Пример #1
0
def run(algorithm, config, software, im_fns, result_dir,
        configFN=None, configSoftware=None, file_list_file_name=None):
    if not os.path.isdir(result_dir):
        os.makedirs(result_dir)
    config.file_list_file_name = os.path.join(config.result_dir,os.path.basename(file_list_file_name))
    savedFileName = lambda name, default: os.path.basename(name) if name else default
    pyLAR.saveConfiguration(os.path.join(result_dir, savedFileName(configFN, 'Config.txt')), config)
    pyLAR.saveConfiguration(os.path.join(result_dir, savedFileName(configSoftware, 'Software.txt')),
                            software)
    pyLAR.writeTxtFromList(os.path.join(result_dir, savedFileName(file_list_file_name, 'listFiles.txt')), im_fns)
    # Set maximum number of threads used by ITK filters
    if hasattr(config, "ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"):
        os.environ["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = str(config.ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS)
    if algorithm == "lr":
        pyLAR.lr.run(config, software, im_fns)
    elif algorithm == "uab":
        pyLAR.uab.run(config, software, im_fns)
    elif algorithm == "nglra":
        pyLAR.nglra.run(config, software, im_fns)
    else:
        raise Exception("Algorithm selected is not part of pyLAR")
Пример #2
0
def run(algorithm,
        config,
        software,
        im_fns,
        result_dir,
        configFN=None,
        configSoftware=None,
        file_list_file_name=None):
    if not os.path.isdir(result_dir):
        os.makedirs(result_dir)
    config.file_list_file_name = os.path.join(
        config.result_dir, os.path.basename(file_list_file_name))
    savedFileName = lambda name, default: os.path.basename(
        name) if name else default
    pyLAR.saveConfiguration(
        os.path.join(result_dir, savedFileName(configFN, 'Config.txt')),
        config)
    pyLAR.saveConfiguration(
        os.path.join(result_dir, savedFileName(configSoftware,
                                               'Software.txt')), software)
    pyLAR.writeTxtFromList(
        os.path.join(result_dir,
                     savedFileName(file_list_file_name, 'listFiles.txt')),
        im_fns)
    # Set maximum number of threads used by ITK filters
    if hasattr(config, "ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"):
        os.environ["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = str(
            config.ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS)
    if algorithm == "lr":
        pyLAR.lr.run(config, software, im_fns)
    elif algorithm == "uab":
        pyLAR.uab.run(config, software, im_fns)
    elif algorithm == "nglra":
        pyLAR.nglra.run(config, software, im_fns)
    else:
        raise Exception("Algorithm selected is not part of pyLAR")
Пример #3
0
def run(config, software, im_fns, check=True):
    """Low-rank decomposition."""
    log = logging.getLogger(__name__)
    # Checks that all variables are set correctly
    if check:
        check_requirements(config, software)
    # Initialize variables
    selection = config.selection
    result_dir = config.result_dir
    sigma = config.sigma
    reference_im_fn = config.reference_im_fn
    num_of_data = len(selection)
    # Pre-processing: registration and histogram matching
    s = time.time()
    if config.registration == 'affine':
        log.info('Affine registration')
        pyLAR.affineRegistrationStep(software.EXE_BRAINSFit, im_fns,
                                     result_dir, selection, reference_im_fn)
    elif config.registration == 'rigid':
        log.info('Rigid registration')
        pyLAR.rigidRegistrationStep(software.EXE_BRAINSFit, im_fns, result_dir,
                                    selection, reference_im_fn)
    elif config.registration == 'none':
        pass
    else:
        raise Exception('Unknown registration')
    if config.histogram_matching:
        pyLAR.histogramMatchingStep(selection, result_dir)

    e = time.time()
    l = e - s
    log.info('Preprocessing - total running time:  %f mins' % (l / 60.0))

    # Loading images and blurring them if option selected.
    s = time.time()
    im_ref = sitk.ReadImage(reference_im_fn)
    im_ref_array = sitk.GetArrayFromImage(im_ref)
    z_dim, x_dim, y_dim = im_ref_array.shape
    vector_length = z_dim * x_dim * y_dim
    del im_ref, im_ref_array
    Y = np.zeros((vector_length, num_of_data))
    for i in range(num_of_data):
        if config.registration == 'none':
            im_file = im_fns[selection[i]]
        else:
            im_file = os.path.join(result_dir, 'L0_Iter0_' + str(i) + '.nrrd')
        log.info("Input File: " + im_file)
        inIm = sitk.ReadImage(im_file)
        tmp = sitk.GetArrayFromImage(inIm)
        if sigma > 0:  # blurring
            log.info("Blurring: " + str(sigma))
            outIm = pyLAR.GaussianBlur(inIm, None, sigma)
            tmp = sitk.GetArrayFromImage(outIm)
        Y[:, i] = tmp.reshape(-1)
        del tmp
    # Low-Rank and sparse decomposition
    low_rank, sparse, n_iter, rank, sparsity, sum_sparse = pyLAR.rpca(
        Y, config.lamda)
    lr_fn = pyLAR.saveImagesFromDM(low_rank,
                                   os.path.join(result_dir, 'L' + '_LowRank_'),
                                   reference_im_fn)
    sp_fn = pyLAR.saveImagesFromDM(sparse,
                                   os.path.join(result_dir, 'L' + '_Sparse_'),
                                   reference_im_fn)
    pyLAR.writeTxtFromList(os.path.join(result_dir, 'list_outputs.txt'),
                           lr_fn + sp_fn)
    e = time.time()
    l = e - s
    log.info("Rank: " + str(rank))
    log.info("Sparsity: " + str(sparsity))
    log.info('Processing - total running time:  %f mins' % (l / 60.0))
    return sparsity, sum_sparse
Пример #4
0
def run(config, software, im_fns, check=True):
    """Low-rank decomposition."""
    log = logging.getLogger(__name__)
    # Checks that all variables are set correctly
    if check:
        check_requirements(config, software)
    # Initialize variables
    selection = config.selection
    result_dir = config.result_dir
    sigma = config.sigma
    reference_im_fn = config.reference_im_fn
    num_of_data = len(selection)
    # Pre-processing: registration and histogram matching
    s = time.time()
    if config.registration == 'affine':
        log.info('Affine registration')
        pyLAR.affineRegistrationStep(software.EXE_BRAINSFit, im_fns, result_dir, selection, reference_im_fn)
    elif config.registration == 'rigid':
        log.info('Rigid registration')
        pyLAR.rigidRegistrationStep(software.EXE_BRAINSFit, im_fns, result_dir, selection, reference_im_fn)
    elif config.registration == 'none':
        pass
    else:
        raise Exception('Unknown registration')
    if config.histogram_matching:
        pyLAR.histogramMatchingStep(selection, result_dir)

    e = time.time()
    l = e - s
    log.info('Preprocessing - total running time:  %f mins' % (l / 60.0))

    # Loading images and blurring them if option selected.
    s = time.time()
    im_ref = sitk.ReadImage(reference_im_fn)
    im_ref_array = sitk.GetArrayFromImage(im_ref)
    z_dim, x_dim, y_dim = im_ref_array.shape
    vector_length = z_dim * x_dim * y_dim
    del im_ref, im_ref_array
    Y = np.zeros((vector_length, num_of_data))
    for i in range(num_of_data):
        if config.registration == 'none':
            im_file = im_fns[selection[i]]
        else:
            im_file = os.path.join(result_dir, 'L0_Iter0_' + str(i) + '.nrrd')
        log.info("Input File: " + im_file)
        inIm = sitk.ReadImage(im_file)
        tmp = sitk.GetArrayFromImage(inIm)
        if sigma > 0:  # blurring
            log.info("Blurring: " + str(sigma))
            outIm = pyLAR.GaussianBlur(inIm, None, sigma)
            tmp = sitk.GetArrayFromImage(outIm)
        Y[:, i] = tmp.reshape(-1)
        del tmp
    # Low-Rank and sparse decomposition
    low_rank, sparse, n_iter, rank, sparsity, sum_sparse = pyLAR.rpca(Y, config.lamda)
    lr_fn = pyLAR.saveImagesFromDM(low_rank, os.path.join(result_dir, 'L' + '_LowRank_'), reference_im_fn)
    sp_fn = pyLAR.saveImagesFromDM(sparse, os.path.join(result_dir, 'L' + '_Sparse_'), reference_im_fn)
    pyLAR.writeTxtFromList(os.path.join(result_dir,'list_outputs.txt'),lr_fn+sp_fn)
    e = time.time()
    l = e - s
    log.info("Rank: " + str(rank))
    log.info("Sparsity: " + str(sparsity))
    log.info('Processing - total running time:  %f mins' % (l / 60.0))
    return sparsity, sum_sparse
Пример #5
0
def run(config, software, im_fns, check=True):
    """Unbiased atlas building - Atlas-to-image registration"""
    log = logging.getLogger(__name__)
    if check:
        check_requirements(config, software)
    reference_im_fn = config.reference_im_fn
    selection = config.selection
    result_dir = config.result_dir
    ants_params = config.ants_params
    num_of_iterations_per_level = config.num_of_iterations_per_level
    num_of_levels = config.num_of_levels  # multiscale bluring (coarse-to-fine)

    s = time.time()

    pyLAR.affineRegistrationStep(software.EXE_BRAINSFit, im_fns, result_dir,
                                 selection, reference_im_fn)
    if config.histogram_matching:
        pyLAR.histogramMatchingStep(selection, result_dir)

    num_of_data = len(selection)
    iterCount = 0
    for level in range(0, num_of_levels):
        for iterCount in range(1, num_of_iterations_per_level + 1):
            log.info('Level: ' + str(level))
            log.info('Iteration ' + str(iterCount))
            _runIteration(level, iterCount, ants_params, result_dir, selection,
                          software)
            gc.collect()  # garbage collection
        # We need to check if num_of_iterations_per_level is set to 0, which leads
        # to computing an average on the affine registration.
        if level != num_of_levels - 1:
            log.warning('No need for multiple levels! TO BE REMOVED!')
            for i in range(num_of_data):
                current_file_name = 'L' + str(level) + '_Iter' + str(
                    iterCount) + '_' + str(i) + '.nrrd'
                current_file_path = os.path.join(result_dir, current_file_name)
                nextLevelInitIm = os.path.join(
                    result_dir,
                    'L' + str(level + 1) + '_Iter0_' + str(i) + '.nrrd')
                shutil.copyfile(current_file_path, nextLevelInitIm)
        # if num_of_levels > 1:
        #     print 'WARNING: No need for multiple levels! TO BE REMOVED!'
        #     for i in range(num_of_data):
        #         next_prefix = 'L' + str(level+1) + '_Iter0_'
        #         next_path = os.path.join(result_dir, next_prefix)
        #         newLevelInitIm = next_path + str(i) + '.nrrd'
    current_prefix = 'L' + str(num_of_levels -
                               1) + '_Iter' + str(num_of_iterations_per_level)
    current_path = os.path.join(result_dir, current_prefix)
    atlasIm = current_path + '_atlas.nrrd'
    listOfImages = []
    num_of_data = len(selection)
    for i in range(num_of_data):
        lrIm = current_path + '_' + str(i) + '.nrrd'
        listOfImages.append(lrIm)
    pyLAR.AverageImages(software.EXE_AverageImages, listOfImages, atlasIm)
    logging.debug("Saves list outputs:%s" %
                  (os.path.join(result_dir, 'list_outputs.txt')))
    pyLAR.writeTxtFromList(os.path.join(result_dir, 'list_outputs.txt'),
                           [atlasIm])
    try:
        import matplotlib.pyplot as plt
        import SimpleITK as sitk
        import numpy as np
        im = sitk.ReadImage(atlasIm)
        im_array = sitk.GetArrayFromImage(im)
        z_dim, x_dim, y_dim = im_array.shape
        plt.figure()
        plt.imshow(np.flipud(im_array[z_dim / 2, :]), plt.cm.gray)
        plt.title(current_prefix + ' atlas')
        plt.savefig(current_path + '.png')
    except ImportError:
        pass

    e = time.time()
    l = e - s
    log.info('Total running time:  %f mins' % (l / 60.0))
Пример #6
0
def run(config, software, im_fns, check=True):
    """Unbiased atlas building - Atlas-to-image registration"""
    log = logging.getLogger(__name__)
    if check:
        check_requirements(config, software)
    reference_im_fn = config.reference_im_fn
    selection = config.selection
    result_dir = config.result_dir
    ants_params = config.ants_params
    num_of_iterations_per_level = config.num_of_iterations_per_level
    num_of_levels = config.num_of_levels  # multiscale bluring (coarse-to-fine)

    s = time.time()

    pyLAR.affineRegistrationStep(software.EXE_BRAINSFit, im_fns, result_dir, selection, reference_im_fn)
    if config.histogram_matching:
        pyLAR.histogramMatchingStep(selection, result_dir)

    num_of_data = len(selection)
    iterCount = 0
    for level in range(0, num_of_levels):
        for iterCount in range(1, num_of_iterations_per_level+1):
            log.info('Level: ' + str(level))
            log.info('Iteration ' + str(iterCount))
            _runIteration(level, iterCount, ants_params, result_dir, selection, software)
            gc.collect()  # garbage collection
        # We need to check if num_of_iterations_per_level is set to 0, which leads
        # to computing an average on the affine registration.
        if level != num_of_levels - 1:
            log.warning('No need for multiple levels! TO BE REMOVED!')
            for i in range(num_of_data):
                current_file_name = 'L' + str(level) + '_Iter' + str(iterCount) + '_' + str(i) + '.nrrd'
                current_file_path = os.path.join(result_dir, current_file_name)
                nextLevelInitIm = os.path.join(result_dir, 'L'+str(level+1)+'_Iter0_' + str(i) + '.nrrd')
                shutil.copyfile(current_file_path, nextLevelInitIm)
        # if num_of_levels > 1:
        #     print 'WARNING: No need for multiple levels! TO BE REMOVED!'
        #     for i in range(num_of_data):
        #         next_prefix = 'L' + str(level+1) + '_Iter0_'
        #         next_path = os.path.join(result_dir, next_prefix)
        #         newLevelInitIm = next_path + str(i) + '.nrrd'
    current_prefix = 'L' + str(num_of_levels-1) + '_Iter' + str(num_of_iterations_per_level)
    current_path = os.path.join(result_dir, current_prefix)
    atlasIm = current_path + '_atlas.nrrd'
    listOfImages = []
    num_of_data = len(selection)
    for i in range(num_of_data):
        lrIm = current_path + '_' + str(i) + '.nrrd'
        listOfImages.append(lrIm)
    pyLAR.AverageImages(software.EXE_AverageImages, listOfImages, atlasIm)
    logging.debug("Saves list outputs:%s"%(os.path.join(result_dir,'list_outputs.txt')))
    pyLAR.writeTxtFromList(os.path.join(result_dir,'list_outputs.txt'),[atlasIm])
    try:
        import matplotlib.pyplot as plt
        import SimpleITK as sitk
        import numpy as np
        im = sitk.ReadImage(atlasIm)
        im_array = sitk.GetArrayFromImage(im)
        z_dim, x_dim, y_dim = im_array.shape
        plt.figure()
        plt.imshow(np.flipud(im_array[z_dim/2, :]), plt.cm.gray)
        plt.title(current_prefix + ' atlas')
        plt.savefig(current_path + '.png')
    except ImportError:
        pass

    e = time.time()
    l = e - s
    log.info('Total running time:  %f mins' % (l/60.0))
Пример #7
0
def run(config, software, im_fns, check=True):
    """unbiased low-rank atlas creation from a selection of images"""
    log = logging.getLogger(__name__)
    if check:
        check_requirements(config, software)

    reference_im_fn = config.reference_im_fn
    result_dir = config.result_dir
    selection = config.selection
    lamda = config.lamda
    sigma = config.sigma
    num_of_iterations_per_level = config.num_of_iterations_per_level
    num_of_levels = config.num_of_levels  # Multi-scale blurring (coarse-to-fine)
    registration_type = config.registration_type
    gridSize = [0, 0, 0]
    if registration_type == 'BSpline':
        gridSize = config.gridSize

    s = time.time()
    pyLAR.showImageMidSlice(reference_im_fn)
    pyLAR.affineRegistrationStep(software.EXE_BRAINSFit, im_fns, result_dir,
                                 selection, reference_im_fn)
    if config.histogram_matching:
        pyLAR.histogramMatchingStep(selection, result_dir)

    im_ref = sitk.ReadImage(reference_im_fn)
    im_ref_array = sitk.GetArrayFromImage(im_ref)
    z_dim, x_dim, y_dim = im_ref_array.shape
    vector_length = z_dim * x_dim * y_dim
    del im_ref, im_ref_array

    num_of_data = len(selection)
    factor = 0.5  # BSpline max displacement constrain, 0.5 refers to half of the grid size
    iterCount = 0
    for level in range(0, num_of_levels):
        for iterCount in range(1, num_of_iterations_per_level + 1):
            maxDisp = -1
            log.info('Level: ' + str(level))
            log.info('Iteration ' + str(iterCount) + ' lamda = %f' % lamda)
            log.info('Blurring Sigma: ' + str(sigma))

            if registration_type == 'BSpline':
                log.info('Grid size: ' + str(gridSize))
                maxDisp = z_dim / gridSize[2] * factor

            _, _, listOutputImages = _runIteration(vector_length, level, iterCount, config, im_fns,
                          sigma, gridSize, maxDisp, software)

            # Adjust grid size for finner BSpline Registration
            if registration_type == 'BSpline' and gridSize[0] < 10:
                gridSize = np.add(gridSize, [1, 2, 1])

            # Reduce the amount of  blurring sizes gradually
            if sigma > 0:
                sigma = sigma - 0.5

            gc.collect()  # Garbage collection

        if level != num_of_levels - 1:
            log.warning('No need for multiple levels! TO BE REMOVED!')
            for i in range(num_of_data):
                current_file_name = 'L' + str(level) + '_Iter' + str(iterCount) + '_' + str(i) + '.nrrd'
                current_file_path = os.path.join(result_dir, current_file_name)
                nextLevelInitIm = os.path.join(result_dir, 'L' + str(level + 1) + '_Iter0_' + str(i) + '.nrrd')
                shutil.copyfile(current_file_path, nextLevelInitIm)

            if gridSize[0] < 10:
                gridSize = np.add(gridSize, [1, 2, 1])
            if sigma > 0:
                sigma = sigma - 1
            factor = factor * 0.5

            # a = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
            # print 'Current memory usage :',a/1024.0/1024.0,'GB'
            # h = hpy()
            # print h.heap()
    pyLAR.writeTxtFromList(os.path.join(result_dir,'list_outputs.txt'),listOutputImages)
    e = time.time()
    l = e - s
    log.info('Total running time:  %f mins' % (l / 60.0))
Пример #8
0
def run(config, software, im_fns, check=True):
    """unbiased low-rank atlas creation from a selection of images"""
    log = logging.getLogger(__name__)
    if check:
        check_requirements(config, software)

    reference_im_fn = config.reference_im_fn
    result_dir = config.result_dir
    selection = config.selection
    lamda = config.lamda
    sigma = config.sigma
    num_of_iterations_per_level = config.num_of_iterations_per_level
    num_of_levels = config.num_of_levels  # Multi-scale blurring (coarse-to-fine)
    registration_type = config.registration_type
    gridSize = [0, 0, 0]
    if registration_type == 'BSpline':
        gridSize = config.gridSize

    s = time.time()
    pyLAR.showImageMidSlice(reference_im_fn)
    pyLAR.affineRegistrationStep(software.EXE_BRAINSFit, im_fns, result_dir,
                                 selection, reference_im_fn)
    if config.histogram_matching:
        pyLAR.histogramMatchingStep(selection, result_dir)

    im_ref = sitk.ReadImage(reference_im_fn)
    im_ref_array = sitk.GetArrayFromImage(im_ref)
    z_dim, x_dim, y_dim = im_ref_array.shape
    vector_length = z_dim * x_dim * y_dim
    del im_ref, im_ref_array

    num_of_data = len(selection)
    factor = 0.5  # BSpline max displacement constrain, 0.5 refers to half of the grid size
    iterCount = 0
    for level in range(0, num_of_levels):
        for iterCount in range(1, num_of_iterations_per_level + 1):
            maxDisp = -1
            log.info('Level: ' + str(level))
            log.info('Iteration ' + str(iterCount) + ' lamda = %f' % lamda)
            log.info('Blurring Sigma: ' + str(sigma))

            if registration_type == 'BSpline':
                log.info('Grid size: ' + str(gridSize))
                maxDisp = z_dim / gridSize[2] * factor

            _, _, listOutputImages = _runIteration(vector_length, level,
                                                   iterCount, config, im_fns,
                                                   sigma, gridSize, maxDisp,
                                                   software)

            # Adjust grid size for finner BSpline Registration
            if registration_type == 'BSpline' and gridSize[0] < 10:
                gridSize = np.add(gridSize, [1, 2, 1])

            # Reduce the amount of  blurring sizes gradually
            if sigma > 0:
                sigma = sigma - 0.5

            gc.collect()  # Garbage collection

        if level != num_of_levels - 1:
            log.warning('No need for multiple levels! TO BE REMOVED!')
            for i in range(num_of_data):
                current_file_name = 'L' + str(level) + '_Iter' + str(
                    iterCount) + '_' + str(i) + '.nrrd'
                current_file_path = os.path.join(result_dir, current_file_name)
                nextLevelInitIm = os.path.join(
                    result_dir,
                    'L' + str(level + 1) + '_Iter0_' + str(i) + '.nrrd')
                shutil.copyfile(current_file_path, nextLevelInitIm)

            if gridSize[0] < 10:
                gridSize = np.add(gridSize, [1, 2, 1])
            if sigma > 0:
                sigma = sigma - 1
            factor = factor * 0.5

            # a = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
            # print 'Current memory usage :',a/1024.0/1024.0,'GB'
            # h = hpy()
            # print h.heap()
    pyLAR.writeTxtFromList(os.path.join(result_dir, 'list_outputs.txt'),
                           listOutputImages)
    e = time.time()
    l = e - s
    log.info('Total running time:  %f mins' % (l / 60.0))