, 4, i + 1)
        ylabel('Distance')
        xlabel('Sample')
        plot(joint_features['geodesic'][i])
        axis([0, 400, 0, 1600])

    # Learn geodesic classifier
    clf_geo = SGDClassifier(n_iter=10000,
                            alpha=.01,
                            n_jobs=-1,
                            class_weight='auto')
    clf_geo.fit(geodesics_train, geodesics_labels)
    print clf_geo.score(geodesics_train, geodesics_labels)
    geodesic_features = np.sort(geodesic_features)
    sgd_map = clf_geo.predict(geodesic_features.reshape([-1, 6])).reshape(
        im_pos.shape[:2])

    pickle.dump(clf_geo, open('geodesic_svm_sorted_scaled_5class.pkl', 'w'),
                pickle.HIGHEST_PROTOCOL)
    # clf_geo = pickle.load(open('geodesic_svm_sorted_scaled_5class.pkl'))
    ''' --- Color Histogram features ---'''
    color_train = []
    color_labels = []
    for i in xrange(len(joint_features['color_histograms'])):
        ii = i
        if i not in [0, 1, 4, 7, 10, 13]:
            ii = 1
        else:
            color_labels += [
                i * np.ones(len(joint_features['color_histograms'][i]))
            ]
        # color_labels += [i*np.ones(len(joint_features['color_histograms'][i]))]
    # color_train = np.vstack(joint_features['color_histograms'])
    color_train = np.vstack(
        [joint_features['color_histograms'][x] for x in [0, 1, 4, 7, 10, 13]])
    color_labels = np.hstack(color_labels)

    color_approx = AdditiveChi2Sampler()
    color_approx_train = color_approx.fit_transform(color_train)
    clf = SGDClassifier(n_iter=10000,
                        alpha=.01,
                        n_jobs=-1,
                        class_weight='auto')
    clf.fit(color_approx_train, color_labels)
    print clf.score(color_approx_train, color_labels)
    color_test = color_approx.transform(color_histograms.reshape([-1, 5]))
    sgd_map = clf.predict(color_test).reshape(im_pos.shape[:2]) * mask[box]

    figure(1)
    title('Color Histograms per Joint')
    for i in range(14):
        subplot(4, 4, i + 1)
        ylabel('Count')
        xlabel('Sample')
        plot(joint_features['color_histograms'][i])
        axis([0, 10, 0, 30])

    for i in range(5):
        subplot(1, 5, i + 1)
        imshow(color_histograms[:, :, i])

    pickle.dump([clf, color_approx],
                open('color_histogram_approx_svm_5class.pkl', 'w'),
                pickle.HIGHEST_PROTOCOL)
    # clf_color,color_approx = pickle.load(open('color_histogram_approx_svm_5class.pkl'))
    ''' --- LBP Histogram features ---'''
    color_train = []
    color_labels = []
    for i in xrange(len(joint_features['lbp'])):
        ii = i
        if i not in [0, 1, 4, 7, 10, 13]:
            ii = 1
        else:
            color_labels += [i * np.ones(len(joint_features['lbp'][i]))]
        # color_labels += [i*np.ones(len(joint_features['color_histograms'][i]))]
    # color_train = np.vstack(joint_features['color_histograms'])
    color_train = np.vstack(
        [joint_features['lbp'][x] for x in [0, 1, 4, 7, 10, 13]])
    color_labels = np.hstack(color_labels)

    color_approx = AdditiveChi2Sampler()
    color_approx_train = color_approx.fit_transform(color_train)
    clf = SGDClassifier(n_iter=10000,
                        alpha=.01,
                        n_jobs=-1,
                        class_weight='auto')
    clf.fit(color_approx_train, color_labels)
    print clf.score(color_approx_train, color_labels)
    color_test = color_approx.transform(lbp_histograms.reshape([-1, 10]))
    sgd_map = clf.predict(color_test).reshape(im_pos.shape[:2]) * mask[box]

    figure(1)
    title('LBP Histograms per Joint')
    for i in range(14):
        subplot(4, 4, i + 1)
        ylabel('Count')
        xlabel('Sample')
        plot(joint_features['lbp'][i])
        axis([0, 10, 0, 30])

    for i in range(5):
        subplot(1, 5, i + 1)
        imshow(color_histograms[:, :, i])

    pickle.dump([clf, color_approx],
                open('lbp_histogram_approx_svm_5class.pkl', 'w'),
                pickle.HIGHEST_PROTOCOL)
Пример #21
0
def main_infer(rf_name=None):
    '''
	'''

    if rf_name is None:
        import os
        files = os.listdir('Saved_Params/')
        rf_name = 'Saved_Params/' + files[-1]
        print "Classifier file:", rf_name

    # Load classifier data
    data = pickle.load(open(rf_name))
    rf = data['rf']
    offsets_1, offsets_2 = data['offsets']
    ''' Read data from each video/sequence '''
    depthIms = []
    skels_world = []
    if 1:
        # VP = KinectPlayer(base_dir='/Users/colin/Data/Office_25Feb2013/', device=2, get_depth=True, get_color=False, get_skeleton=True, get_mask=False)
        VP = KinectPlayer(base_dir='/Users/colin/Data/Room_close_26Feb13/',
                          device=1,
                          get_depth=True,
                          get_color=False,
                          get_skeleton=True,
                          get_mask=False)
        _, _ = VP.get_n_skeletons(50)
        depthIms, skels_world = VP.get_n_skeletons(100)
        # depthIms = np.array(depthIms)[:,:,::-1]

    else:
        # name = 'a01_s01_e02_'
        name = 'a01_s10_e02_'
        # name = 'a02_s06_e02_'
        # name = 'a05_s02_e02_'
        depth_file = name + "depth.bin"
        color_file = name + "rgb.avi"
        skeleton_file = name + "skeleton.txt"

        try:
            depthIms, maskIms = read_MSR_depth_ims(depth_file)
            depthIms *= maskIms
            depthIms /= 10
            # colorIms = read_MSR_color_ims(color_file)
            skels_world, skels_im = read_MSR_skeletons(skeleton_file)
            skels_world[:, 2] /= 10
        except:
            print "Error reading data"
    ''' Process data '''
    all_pred_ims = []
    for i in xrange(1, len(depthIms), 1):
        # try:
        if 1:
            print i
            ''' Get frame data '''
            im_depth = depthIms[i]
            # im_depth[160:, :] = 0
            skel_pos = skel2depth(skels_world[i], rez=[240, 320])
            # ''' --- NOTE THIS 10 PX OFFSET IN THE MSR DATASET !!! --- '''
            # skel_pos[:,0] -= 10

            skel_pos_pred, im_predict = infer_pose(im_depth, rf, offsets_1,
                                                   offsets_2)

            # Overlay skeletons
            if 1:
                # colorIm = colorIms[i]
                # im_predict = colorIm
                cv2.imshow("forest_prediction",
                           im_predict / float(im_predict.max()))

                im_predict = np.repeat(im_depth[:, :, None].astype(np.float),
                                       3, -1)
                # embed()
                im_predict[im_depth > 0] -= im_depth[im_depth > 0].min()
                im_predict /= float(im_predict.max() / 255.)
                im_predict = im_predict.astype(np.uint8)

                # im_predict = np.repeat(im_predict[:,:,None], 3, -1)
                # im_predict /= float(im_predict.max())*255
                # im_predict = im_predict.astype(np.uint8)
                im_predict = display_skeletons(im_predict, skel_pos,
                                               (255, 0, 0), SKEL_DISPLAY_MODE)
                im_predict = display_skeletons(im_predict, skel_pos_pred,
                                               (0, 255, 0), SKEL_DISPLAY_MODE)
                im_predict = display_skeletons(im_predict, skel_pos,
                                               (255, 0, 0), SKEL_DISPLAY_MODE)
                im_predict = display_skeletons(im_predict, skel_pos_pred,
                                               (0, 255, 0), SKEL_DISPLAY_MODE)

                # embed()
                # max_ = (im_predict * (im_predict < 255)).max()

            all_pred_ims += [im_predict]
            ''' Visualize '''
            if 1:
                cv2.putText(im_predict, "Blue=Truth", (10, 210),
                            cv2.FONT_HERSHEY_DUPLEX, .5,
                            (int(im_predict.max() / 2), 0, 0))
                cv2.putText(im_predict, "Green=Predict", (10, 230),
                            cv2.FONT_HERSHEY_DUPLEX, .5,
                            (0, int(im_predict.max() / 2), 0))
                cv2.imshow("prediction", im_predict)

                ret = cv2.waitKey(10)
                if ret > 0: break

                time.sleep(.5)

        # except:
        # 	print "Frame failed:", i
        # 	break

    embed()
Пример #22
0
def main(visualize=False, learn=False, actions=None, subjects=None, n_frames=220):
	# learn = True
	# learn = False
	if actions is []:
		actions = [2]
	if subjects is []:
		subjects = [2]
	# actions = [1]
	# actions = [1, 2, 3, 4, 5]
	# subjects = [1]
	if 1:
		MHAD = True
		cam = MHADPlayer(base_dir='/Users/colin/Data/BerkeleyMHAD/', kinect=1, actions=actions, subjects=subjects, reps=[1], get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
	else:
		MHAD = False
		cam = KinectPlayer(base_dir='./', device=2, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
		bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_A.tif')
		bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_B.tif')
		cam.bgSubtraction.backgroundModel = np.array(bg.getdata()).reshape([240,320]).clip(0, 4500)
	height, width = cam.depthIm.shape
	skel_previous = None

	# clf_geo = pickle.load(open('geodesic_svm_sorted_scaled_5class.pkl'))
	# clf_color,color_approx = pickle.load(open('color_histogram_approx_svm_5class.pkl'))
	# clf_lbp,lbp_approx = pickle.load(open('lbp_histogram_approx_svm_5class.pkl'))

	face_detector = FaceDetector()
	hand_detector = HandDetector(cam.depthIm.shape)
	curve_detector = CurveDetector(cam.depthIm.shape)

	# Video writer
	# video_writer = cv2.VideoWriter("/Users/colin/Desktop/test.avi", cv2.cv.CV_FOURCC('M','J','P','G'), 15, (320,240))

	# Save Background model
	# im = Image.fromarray(cam.depthIm.astype(np.int32), 'I')
	# im.save("/Users/Colin/Desktop/k2.png")

	# Setup pose database
	append = True
	append = False
	pose_database = PoseDatabase("PoseDatabase.pkl", learn=learn, search_joints=[0,4,7,10,13], append=append)

	# Per-joint classification
	head_features = []
	hand_features = []
	feet_features = []
	joint_features = {'geodesic':[None]*14,
					'color_histograms':[None]*14,
					'lbp':[None]*14}

	# Evaluation
	accuracy_all = []
	joint_accuracy_all = []
	geo_accuracy = []
	color_accuracy = []
	lbp_accuracy = []

	frame_count = 0
	frame_rate = 2
	if not MHAD:
		cam.next(350)
	frame_prev = 0
	try:
	# if 1:
		while cam.next(frame_rate):# and frame_count < n_frames:
			if frame_count - frame_prev > 100:
				print ""
				print "Frame #{0:d}".format(frame_count)
				frame_prev = frame_count

			if not MHAD:
				if len(cam.users) == 0:
					continue
				else:
					# cam.users = [np.array(cam.users[0]['jointPositions'].values())]
					if np.any(cam.users[0][0] == -1):
						continue
					cam.users[0][:,1] *= -1
					cam.users_uv_msr = [cam.camera_model.world2im(cam.users[0], [240,320])]

			# Apply mask to image
			if MHAD:
				mask = cam.get_person(2) > 0
			else:
				mask = cam.get_person() > 0
				if np.all(mask==False):
					continue

			im_depth =  cam.depthIm
			cam.depthIm[cam.depthIm>3000] = 0
			im_color = cam.colorIm*mask[:,:,None]
			cam.colorIm *= mask[:,:,None]
			pose_truth = cam.users[0]
			pose_truth_uv = cam.users_uv_msr[0]

			# Get bounding box around person
			box = nd.find_objects(mask)[0]
			d = 20
			# Widen box
			box = (slice(np.maximum(box[0].start-d, 0), \
					np.minimum(box[0].stop+d, height-1)), \
				   slice(np.maximum(box[1].start-d, 0), \
					np.minimum(box[1].stop+d, width-1)))
			box_corner = [box[0].start,box[1].start]

			''' ---------- ----------------------------------- --------'''
			''' ----------- Feature Detector centric approach ---------'''
			''' ---------- ----------------------------------- --------'''

			''' ---- Calculate Detectors ---- '''
			# Face detection
			face_detector.run(im_color[box])
			# Skin detection
			hand_markers = hand_detector.run(im_color[box], n_peaks=3)
			# curve detection
			# curve_markers = curve_detector.run((im_depth*mask)[box], n_peaks=3)
			# Calculate LBPs ##Max P=31 for LBPs becuase of datatype
			# x = local_occupancy_pattern(cam.depthIm[box]*mask[box], [5,5,5],[3,3,3])
			# lop_texture = local_binary_pattern_depth(cam.depthIm[box]*mask[box], 10, 20, px_diff_thresh=100)*mask[box]
			# lop_markers = []#peak_local_max(lop_texture, min_distance=20, num_peaks=5, exclude_border=False)
			# lbp_texture = local_binary_pattern(cam.depthIm[box]*mask[box], 6, 20)*mask[box]
			# Calculate Geodesic Extrema
			im_pos = cam.camera_model.im2PosIm(cam.depthIm*mask)[box] * mask[box][:,:,None]
			geodesic_markers = geodesic_extrema_MPI(im_pos, iterations=5, visualize=False)
			# geodesic_markers, geo_map = geodesic_extrema_MPI(im_pos, iterations=5, visualize=True)
			geodesic_markers_pos = im_pos[geodesic_markers[:,0], geodesic_markers[:,1]]

			markers = list(geodesic_markers) + list(hand_markers) #+ list(lop_markers) + curve_markers
			markers = np.array([list(x) for x in markers])

			if 1:
				''' ---- Database lookup ---- '''
				pts_mean = im_pos[(im_pos!=0)[:,:,2]].mean(0)
				if learn:
					# Normalize pose
					pose_uv = cam.users_uv[0]
					if np.any(pose_uv==0):
						print "skip"
						frame_count += frame_rate
						continue
					# print pose_truth[2], pts_mean
					pose_database.update(pose_truth - pts_mean)

				else:
					# Concatenate markers
					markers = list(geodesic_markers) + hand_markers
					# markers = list(geodesic_markers) + list(lop_markers) + curve_markers + hand_markers
					markers = np.array([list(x) for x in markers])

					# Normalize pose
					pts = im_pos[markers[:,0], markers[:,1]]
					pts = np.array([x for x in pts if x[0] != 0])
					pts -= pts_mean

					# Get closest pose
					pose = pose_database.query(pts, knn=1)
					# pose = pose_database.weighted_query(pts, knn=1)

					# pose = pose_database.reverse_query(pts[:,[1,0,2]])

					# im_pos -= pts_mean
					# R,t = IterativeClosestPoint(pose, im_pos.reshape([-1,3])-pts_mean, max_iters=5, min_change=.001, pt_tolerance=10000)
					# pose = np.dot(R.T, pose.T).T - t
					# pose = np.dot(R, pose.T).T + t

					pose += pts_mean
					pose_uv = cam.camera_model.world2im(pose, cam.depthIm.shape)

					# Constrain
					if 0:
						try:
							''' This does worse because the joint may fall to a different part of the body (e.g. hand to torso) which throws the error upward '''

							surface_map = nd.distance_transform_edt(im_pos[:,:,2]==0, return_distances=False, return_indices=True)
							pose_uv[:,:2] = surface_map[:, pose_uv[:,0]-box_corner[0], pose_uv[:,1]-box_corner[1]].T + [box_corner[0], box_corner[1]]
							pose = cam.camera_model.im2world(pose_uv)

							# skel_current = link_length_constraints(skel_current, constraint_links, constraint_values, alpha=.5)
							# skel_current = geometry_constraints(skel_current, joint_size, alpha=0.5)
							# skel_current = collision_constraints(skel_current, constraint_links)
							# embed()
							# pose_uv_box = pose_uv - [box_corner[0], box_corner[1], 0]
							# pose_uv_box = pose_uv_box.clip([0,0,0], [cam.depthIm.shape[0]-1, cam.depthIm.shape[1]-1, 9999])
							# joint_size = np.array([75]*14)
							# pose_n, pose_uv_n = ray_cast_constraints(pose, pose_uv_box, im_pos, surface_map, joint_size)
							# print 'Pose',pose,pose_n
							# pose = pose_n
							# pose_uv = pose_uv_n + [box_corner[0], box_corner[1], 0]

						except:
							print 'error constraining'

					# skel_previous = np.array(pose, copy=True)

			display_markers(cam.colorIm, hand_markers[:2], box, color=(0,250,0))
			if len(hand_markers) > 2:
				display_markers(cam.colorIm, [hand_markers[2]], box, color=(0,200,0))
			display_markers(cam.colorIm, geodesic_markers, box, color=(200,0,0))
			# display_markers(cam.colorIm, curve_markers, box, color=(0,100,100))
			# display_markers(cam.colorIm, lop_markers, box, color=(0,0,200))

			if 0:
				''' ---------- ----------------------------------- --------'''
				''' ---------- Feature Descriptor centric approach --------'''
				''' ---------- ----------------------------------- --------'''
				''' ---- Calculate Descriptors ---- '''
				hand_markers = np.array(hand_markers)
				# Geodesics
				geodesic_features = relative_marker_positions(im_pos, geodesic_markers_pos[:,[1,0,2]])
				geodesic_features = np.sort(geodesic_features)
				# Color Histogram
				skin = skimage.exposure.rescale_intensity(hand_detector.im_skin, out_range=[0,255]).astype(np.uint8)
				color_histograms = local_histograms(skin, n_bins=5, max_bound=255, patch_size=11)*mask[box][:,:,None]
				# LBP Histogram
				lbp_texture = local_binary_pattern(cam.depthIm[box]*mask[box], 6, 5)*mask[box]
				lbp_histograms = local_histograms(lbp_texture.astype(np.uint8), n_bins=10, max_bound=2**6, patch_size=11)*mask[box][:,:,None]
				# for i in range(10):
				# 	subplot(2,5,i+1)
				# 	imshow(lbp_histograms[:,:,i])

				''' ---- Per Joint Learning ---- '''
				if learn:
					for ii,i in enumerate(pose_truth_uv):
						if i[0] != 0:
							try:
								if joint_features['geodesic'][ii] is None:
									joint_features['geodesic'][ii] = geodesic_features[i[1]-box_corner[0], i[0]-box_corner[1]]
								else:
									joint_features['geodesic'][ii] = np.vstack([joint_features['geodesic'][ii], (geodesic_features[i[1]-box_corner[0], i[0]-box_corner[1]])])

								if joint_features['color_histograms'][ii] is None:
									joint_features['color_histograms'][ii] = color_histograms[i[1]-box_corner[0], i[0]-box_corner[1]]
								else:
									joint_features['color_histograms'][ii] = np.vstack([joint_features['color_histograms'][ii], deepcopy(color_histograms[i[1]-box_corner[0], i[0]-box_corner[1]])])

								if joint_features['lbp'][ii] is None:
									joint_features['lbp'][ii] = lbp_histograms[i[1]-box_corner[0], i[0]-box_corner[1]]
								else:
									joint_features['lbp'][ii] = np.vstack([joint_features['lbp'][ii], deepcopy(lbp_histograms[i[1]-box_corner[0], i[0]-box_corner[1]])])

							except:
								print "error"

				''' ---- Per Joint Classification ---- '''
				if not learn:
					try:
						# Geodesic clasification
						tmp = geodesic_features.reshape([-1, 6])
						tmp = np.array([x/x[-1] for x in tmp])
						tmp = np.nan_to_num(tmp)
						geo_clf_map = clf_geo.predict(tmp).reshape(im_pos.shape[:2])*mask[box]
						geo_clf_labels = geo_clf_map[pose_truth_uv[[0,1,4,7,10,13],1]-box_corner[0], pose_truth_uv[[0,1,4,7,10,13],0]-box_corner[1]]
						geo_accuracy += [geo_clf_labels == [0,1,4,7,10,13]]
						print 'G',np.mean(geo_accuracy,0), geo_clf_labels==[0,1,4,7,10,13]
						cv2.imshow('Geo', geo_clf_map/float(geo_clf_map.max()))
					except:
						pass

					try:
						# Color histogram classification
						color_test = color_approx.transform(color_histograms.reshape([-1, 5]))
						color_clf_map = clf_color.predict(color_test).reshape(im_pos.shape[:2])*mask[box]
						color_clf_labels = color_clf_map[pose_truth_uv[[0,1,4,7,10,13],1]-box_corner[0], pose_truth_uv[[0,1,4,7,10,13],0]-box_corner[1]]
						color_accuracy += [color_clf_labels == [0,1,4,7,10,13]]
						print 'C',np.mean(color_accuracy,0), color_clf_labels==[0,1,4,7,10,13]
						cv2.imshow('Col', color_clf_map/float(color_clf_map.max()))
					except:
						pass

					try:
						# lbp histogram classification
						lbp_test = color_approx.transform(lbp_histograms.reshape([-1, 10]))
						lbp_clf_map = clf_lbp.predict(lbp_test).reshape(im_pos.shape[:2])*mask[box]
						lbp_clf_labels = lbp_clf_map[pose_truth_uv[[0,1,4,7,10,13],1]-box_corner[0], pose_truth_uv[[0,1,4,7,10,13],0]-box_corner[1]]
						lbp_accuracy += [lbp_clf_labels == [0,1,4,7,10,13]]
						print 'L',np.mean(lbp_accuracy,0), lbp_clf_labels==[0,1,4,7,10,13]
						cv2.imshow('LBP', lbp_clf_map/float(lbp_clf_map.max()))
					except:
						pass

				pose_uv = pose_truth_uv
				pose = pose_truth

			# ''' ---- Accuracy ---- '''
			if 1 and not learn:
				# pose_truth = cam.users[0]
				error = pose_truth - pose
				# print "Error", error
				error_l2 = np.sqrt(np.sum(error**2, 1))
				# error_l2 = np.sqrt(np.sum(error[:,:2]**2, 1))
				joint_accuracy_all += [error_l2]
				accuracy = np.sum(error_l2 < 150) / 14.
				accuracy_all += [accuracy]
				print "Current", accuracy
				# print "Running avg:", np.mean(accuracy_all)
				# print "Joint avg (per-joint):", np.mean(joint_accuracy_all, -1)
				# print "Joint avg (overall):", np.mean(joint_accuracy_all)

			''' --- Visualization --- '''
			cam.colorIm = display_skeletons(cam.colorIm, pose_truth_uv, skel_type='Kinect', color=(0,255,0))
			cam.colorIm = display_skeletons(cam.colorIm, pose_uv, skel_type='Kinect')
			cam.visualize()

			# print "Extrema:", geo_clf_map[geodesic_markers[:,0], geodesic_markers[:,1]]
			# print "Skin:", geo_clf_map[hand_markers[:,0], hand_markers[:,1]]
			# print "Skin val:", hand_detector.skin_match[hand_markers[:,0], hand_markers[:,1]]
			# hand_data += [[x[0] for x in hand_markers],
							# [x[1] for x in hand_markers],
							# list(hand_detector.skin_match[hand_markers[:,0], hand_markers[:,1]])]

			# ------------------------------------------------------------

			# video_writer.write((geo_clf_map/float(geo_clf_map.max())*255.).astype(np.uint8))
			# video_writer.write(cam.colorIm[:,:,[2,1,0]])

			frame_count += frame_rate
	except:
		pass


	print "-- Results for subject {:d} action {:d}".format(subjects[0],actions[0])
	print "Running avg:", np.mean(accuracy_all)
	print "Joint avg (overall):", np.mean(joint_accuracy_all)
	# print 'Done'
	if learn:
		pose_database.save()
		print 'Pose database saved'

	embed()
	return






	''' --- Format Geodesic features ---'''
	geodesics_train = []
	geodesics_labels = []
	for i in xrange(len(joint_features['geodesic'])):
		# joint_features['geodesic'][i] = np.array([np.sort(x) for x in joint_features['geodesic'][i] if x[0] != 0])
		joint_features['geodesic'][i] = np.array([x/x.max() for x in joint_features['geodesic'][i] if x[0] != 0])
		ii = i
		if i not in [0,1,4,7,10,13]:
			ii=1
		else:
			geodesics_labels += [i*np.ones(len(joint_features['geodesic'][i]))]
	geodesics_train = np.vstack([joint_features['geodesic'][x] for x in [0,1,4,7,10,13]])
	# geodesics_train = np.vstack(joint_features['geodesic'])
	geodesics_labels = np.hstack(geodesics_labels)

	figure(1)
	title('Distances of each joint to first 6 geodesic extrema')
	for i in range(14):
		subplot(4,4,i+1)
		ylabel('Distance')
		xlabel('Sample')
		plot(joint_features['geodesic'][i])
		axis([0,400,0,1600])

	# Learn geodesic classifier
	clf_geo = SGDClassifier(n_iter=10000, alpha=.01, n_jobs=-1, class_weight='auto')
	clf_geo.fit(geodesics_train, geodesics_labels)
	print clf_geo.score(geodesics_train, geodesics_labels)
	geodesic_features = np.sort(geodesic_features)
	sgd_map = clf_geo.predict(geodesic_features.reshape([-1, 6])).reshape(im_pos.shape[:2])

	pickle.dump(clf_geo, open('geodesic_svm_sorted_scaled_5class.pkl','w'), pickle.HIGHEST_PROTOCOL)
	# clf_geo = pickle.load(open('geodesic_svm_sorted_scaled_5class.pkl'))

	''' --- Color Histogram features ---'''
	color_train = []
	color_labels = []
	for i in xrange(len(joint_features['color_histograms'])):
		ii = i
		if i not in [0,1,4,7,10,13]:
			ii=1
		else:
			color_labels += [i*np.ones(len(joint_features['color_histograms'][i]))]
		# color_labels += [i*np.ones(len(joint_features['color_histograms'][i]))]
	# color_train = np.vstack(joint_features['color_histograms'])
	color_train = np.vstack([joint_features['color_histograms'][x] for x in [0,1,4,7,10,13]])
	color_labels = np.hstack(color_labels)

	color_approx = AdditiveChi2Sampler()
	color_approx_train = color_approx.fit_transform(color_train)
	clf = SGDClassifier(n_iter=10000, alpha=.01, n_jobs=-1, class_weight='auto')
	clf.fit(color_approx_train, color_labels)
	print clf.score(color_approx_train, color_labels)
	color_test = color_approx.transform(color_histograms.reshape([-1, 5]))
	sgd_map = clf.predict(color_test).reshape(im_pos.shape[:2])*mask[box]

	figure(1)
	title('Color Histograms per Joint')
	for i in range(14):
		subplot(4,4,i+1)
		ylabel('Count')
		xlabel('Sample')
		plot(joint_features['color_histograms'][i])
		axis([0,10,0,30])

	for i in range(5):
		subplot(1,5,i+1)
		imshow(color_histograms[:,:,i])

	pickle.dump([clf,color_approx], open('color_histogram_approx_svm_5class.pkl','w'), pickle.HIGHEST_PROTOCOL)
	# clf_color,color_approx = pickle.load(open('color_histogram_approx_svm_5class.pkl'))

	''' --- LBP Histogram features ---'''
	color_train = []
	color_labels = []
	for i in xrange(len(joint_features['lbp'])):
		ii = i
		if i not in [0,1,4,7,10,13]:
			ii=1
		else:
			color_labels += [i*np.ones(len(joint_features['lbp'][i]))]
		# color_labels += [i*np.ones(len(joint_features['color_histograms'][i]))]
	# color_train = np.vstack(joint_features['color_histograms'])
	color_train = np.vstack([joint_features['lbp'][x] for x in [0,1,4,7,10,13]])
	color_labels = np.hstack(color_labels)

	color_approx = AdditiveChi2Sampler()
	color_approx_train = color_approx.fit_transform(color_train)
	clf = SGDClassifier(n_iter=10000, alpha=.01, n_jobs=-1, class_weight='auto')
	clf.fit(color_approx_train, color_labels)
	print clf.score(color_approx_train, color_labels)
	color_test = color_approx.transform(lbp_histograms.reshape([-1, 10]))
	sgd_map = clf.predict(color_test).reshape(im_pos.shape[:2])*mask[box]

	figure(1)
	title('LBP Histograms per Joint')
	for i in range(14):
		subplot(4,4,i+1)
		ylabel('Count')
		xlabel('Sample')
		plot(joint_features['lbp'][i])
		axis([0,10,0,30])

	for i in range(5):
		subplot(1,5,i+1)
		imshow(color_histograms[:,:,i])

	pickle.dump([clf,color_approx], open('lbp_histogram_approx_svm_5class.pkl','w'), pickle.HIGHEST_PROTOCOL)
Пример #23
0
def main(visualize=False, learn=False, patch_size=32, n_frames=2500):

	if 1:
		get_color = True
		cam = MHADPlayer(base_dir='/Users/colin/Data/BerkeleyMHAD/', kinects=[1], actions=[1], subjects=[1], get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
		# cam = KinectPlayer(base_dir='./', device=2, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
		# cam.bgSubtraction.backgroundModel = sm.imread('/Users/colin/Data/CIRL_28Feb2013/depth/59/13/47/device_1/depth_59_13_47_4_13_35507.png').clip(0, 4500)
		# bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/Office_Background_B.tif')
		# bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_B.tif')
		# bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/Wall_Background_B.tif')
		# cam.bgSubtraction.backgroundModel = np.array(bg.getdata()).reshape([240,320]).clip(0, 4500)
		# embed()
		# cam = KinectPlayer(base_dir='./', device=2, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False)
	elif 0:
		get_color = False
		cam = EVALPlayer(base_dir='/Users/colin/Data/EVAL/', bg_subtraction=True, get_depth=True, get_skeleton=True, fill_images=False)
	elif 0:
		get_color = False
		cam = MSRPlayer(base_dir='/Users/colin/Data/MSR_DailyActivities/Data/', actions=[1], subjects=[1,2,3,4,5], bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False)

	embed()
	height, width = cam.depthIm.shape

	skel_names = np.array(['head', 'neck', 'torso', 'l_shoulder', 'l_elbow', 'l_hand', \
				'r_shoulder', 'r_elbow', 'r_hand', 'l_hip', 'l_knee', 'l_foot',\
				'r_hip', 'r_knee', 'r_foot'])

	# skel_init, joint_size, constraint_links, features_joints,convert_to_kinect = get_11_joint_properties()
	skel_init, joint_size, constraint_links, features_joints,skel_parts, convert_to_kinect = get_13_joint_properties()
	# skel_init, joint_size, constraint_links, features_joints,skel_parts, convert_to_kinect = get_14_joint_properties()
	# skel_init, joint_size, constraint_links, features_joints,convert_to_kinect = get_15_joint_properties()
	constraint_values = []
	for c in constraint_links:
		constraint_values += [np.linalg.norm(skel_init[c[0]]-skel_init[c[1]], 2)]
	constraint_values = np.array(constraint_values)

	skel_current = skel_init.copy()
	skel_previous = skel_current.copy()

	face_detector = FaceDetector()
	hand_template = sm.imread('/Users/colin/Desktop/fist.png')[:,:,2]
	hand_template = (255 - hand_template)/255.
	if height == 240:
		hand_template = cv2.resize(hand_template, (10,10))
	else:
		hand_template = cv2.resize(hand_template, (20,20))

	frame_count = 0
	if get_color and height==240:
		cam.next(220)

	accuracy_measurements = {'overall':[], 'per_joint':[]}

	# Video writer
	# print '1'
	video_writer = cv2.VideoWriter("/Users/colin/Desktop/test.avi", cv2.cv.CV_FOURCC('M','J','P','G'), 15, (320,240))
	# print '1'

	# embed()
	while cam.next(1) and frame_count < n_frames:
		print ""
		print "Frame #{0:d}".format(frame_count)
		# Get rid of bad skeletons
		if type(cam.users)==dict:
			cam_skels = [np.array(cam.users[s]['jointPositions'].values()) for s in cam.users]
		else:
			cam_skels = [np.array(s) for s in cam.users]
		cam_skels = [s for s in cam_skels if np.all(s[0] != -1)]

		# Check for skeletons
		# if len(cam_skels) == 0:
			# continue

		# Apply mask to image
		mask = cam.get_person() > 0
		# if mask is False:
		if 1:
			if len(cam_skels) > 0:
				# cam.colorIm = display_skeletons(cam.colorIm[:,:,2], skel_msr_im, (255,), skel_type='Kinect')[:,:,None]
				cam.colorIm[:,:,1] = display_skeletons(cam.colorIm[:,:,2], skel2depth(cam_skels[0], cam.depthIm.shape), (255,), skel_type='Kinect')

			## Max P=31 for LBPs becuase of datatype
			# tmp = local_binary_pattern(-cam.depthIm, 1, 10)#*(cam.foregroundMask>0)
			# embed()
			# tmp = local_occupancy_pattern(cam.depthIm, 31, 20, px_diff_thresh=100)*(cam.foregroundMask>0)

			# cv2.imshow("LBP", np.abs(tmp.astype(np.float))/float(tmp.max()))
			cam.colorIm = cam.colorIm[:,:,[0,2,1]]
			cam.visualize()
			continue

		# Anonomize
		# c_masked = cam.colorIm*mask[:,:,None]
		# d_masked = cam.depthIm*mask
		# c_masked_neg = cam.colorIm*(-mask[:,:,None])

		im_depth =  cam.depthIm
		if get_color:
			im_color = cam.colorIm
			im_color *= mask[:,:,None]
			im_color = np.ascontiguousarray(im_color)
			im_color = im_color[:,:,[2,1,0]]
		if len(cam_skels) > 0:
			skel_msr_xyz = cam_skels[0]
			skel_msr_im = skel2depth(cam_skels[0], cam.depthIm.shape)

		box = nd.find_objects(mask)[0]
		d = 20
		box = (slice(np.maximum(box[0].start-d, 0), \
				np.minimum(box[0].stop+d, height-1)), \
			   slice(np.maximum(box[1].start-d, 0), \
				np.minimum(box[1].stop+d, width-1)))

		# Face and skin detection
		if get_color:
			face_detector.run(im_color[box])
			im_skin = rgb2lab(cam.colorIm[box].astype(np.int16))[:,:,1]
			# im_skin = skimage.exposure.equalize_hist(im_skin)
			# im_skin = skimage.exposure.rescale_intensity(im_skin, out_range=[0,1])
			im_skin *= im_skin > face_detector.min_threshold
			im_skin *= im_skin < face_detector.max_threshold
			# im_skin *= face_detector>.068

			skin_match_c = nd.correlate(im_skin, hand_template)

			# Display Predictions - Color Based matching
			optima = peak_local_max(skin_match_c, min_distance=20, num_peaks=3, exclude_border=False)
			# Visualize
			if len(optima) > 0:
				optima_values = skin_match_c[optima[:,0], optima[:,1]]
				optima_thresh = np.max(optima_values) / 2
				optima = optima.tolist()

				for i,o in enumerate(optima):
					if optima_values[i] < optima_thresh:
						optima.pop(i)
						break
					joint = np.array(o) + [box[0].start, box[1].start]
					circ = np.array(circle(joint[0],joint[1], 5)).T
					circ = circ.clip([0,0], [height-1, width-1])
					cam.colorIm[circ[:,0], circ[:,1]] = (0,120 - 30*i,0)#(255*(i==0),255*(i==1),255*(i==2))
			markers = optima



		# ---------------- Tracking Algorithm ----------------
		# ---- Preprocessing ----
		if get_color:
			im_pos = rgbIm2PosIm(cam.depthIm*mask)[box] * mask[box][:,:,None]
		else:
			im_pos = cam.posIm[box]
		cam.depthIm[cam.depthIm==4500] = 0
		im_pos_mean = np.array([
							im_pos[:,:,0][im_pos[:,:,2]!=0].mean(),
							im_pos[:,:,1][im_pos[:,:,2]!=0].mean(),
							im_pos[:,:,2][im_pos[:,:,2]!=0].mean()
							], dtype=np.int16)

		# Zero-center
		if skel_current[0,2] == 0:
			skel_current += im_pos_mean
			skel_previous += im_pos_mean

		# Calculate Geodesic Extrema
		extrema = geodesic_extrema_MPI(im_pos, iterations=15, visualize=False)
		if len(extrema) > 0:
			for i,o in enumerate(extrema):
				joint = np.array(o) + [box[0].start, box[1].start]
				circ = np.array(circle(joint[0],joint[1], 5)).T
				circ = circ.clip([0,0], [height-1, width-1])
				cam.colorIm[circ[:,0], circ[:,1]] = (0,0,200-10*i)

		# Calculate Z-surface
		surface_map = nd.distance_transform_edt(-mask[box], return_distances=False, return_indices=True)

		# Only sample some of the points
		if 1:
			mask_interval = 1
			feature_radius = 10
		else:
			mask_interval = 3
			feature_radius = 2

		# Modify the box wrt the sampling
		box = (slice(box[0].start, box[0].stop, mask_interval),slice(box[1].start, box[1].stop, mask_interval))
		im_pos_full = im_pos.copy()
		im_pos = im_pos[::mask_interval,::mask_interval]
		box_height, box_width,_ = im_pos.shape

		skel_img_box = world2rgb(skel_current, cam.depthIm.shape) - [box[0].start, box[1].start, 0]
		skel_img_box = skel_img_box.clip([0,0,0], [im_pos.shape[0]-1, im_pos.shape[1]-1, 9999])

		feature_width = feature_radius*2+1
		all_features = [face_detector.face_position, optima, extrema]
		total_feature_count = np.sum([len(f) for f in all_features])

		# Loop through the rest of the constraints
		for _ in range(1):

			# ---- (Step 1A) Find feature coordespondences ----
			color_feature_displacement = feature_joint_displacements(skel_current, im_pos, all_features[1], features_joints[1], distance_thresh=500)
			depth_feature_displacement = feature_joint_displacements(skel_current, im_pos, all_features[2], features_joints[2], distance_thresh=500)

			# Alternative method: use kdtree
			## Calc euclidian distance between each pixel and all joints
			px_corr = np.zeros([im_pos.shape[0], im_pos.shape[1], len(skel_current)])
			for i,s in enumerate(skel_current):
				px_corr[:,:,i] = np.sqrt(np.sum((im_pos - s)**2, -1))# / joint_size[i]**2

			## Handle occlusions by argmax'ing over set of skel parts
			# visible_configurations = list(it.product([0,1], repeat=5))[1:]
			visible_configurations = [
										#[0,1,1,1,1],
										#[1,0,0,0,0],
										[1,1,1,1,1]
									]
			px_visibility_label = np.zeros([im_pos.shape[0], im_pos.shape[1], len(visible_configurations)], dtype=np.uint8)
			visible_scores = np.ones(len(visible_configurations))*np.inf
			# Try each occlusion configuration set
			for i,v in enumerate(visible_configurations):
				visible_joints = list(it.chain.from_iterable(skel_parts[np.array(v)>0]))
				px_visibility_label[:,:,i] = np.argmin(px_corr[:,:,visible_joints], -1)#.reshape([im_pos.shape[0], im_pos.shape[1]])
				visible_scores[i] = np.min(px_corr[:,:,visible_joints], -1).sum()
			# Choose best occlusion configuration
			occlusion_index = np.argmin(visible_scores)
			occlusion_configuration = visible_configurations[occlusion_index]
			occlusion_set = list(it.chain.from_iterable(skel_parts[np.array(visible_configurations[occlusion_index])>0]))
			# Choose label for pixels based on occlusion configuration
			px_label = px_visibility_label[:,:,occlusion_index]*mask[box]
			px_label_flat = px_visibility_label[:,:,occlusion_index][mask[box]].flatten()

			visible_joints = [1 if x in occlusion_set else 0 for x in range(len(skel_current))]

			# Project distance to joint's radius
			px_joint_displacement = skel_current[px_label_flat] - im_pos[mask[box]]
			px_joint_magnitude = np.sqrt(np.sum(px_joint_displacement**2,-1))
			joint_mesh_pos = skel_current[px_label_flat] + px_joint_displacement*(joint_size[px_label_flat]/px_joint_magnitude)[:,None]
			px_joint_displacement = joint_mesh_pos - im_pos[mask[box]]

			 # Calc the correspondance change in position for each joint
			correspondence_displacement = np.zeros([len(skel_current), 3])
			ii = 0
			for i,_ in enumerate(skel_current):
				if i in occlusion_set:
					labels = px_label_flat==i
					correspondence_displacement[i] = np.mean(px_joint_displacement[px_label_flat==ii], 0)
					# correspondence_displacement[ii] = np.sum(px_joint_displacement[px_label_flat==ii], 0)
					ii+=1
			correspondence_displacement = np.nan_to_num(correspondence_displacement)

			# ---- (Step 2) Update pose state, x ----
			lambda_p = .0
			lambda_c = .3
			lambda_cf = .3
			lambda_df = .0
			skel_prev_difference = (skel_current - skel_previous)
			# embed()
			skel_current = skel_previous \
							+ lambda_p  * skel_prev_difference \
							- lambda_c  * correspondence_displacement\
							- lambda_cf * color_feature_displacement\
							- lambda_df * depth_feature_displacement

			# ---- (Step 3) Add constraints ----
			# A: Link lengths / geometry
			skel_current = link_length_constraints(skel_current, constraint_links, constraint_values, alpha=.5)
			skel_current = geometry_constraints(skel_current, joint_size, alpha=0.5)
			# skel_current = collision_constraints(skel_current, constraint_links)

			skel_img_box = (world2rgb(skel_current, cam.depthIm.shape) - [box[0].start, box[1].start, 0])/mask_interval
			skel_img_box = skel_img_box.clip([0,0,0], [cam.depthIm.shape[0]-1, cam.depthIm.shape[1]-1, 9999])
			# B: Ray-cast constraints
			skel_current, skel_img_box = ray_cast_constraints(skel_current, skel_img_box, im_pos_full, surface_map, joint_size)

		# # Map back from mask to image
		skel_img = skel_img_box + [box[0].start, box[1].start, 0]

		# Update for next round
		skel_previous = skel_current.copy()
		# skel_previous = skel_init.copy()

		# ---------------------Accuracy --------------------------------------

		# Compute accuracy wrt standard Kinect data
		# skel_im_error = skel_msr_im[:,[1,0]] - skel_img[[0,2,3,4,5,6,7,8,9,10,11,12,13,14],:2]
		skel_current_kinect = convert_to_kinect(skel_current)
		try:
			skel_msr_im_box = np.array([skel_msr_im[:,1]-box[0].start,skel_msr_im[:,0]-box[1].start]).T.clip([0,0],[box_height-1, box_width-1])
			skel_xyz_error = im_pos[skel_msr_im_box[:,0],skel_msr_im_box[:,1]] - skel_current_kinect#skel_current[[0,2,3,4,5,6,7,8,9,10,11,12],:]
			skel_l2 = np.sqrt(np.sum(skel_xyz_error**2, 1))
			# print skel_l2
			skel_correct = np.nonzero(skel_l2 < 150)[0]
			accuracy_measurements['per_joint'] += [skel_l2]
			accuracy_measurements['overall'] += [len(skel_correct)/float(len(skel_current_kinect))*100]
			print "{0:0.2f}% joints correct".format(len(skel_correct)/float(len(skel_current_kinect))*100)
			print "Overall accuracy: ", np.mean(accuracy_measurements['overall'])
		except:
			pass

		print "Visible:", visible_joints

		# ----------------------Visualization-------------------------------------
		# l = line(skel_img_box[joint][0], skel_img_box[joint][1], features[feat][0], features[feat][1])
		# skimage.draw.set_color(cam.colorIm[box], l, (255,255,255))

		# Add circles to image
		cam.colorIm = np.ascontiguousarray(cam.colorIm)
		if 0:#get_color:
			cam.colorIm = display_skeletons(cam.colorIm, skel_img[:,[1,0,2]]*np.array(visible_joints)[:,None], (0,255,), skel_type='Other', skel_contraints=constraint_links)
			for i,s in enumerate(skel_img):
				# if i not in skel_correct:
				if i not in occlusion_set:
					c = circle(s[0], s[1], 5)
					cam.colorIm[c[0], c[1]] = (255,0,0)
			# cam.colorIm = display_skeletons(cam.colorIm, world2rgb(skel_init+im_pos_mean, [240,320])[:,[1,0]], skel_type='Other', skel_contraints=constraint_links)

		if 1:
			if len(face_detector.face_position) > 0:
				for (x, y) in face_detector.face_position:
					pt1 = (int(y)+box[1].start-15, int(x)+box[0].start-15)
					pt2 = (pt1[0]+int(15), pt1[1]+int(15))
					cv2.rectangle(cam.colorIm, pt1, pt2, (255, 0, 0), 3, 8, 0)
			if len(cam_skels) > 0:
				# cam.colorIm = display_skeletons(cam.colorIm[:,:,2], skel_msr_im, (255,), skel_type='Kinect')[:,:,None]
				cam.colorIm[:,:,1] = display_skeletons(cam.colorIm[:,:,2], skel_msr_im, (255,), skel_type='Kinect')
			cam.visualize()
			cam.depthIm = local_binary_pattern(cam.depthIm*cam.foregroundMask, 50, 10)
			cv2.imshow("Depth", cam.depthIm/float(cam.depthIm.max()))
			# cam2.visualize()
			# embed()

		# 3D Visualization
		if 0:
			from mayavi import mlab
			# figure = mlab.figure(1, bgcolor=(0,0,0), fgcolor=(1,1,1))
			figure = mlab.figure(1, bgcolor=(1,1,1))
			figure.scene.disable_render = True
			mlab.clf()
			mlab.view(azimuth=-45, elevation=45, roll=0, figure=figure)
			mlab.points3d(-skel_current[:,1], -skel_current[:,0], skel_current[:,2], scale_factor=100., color=(.5,.5,.5))
			for c in constraint_links:
				x = np.array([skel_current[c[0]][0], skel_current[c[1]][0]])
				y = np.array([skel_current[c[0]][1], skel_current[c[1]][1]])
				z = np.array([skel_current[c[0]][2], skel_current[c[1]][2]])
				mlab.plot3d(-y,-x,z, tube_radius=25., color=(1,0,0))
			figure.scene.disable_render = False

		# 3-panel view
		if 0:
			subplot(2,2,1)
			scatter(skel_current[:,1], skel_current[:,2]);
			for i,c in enumerate(constraint_links):
				plot([skel_current[c[0],1], skel_current[c[1],1]],[skel_current[c[0],2], skel_current[c[1],2]])
			axis('equal')

			subplot(2,2,3)
			scatter(skel_current[:,1], -skel_current[:,0]);
			for i,c in enumerate(constraint_links):
				plot([skel_current[c[0],1], skel_current[c[1],1]],[-skel_current[c[0],0], -skel_current[c[1],0]])
			axis('equal')

			subplot(2,2,4)
			scatter(skel_current[:,2], -skel_current[:,0]);
			for i,c in enumerate(constraint_links):
				plot([skel_current[c[0],2], skel_current[c[1],2]],[-skel_current[c[0],0], -skel_current[c[1],0]])
			axis('equal')
			# show()

		# ------------------------------------------------------------

		video_writer.write(cam.colorIm[:,:,[2,1,0]])
		frame_count+=1
	print 'Done'
Пример #24
0
def main(anonomization=False):
    # Setup kinect data player
    # cam = KinectPlayer(base_dir='./', bg_subtraction=False, get_depth=True, get_color=True, get_skeleton=False)
    # actions = [2, 5, 7]
    actions = [2]
    actions_labels = ['JumpingJacks', 'Waving', 'Clapping']
    action = 'JumpingJacks'
    subjects = range(1, 10)
    cam = MHADPlayer(base_dir='/Users/colin/Data/BerkeleyMHAD/',
                     kinect=1,
                     actions=actions,
                     subjects=subjects,
                     reps=[1],
                     get_depth=True,
                     get_color=True,
                     get_skeleton=True,
                     fill_images=False)
    if anonomization:
        ''' bg_type can be:
				'box'[param=max_depth]
				'static'[param=background]
				'mean'
				'median'
				'adaptive_mog'

				See BasePlayer for more details
		'''
        cam.set_bg_model(bg_type='box', param=2600)

    # Test HOG pedestrian detector
    # cv2.HOGDescriptor_getDefaultPeopleDetector()
    # imshow(color[people])

    body_data = [[]]
    framerate = 1
    prev_n = len(cam.kinect_folder_names)
    action_idx = 0
    # embed()
    while cam.next(framerate):
        if len(cam.kinect_folder_names) != prev_n:
            # action_idx += 1
            body_data += [[]]
            prev_n = len(cam.kinect_folder_names)
        body_data[-1] += [cam.users_uv[0]]

        continue

        if 0:
            people_all = list(
                cv.HOGDetectMultiScale(cv.fromarray(
                    cam.colorIm.mean(-1).astype(np.uint8)),
                                       cv.CreateMemStorage(0),
                                       hit_threshold=-1.5))
            print len(people_all), " people detected"
            for i, people in enumerate(people_all):
                # embed()
                try:
                    print people
                    # tmp = cam.colorIm[people[0][0]:people[0][0]+people[1][0], people[0][1]:people[0][1]+people[1][1]]
                    # tmp = cam.colorIm[people[0][1]:people[0][1]+people[1][1], people[0][0]:people[0][0]+people[1][0]]
                    cam.colorIm[people[0][1]:people[0][1] + people[1][1],
                                people[0][0]:people[0][0] + people[1][0]] += 50
                    # cv2.imshow("Body2 "+str(i), tmp)
                    # subplot(4, len(people_all)/4, i + 1)
                    # imshow(tmp)

                    # tmp = cam.colorIm[people[0][0]:people[0][0]+people[0][1], people[1][0]:people[1][0]+people[1][1]]
                    # cv2.imshow("Body1 "+str(i), tmp)
                    # tmp = cam.colorIm[people[1][0]:people[1][0]+people[1][1], people[0][0]:people[0][0]+people[0][1]]
                    # print tmp
                    # cv2.imshow("Body "+str(i), tmp)
                except:
                    pass
            # show()

        if anonomization and cam.mask is not None:

            mask = (sm.imresize(cam.mask, [480, 640]) > 0).copy()
            mask[40:170, 80:140] = True  # person in background
            px = draw.circle(145, 285, 40)
            mask[px] = True

            # Version 1 - Blur + Circle
            color = cam.colorIm.copy()
            color[mask] = cv2.GaussianBlur(color, (29, 29), 50)[mask]

            subplot(1, 3, 1)
            imshow(color)

            # Version 2 - Noise on mask
            color = cam.colorIm.copy()
            noise_key = np.random.randint(0, 255,
                                          cam.colorIm.shape).astype(np.uint8)
            color[mask] = color[mask] + noise_key[mask]

            subplot(1, 3, 2)
            imshow(color)

            # Version 3 - All noise
            color = cam.colorIm.copy()
            color = color + noise_key

            subplot(1, 3, 3)
            imshow(color)

            show()

        # cam.colorIm = cam.colorIm[:,:,[2,1,0]]
        # cam.colorIm *= mask[:,:,None]
        # cam.visualize(color=True, depth=True, text=True, colorize=True, depth_bounds=[0,4000])
        # cam.visualize()
        cam.colorIm = display_skeletons(cam.colorIm,
                                        cam.users_uv[0],
                                        skel_type='Kinect',
                                        color=(0, 255, 0))
        cam.visualize()

        body_data[actions_labels[action_idx]] += [cam.users_uv[0]]
        # cam.visualize(color=True, depth=True, text=False, colorize=False, depth_bounds=None)

    print 'Done'

    # Pause at the end

    # embed()
    import scipy.io as si
    si.matlab.savemat(action + ".mat", {'data': body_data})
Пример #25
0
def main(visualize=False, learn=False):
    # Init both cameras
    # fill = True
    fill = False
    get_color = True
    cam = KinectPlayer(base_dir='./',
                       device=1,
                       bg_subtraction=True,
                       get_depth=True,
                       get_color=get_color,
                       get_skeleton=True,
                       fill_images=fill)
    cam2 = KinectPlayer(base_dir='./',
                        device=2,
                        bg_subtraction=True,
                        get_depth=True,
                        get_color=get_color,
                        get_skeleton=True,
                        fill_images=fill)
    # Transformation matrix from first to second camera
    data = pickle.load(open("Registration.dat", 'r'))
    transform_c1_to_c2 = data['transform']

    # Get random forest parameters
    if learn:
        rf = RFPose(offset_max=100, feature_count=300)
    else:
        rf = RFPose()
        rf.load_forest()

    ii = 0
    # cam.next(200)
    all_joint_ims_z = []
    all_joint_ims_c = []
    while cam.next() and ii < 200:
        # Update frames
        cam2.sync_cameras(cam)
        if ii % 10 != 0:
            ii += 1
            continue

        # Transform skels from cam1 to cam2
        cam_skels = [
            np.array(cam.users[s]['jointPositions'].values())
            for s in cam.users.keys()
        ]
        # Get rid of bad skels
        cam_skels = [s for s in cam_skels if np.all(s[0] != -1)]

        if len(cam_skels) == 0:
            continue
        ii += 1

        # Save images
        if 1:
            joint_ims_z = []
            joint_ims_c = []
            dx = 10
            skel_tmp = skel2depth(cam_skels[0], [240, 320])
            for j_pos in skel_tmp:
                # embed()
                joint_ims_z += [
                    cam.depthIm[j_pos[0] - dx:j_pos[0] + dx,
                                j_pos[1] - dx:j_pos[1] + dx]
                ]
                joint_ims_c += [
                    cam.colorIm[j_pos[0] - dx:j_pos[0] + dx,
                                j_pos[1] - dx:j_pos[1] + dx]
                ]
            if len(joint_ims_z) > 0:
                all_joint_ims_z += [joint_ims_z]
                all_joint_ims_c += [joint_ims_c]

        if 0:
            cam2_skels = transform_skels(cam_skels, transform_c1_to_c2,
                                         'image')

            try:
                depth = cam2.get_person()
                if learn:
                    rf.add_frame(depth, cam2_skels[0])
                else:
                    rf.infer_pose(depth)

                if visualize:
                    cam2.depthIm = display_skeletons(cam2.depthIm,
                                                     cam2_skels[0], (5000, ),
                                                     skel_type='Low')
                    skel1 = kinect_to_msr_skel(
                        skel2depth(cam_skels[0], [240, 320]))
                    cam.depthIm = display_skeletons(cam.depthIm,
                                                    skel1, (5000, ),
                                                    skel_type='Low')
                    cam.visualize()
                    cam2.visualize()
            except:
                pass

    embed()
    if learn:
        print "Starting forest"
        rf.learn_forest()

    print 'Done'