Пример #1
0
def cokriging_evaluation(year):
    from pyKriging import coKriging
    Y, D, P, Tf, Gd = extract_raw_samples(2012, crime_t=['total'])
    coords = get_centroid_ca()

    X_train, X_test, Y_train, Y_test = build_features(Y, D, P, Tf, Y, Gd, Y, 0, taxi_norm="bydestination")
    coords_train = np.delete(coords, 0, axis=0)
    coKriging.coKriging(coords_train, X_train, coords_train, Y_train)
Пример #2
0
def cheap(X):

    A = 0.5
    B = 10
    C = -5
    D = 0

    print(X)
    print(((X + D) * 6 - 2))
    return A * np.power(((X + D) * 6 - 2), 2) * np.sin(
        ((X + D) * 6 - 2) * 2) + ((X + D) - 0.5) * B + C


def expensive(X):
    return np.power((X * 6 - 2), 2) * np.sin((X * 6 - 2) * 2)


Xe = np.array([0, 0.4, 0.6, 1])
Xc = np.array([0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0, 0.4, 0.6, 1])

yc = cheap(Xc)
ye = expensive(Xe)

ck = coKriging.coKriging(Xc, yc, Xe, ye)
ck.thetac = np.array([1.2073])
print(ck.Xc)
ck.updateData()
ck.updatePsi()
ck.neglnlikehood()
Пример #3
0
import numpy as np

def cheap(X):

    A=0.5
    B=10
    C=-5
    D=0

    print X
    print ((X+D)*6-2)
    return A*np.power( ((X+D)*6-2), 2 )*np.sin(((X+D)*6-2)*2)+((X+D)-0.5)*B+C

def expensive(X):
    return np.power((X*6-2),2)*np.sin((X*6-2)*2)


Xe = np.array([0, 0.4, 0.6, 1])
Xc = np.array([0.1,0.2,0.3,0.5,0.7,0.8,0.9,0,0.4,0.6,1])

yc = cheap(Xc)
ye = expensive(Xe)

ck = coKriging.coKriging(Xc, yc, Xe, ye)
ck.thetac = np.array([1.2073])
print ck.Xc
ck.updateData()
ck.updatePsi()
ck.neglnlikehood()