def append_query(self, es_query, start): self.start = start parts = self.edge.domain.partitions filters = [] notty = [] for p in parts: filters.append(AndOp("and", [p.where]+notty).to_esfilter()) notty.append(NotOp("not", p.where)) missing_filter = None if self.edge.allowNulls: # TODO: Use Expression.missing().esfilter() TO GET OPTIMIZED FILTER missing_filter = set_default( {"filter": AndOp("and", notty).to_esfilter()}, es_query ) return wrap({"aggs": { "_match": set_default( {"filters": {"filters": filters}}, es_query ), "_missing": missing_filter }})
def append_query(self, es_query, start): self.start = start edge = self.edge range = edge.range domain = edge.domain aggs = {} for i, p in enumerate(domain.partitions): filter_ = AndOp("and", [ InequalityOp("lte", [range.min, Literal("literal", self.to_float(p.min))]), InequalityOp("gt", [range.max, Literal("literal", self.to_float(p.min))]) ]) aggs["_join_" + unicode(i)] = set_default( {"filter": filter_.to_esfilter()}, es_query ) return wrap({"aggs": aggs})
def es_aggsop(es, frum, query): select = wrap([s.copy() for s in listwrap(query.select)]) es_column_map = {c.name: unwraplist(c.es_column) for c in frum.schema.all_columns} es_query = Dict() new_select = Dict() #MAP FROM canonical_name (USED FOR NAMES IN QUERY) TO SELECT MAPPING formula = [] for s in select: if s.aggregate == "count" and isinstance(s.value, Variable) and s.value.var == ".": s.pull = "doc_count" elif isinstance(s.value, Variable): if s.value.var == ".": if frum.typed: # STATISITCAL AGGS IMPLY $value, WHILE OTHERS CAN BE ANYTHING if s.aggregate in NON_STATISTICAL_AGGS: #TODO: HANDLE BOTH $value AND $objects TO COUNT Log.error("do not know how to handle") else: s.value.var = "$value" new_select["$value"] += [s] else: if s.aggregate in NON_STATISTICAL_AGGS: #TODO: WE SHOULD BE ABLE TO COUNT, BUT WE MUST *OR* ALL LEAF VALUES TO DO IT Log.error("do not know how to handle") else: Log.error('Not expecting ES to have a value at "." which {{agg}} can be applied', agg=s.aggregate) elif s.aggregate == "count": s.value = s.value.map(es_column_map) new_select["count_"+literal_field(s.value.var)] += [s] else: s.value = s.value.map(es_column_map) new_select[literal_field(s.value.var)] += [s] else: formula.append(s) for canonical_name, many in new_select.items(): representative = many[0] if representative.value.var == ".": Log.error("do not know how to handle") else: field_name = representative.value.var # canonical_name=literal_field(many[0].name) for s in many: if s.aggregate == "count": es_query.aggs[literal_field(canonical_name)].value_count.field = field_name s.pull = literal_field(canonical_name) + ".value" elif s.aggregate == "median": # ES USES DIFFERENT METHOD FOR PERCENTILES key = literal_field(canonical_name + " percentile") es_query.aggs[key].percentiles.field = field_name es_query.aggs[key].percentiles.percents += [50] s.pull = key + ".values.50\.0" elif s.aggregate == "percentile": # ES USES DIFFERENT METHOD FOR PERCENTILES key = literal_field(canonical_name + " percentile") if isinstance(s.percentile, basestring) or s.percetile < 0 or 1 < s.percentile: Log.error("Expecting percentile to be a float from 0.0 to 1.0") percent = Math.round(s.percentile * 100, decimal=6) es_query.aggs[key].percentiles.field = field_name es_query.aggs[key].percentiles.percents += [percent] s.pull = key + ".values." + literal_field(unicode(percent)) elif s.aggregate == "cardinality": # ES USES DIFFERENT METHOD FOR CARDINALITY key = literal_field(canonical_name + " cardinality") es_query.aggs[key].cardinality.field = field_name s.pull = key + ".value" elif s.aggregate == "stats": # REGULAR STATS stats_name = literal_field(canonical_name) es_query.aggs[stats_name].extended_stats.field = field_name # GET MEDIAN TOO! median_name = literal_field(canonical_name + " percentile") es_query.aggs[median_name].percentiles.field = field_name es_query.aggs[median_name].percentiles.percents += [50] s.pull = { "count": stats_name + ".count", "sum": stats_name + ".sum", "min": stats_name + ".min", "max": stats_name + ".max", "avg": stats_name + ".avg", "sos": stats_name + ".sum_of_squares", "std": stats_name + ".std_deviation", "var": stats_name + ".variance", "median": median_name + ".values.50\.0" } elif s.aggregate == "union": # USE TERMS AGGREGATE TO SIMULATE union stats_name = literal_field(canonical_name) es_query.aggs[stats_name].terms.field = field_name es_query.aggs[stats_name].terms.size = Math.min(s.limit, MAX_LIMIT) s.pull = stats_name + ".buckets.key" else: # PULL VALUE OUT OF THE stats AGGREGATE es_query.aggs[literal_field(canonical_name)].extended_stats.field = field_name s.pull = literal_field(canonical_name) + "." + aggregates1_4[s.aggregate] for i, s in enumerate(formula): canonical_name = literal_field(s.name) abs_value = s.value.map(es_column_map) if s.aggregate == "count": es_query.aggs[literal_field(canonical_name)].value_count.script = abs_value.to_ruby() s.pull = literal_field(canonical_name) + ".value" elif s.aggregate == "median": # ES USES DIFFERENT METHOD FOR PERCENTILES THAN FOR STATS AND COUNT key = literal_field(canonical_name + " percentile") es_query.aggs[key].percentiles.script = abs_value.to_ruby() es_query.aggs[key].percentiles.percents += [50] s.pull = key + ".values.50\.0" elif s.aggregate == "percentile": # ES USES DIFFERENT METHOD FOR PERCENTILES THAN FOR STATS AND COUNT key = literal_field(canonical_name + " percentile") percent = Math.round(s.percentile * 100, decimal=6) es_query.aggs[key].percentiles.script = abs_value.to_ruby() es_query.aggs[key].percentiles.percents += [percent] s.pull = key + ".values." + literal_field(unicode(percent)) elif s.aggregate == "cardinality": # ES USES DIFFERENT METHOD FOR CARDINALITY key = canonical_name + " cardinality" es_query.aggs[key].cardinality.script = abs_value.to_ruby() s.pull = key + ".value" elif s.aggregate == "stats": # REGULAR STATS stats_name = literal_field(canonical_name) es_query.aggs[stats_name].extended_stats.script = abs_value.to_ruby() # GET MEDIAN TOO! median_name = literal_field(canonical_name + " percentile") es_query.aggs[median_name].percentiles.script = abs_value.to_ruby() es_query.aggs[median_name].percentiles.percents += [50] s.pull = { "count": stats_name + ".count", "sum": stats_name + ".sum", "min": stats_name + ".min", "max": stats_name + ".max", "avg": stats_name + ".avg", "sos": stats_name + ".sum_of_squares", "std": stats_name + ".std_deviation", "var": stats_name + ".variance", "median": median_name + ".values.50\.0" } elif s.aggregate=="union": # USE TERMS AGGREGATE TO SIMULATE union stats_name = literal_field(canonical_name) es_query.aggs[stats_name].terms.script_field = abs_value.to_ruby() s.pull = stats_name + ".buckets.key" else: # PULL VALUE OUT OF THE stats AGGREGATE s.pull = canonical_name + "." + aggregates1_4[s.aggregate] es_query.aggs[canonical_name].extended_stats.script = abs_value.to_ruby() decoders = get_decoders_by_depth(query) start = 0 vars_ = query.where.vars() #<TERRIBLE SECTION> THIS IS WHERE WE WEAVE THE where CLAUSE WITH nested split_where = split_expression_by_depth(query.where, schema=frum, map_=es_column_map) if len(split_field(frum.name)) > 1: if any(split_where[2::]): Log.error("Where clause is too deep") for d in decoders[1]: es_query = d.append_query(es_query, start) start += d.num_columns if split_where[1]: #TODO: INCLUDE FILTERS ON EDGES filter_ = simplify_esfilter(AndOp("and", split_where[1]).to_esfilter()) es_query = Dict( aggs={"_filter": set_default({"filter": filter_}, es_query)} ) es_query = wrap({ "aggs": {"_nested": set_default( { "nested": { "path": frum.query_path } }, es_query )} }) else: if any(split_where[1::]): Log.error("Where clause is too deep") for d in decoders[0]: es_query = d.append_query(es_query, start) start += d.num_columns if split_where[0]: #TODO: INCLUDE FILTERS ON EDGES filter = simplify_esfilter(AndOp("and", split_where[0]).to_esfilter()) es_query = Dict( aggs={"_filter": set_default({"filter": filter}, es_query)} ) # </TERRIBLE SECTION> if not es_query: es_query = wrap({"query": {"match_all": {}}}) es_query.size = 0 with Timer("ES query time") as es_duration: result = es09.util.post(es, es_query, query.limit) try: format_time = Timer("formatting") with format_time: decoders = [d for ds in decoders for d in ds] result.aggregations.doc_count = coalesce(result.aggregations.doc_count, result.hits.total) # IT APPEARS THE OLD doc_count IS GONE formatter, groupby_formatter, aggop_formatter, mime_type = format_dispatch[query.format] if query.edges: output = formatter(decoders, result.aggregations, start, query, select) elif query.groupby: output = groupby_formatter(decoders, result.aggregations, start, query, select) else: output = aggop_formatter(decoders, result.aggregations, start, query, select) output.meta.timing.formatting = format_time.duration output.meta.timing.es_search = es_duration.duration output.meta.content_type = mime_type output.meta.es_query = es_query return output except Exception, e: if query.format not in format_dispatch: Log.error("Format {{format|quote}} not supported yet", format=query.format, cause=e) Log.error("Some problem", e)
def es_deepop(es, query): schema = query.frum.schema columns = schema.columns query_path = schema.query_path map_to_local = {k: get_pull(c[0]) for k, c in schema.lookup.items()} # TODO: FIX THE GREAT SADNESS CAUSED BY EXECUTING post_expressions # THE EXPRESSIONS SHOULD BE PUSHED TO THE CONTAINER: ES ALLOWS # {"inner_hit":{"script_fields":[{"script":""}...]}}, BUT THEN YOU # LOOSE "_source" BUT GAIN "fields", FORCING ALL FIELDS TO BE EXPLICIT post_expressions = {} es_query, es_filters = es14.util.es_query_template(query.frum.name) # SPLIT WHERE CLAUSE BY DEPTH wheres = split_expression_by_depth(query.where, schema) for i, f in enumerate(es_filters): # PROBLEM IS {"match_all": {}} DOES NOT SURVIVE set_default() for k, v in unwrap(simplify_esfilter(AndOp("and", wheres[i]).to_esfilter())).items(): f[k] = v if not wheres[1]: more_filter = { "and": [ simplify_esfilter(AndOp("and", wheres[0]).to_esfilter()), {"not": { "nested": { "path": query_path, "filter": { "match_all": {} } } }} ] } else: more_filter = None es_query.size = coalesce(query.limit, queries.query.DEFAULT_LIMIT) es_query.sort = jx_sort_to_es_sort(query.sort) es_query.fields = [] is_list = isinstance(query.select, list) new_select = FlatList() i = 0 for s in listwrap(query.select): if isinstance(s.value, LeavesOp): if isinstance(s.value.term, Variable): if s.value.term.var == ".": # IF THERE IS A *, THEN INSERT THE EXTRA COLUMNS for c in columns: if c.type not in STRUCT and c.es_column != "_id": if c.nested_path[0] == ".": es_query.fields += [c.es_column] new_select.append({ "name": c.names[query_path], "pull": get_pull(c), "nested_path": c.nested_path[0], "put": {"name": literal_field(c.names[query_path]), "index": i, "child": "."} }) i += 1 # REMOVE DOTS IN PREFIX IF NAME NOT AMBIGUOUS col_names = set(c.names[query_path] for c in columns) for n in new_select: if n.name.startswith("..") and n.name.lstrip(".") not in col_names: n.name = n.name.lstrip(".") n.put.name = literal_field(n.name) col_names.add(n.name) else: prefix = schema[s.value.term.var][0].names["."] + "." prefix_length = len(prefix) for c in columns: cname = c.names["."] if cname.startswith(prefix) and c.type not in STRUCT: pull = get_pull(c) if c.nested_path[0] == ".": es_query.fields += [c.es_column] new_select.append({ "name": s.name + "." + cname[prefix_length:], "pull": pull, "nested_path": c.nested_path[0], "put": { "name": s.name + "." + literal_field(cname[prefix_length:]), "index": i, "child": "." } }) i += 1 elif isinstance(s.value, Variable): if s.value.var == ".": for c in columns: if c.type not in STRUCT and c.es_column != "_id": if len(c.nested_path) == 1: es_query.fields += [c.es_column] new_select.append({ "name": c.name, "pull": get_pull(c), "nested_path": c.nested_path[0], "put": {"name": ".", "index": i, "child": c.es_column} }) i += 1 elif s.value.var == "_id": new_select.append({ "name": s.name, "value": s.value.var, "pull": "_id", "put": {"name": s.name, "index": i, "child": "."} }) i += 1 else: prefix = schema[s.value.var][0] if not prefix: net_columns = [] else: parent = prefix.es_column+"." prefix_length = len(parent) net_columns = [c for c in columns if c.es_column.startswith(parent) and c.type not in STRUCT] if not net_columns: pull = get_pull(prefix) if len(prefix.nested_path) == 1: es_query.fields += [prefix.es_column] new_select.append({ "name": s.name, "pull": pull, "nested_path": prefix.nested_path[0], "put": {"name": s.name, "index": i, "child": "."} }) else: done = set() for n in net_columns: # THE COLUMNS CAN HAVE DUPLICATE REFERNCES TO THE SAME ES_COLUMN if n.es_column in done: continue done.add(n.es_column) pull = get_pull(n) if len(n.nested_path) == 1: es_query.fields += [n.es_column] new_select.append({ "name": s.name, "pull": pull, "nested_path": n.nested_path[0], "put": {"name": s.name, "index": i, "child": n.es_column[prefix_length:]} }) i += 1 else: expr = s.value for v in expr.vars(): for c in schema[v]: if c.nested_path[0] == ".": es_query.fields += [c.es_column] # else: # Log.error("deep field not expected") pull = EXPRESSION_PREFIX + s.name post_expressions[pull] = compile_expression(expr.map(map_to_local).to_python()) new_select.append({ "name": s.name if is_list else ".", "pull": pull, "value": expr.__data__(), "put": {"name": s.name, "index": i, "child": "."} }) i += 1 # <COMPLICATED> ES needs two calls to get all documents more = [] def get_more(please_stop): more.append(es09.util.post( es, Data( filter=more_filter, fields=es_query.fields ), query.limit )) if more_filter: need_more = Thread.run("get more", target=get_more) with Timer("call to ES") as call_timer: data = es09.util.post(es, es_query, query.limit) # EACH A HIT IS RETURNED MULTIPLE TIMES FOR EACH INNER HIT, WITH INNER HIT INCLUDED def inners(): for t in data.hits.hits: for i in t.inner_hits[literal_field(query_path)].hits.hits: t._inner = i._source for k, e in post_expressions.items(): t[k] = e(t) yield t if more_filter: Thread.join(need_more) for t in more[0].hits.hits: yield t #</COMPLICATED> try: formatter, groupby_formatter, mime_type = format_dispatch[query.format] output = formatter(inners(), new_select, query) output.meta.timing.es = call_timer.duration output.meta.content_type = mime_type output.meta.es_query = es_query return output except Exception as e: Log.error("problem formatting", e)