Пример #1
0
def SimSpikingStimulus(stim, time = 1000, t_sim = None, with_labels = True):
    '''
    Times must be sorted. ex: times = [0, 1, 2] ; scale = [1,0]
    *poisson*: integer, output is a poisson process with mean
    data/poisson, scaled by *poisson*.
    '''
    from pyNCSre import pyST
    n = np.shape(stim)[1]
    nc = 10
    stim[stim<=0] = 1e-5
    SL = pyST.SpikeList(id_list = range(n))
    SLd = pyST.SpikeList(id_list = range(n-nc))
    SLc = pyST.SpikeList(id_list = range(n-nc,n))
    for i in range(n-nc):
        SLd[i] = pyST.STCreate.inh_poisson_generator(stim[:,i],
                                                    range(0,len(stim)*time,time),
                                                    t_stop=t_sim, refractory = 4.)
    if with_labels:
        for t in range(0,len(stim)):
            SLt= pyST.SpikeList(id_list = range(n-nc,n))
            for i in range(n-nc,n):
                if stim[t,i]>1e-2:
                    SLt[i] = pyST.STCreate.regular_generator(stim[t,i],
                                                        jitter=True,
                                                        t_start=t*time,
                                                        t_stop=(t+1)*time)            
            if len(SLt.raw_data())>0: SLc = pyST.merge_spikelists(SLc, SLt)

    if len(SLc.raw_data())>0: 
        SL = pyST.merge_spikelists(SLd,SLc)
    else:
        SL = SLd
    return SL
Пример #2
0
def setup():
    global SL
    print('Begin %s:setup()' %
          (os.path.splitext(os.path.basename(__file__))[0]))

    np.random.seed(100)  # Numpy RNG seed
    pyST.STCreate.seed(130)  # PyNCS RNG seed
    N_CORES = 1  # Number of cores
    N_NEURONS = [100]  # Number of neurons per core
    N_INPUTS = [101]  # Number of inputs per core
    N_STATES = [4]  # Number of states pare core
    N_UNITS = N_INPUTS[0] + N_NEURONS[0]  # Total units

    # Constants
    XMAX = nsat.XMAX
    XMIN = nsat.XMIN
    OFF = -16
    MAX = nsat.MAX
    MIN = nsat.XMIN
    NLRN_GROUPS = 8
    N_GROUPS = 8

    # Main class instance
    cfg = nsat.ConfigurationNSAT(sim_ticks=sim_ticks,
                                 N_CORES=N_CORES,
                                 N_INPUTS=N_INPUTS,
                                 N_NEURONS=N_NEURONS,
                                 N_STATES=N_STATES,
                                 monitor_states=True,
                                 monitor_spikes=True,
                                 monitor_weights=True,
                                 w_check=False,
                                 plasticity_en=np.array([True], 'bool'),
                                 ben_clock=True)

    cfg.core_cfgs[core].sigma[0] = [0, 0, 10, 0]

    # Transition matrix group 0
    cfg.core_cfgs[core].A[0] = [[-5, OFF, OFF, OFF], [3, -5, OFF, OFF],
                                [OFF, OFF, -6, OFF], [OFF, OFF, OFF, OFF]]

    # Transition matrix group 1
    cfg.core_cfgs[core].A[1] = [[OFF, OFF, OFF, OFF], [OFF, OFF, OFF, OFF],
                                [OFF, OFF, OFF, OFF], [OFF, OFF, OFF, OFF]]

    # Sign matrix group 0
    cfg.core_cfgs[core].sA[0] = [[-1, 1, 1, 1], [1, -1, 1, 1], [1, 1, -1, 1],
                                 [1, 1, 1, -1]]

    # Threshold
    cfg.core_cfgs[core].Xth[0] = 25000
    # Refractory period
    cfg.core_cfgs[core].t_ref[0] = 40
    # Bias
    cfg.core_cfgs[core].b[0] = [0, 0, 0, 0]
    # Initial conditions
    cfg.core_cfgs[core].Xinit = np.array([[0, 0, 0, 0]
                                          for _ in range(N_NEURONS[0])])
    # Reset value
    cfg.core_cfgs[core].Xreset[0] = [0, MAX, MAX, MAX]
    # Turn reset on
    cfg.core_cfgs[core].XresetOn[0] = [True, False, False, False]

    # Turn plasticity per state on
    cfg.core_cfgs[core].plastic[0] = True
    # Turn stdp per state on
    cfg.core_cfgs[core].stdp_en[0] = True
    cfg.core_cfgs[core].is_stdp_exp_on[0] = True

    # Global modulator state
    cfg.core_cfgs[core].modstate[0] = 2

    # Parameters groups mapping function
    cfg.core_cfgs[core].nmap = np.zeros((N_NEURONS[0], ), dtype='int')
    lrnmap = 1 + np.zeros((N_GROUPS, N_STATES[0]), dtype='int')
    lrnmap[0, 1] = 0
    cfg.core_cfgs[core].lrnmap = lrnmap

    # Synaptic weights
    W = np.zeros([N_UNITS, N_UNITS, N_STATES[core]], 'int')
    W[0:100, N_INPUTS[core]:, 1] = np.eye(N_NEURONS[core]) * 100
    W[100, N_INPUTS[core]:, 2] = 100

    # Adjacent matrix
    CW = np.zeros(W.shape, dtype='int')
    CW[0:100, N_INPUTS[core]:, 1] = np.eye(N_NEURONS[core])
    CW[100, N_INPUTS[core]:, 2] = 1

    wgt_table, ptr_table = gen_ptr_wgt_table_from_W_CW(W, CW, [])
    np.set_printoptions(threshold=np.nan)
    cfg.core_cfgs[core].wgt_table = wgt_table
    cfg.core_cfgs[core].ptr_table = ptr_table

    # Learning STDP parameters
    cfg.core_cfgs[core].tca = [[24, 48] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].hica = [[-3, -5, -6] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].sica = [[1, 1, 1] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].slca = [[16, 16, 16] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].tac = [[-32, -64] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].hiac = [[-6, -8, -9] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].siac = [[-1, -1, -1] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].slac = [[16, 16, 16] for _ in range(NLRN_GROUPS)]

    # Prepare external stimulus (spikes events)
    stim = [50] * N_NEURONS[core]
    SL = SimSpikingStimulus(stim, t_sim=sim_ticks)
    SLr = pyST.SpikeList(id_list=[100])
    SLr[100] = pyST.STCreate.inh_poisson_generator(rate=np.array(
        [0., 100., 0.]),
                                                   t=np.array([0, 400, 600]),
                                                   t_stop=sim_ticks)
    SL = pyST.merge_spikelists(SL, SLr)
    ext_evts_data = nsat.exportAER(SL)
    cfg.set_ext_events(ext_evts_data)

    # Write C NSAT parameters binary file
    c_nsat_writer = nsat.C_NSATWriter(cfg, path='/tmp', prefix='test_rSTDP')
    c_nsat_writer.write()
    print('End %s:setup()' % (os.path.splitext(os.path.basename(__file__))[0]))
Пример #3
0
    cfg.core_cfgs[core].hica = [[-3, -5, -6] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].sica = [[1, 1, 1] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].slca = [[16, 16, 16] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].tac  = [[-32, -64] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].hiac = [[-6, -8, -9] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].siac = [[-1, -1, -1] for _ in range(NLRN_GROUPS)]
    cfg.core_cfgs[core].slac = [[16, 16, 16] for _ in range(NLRN_GROUPS)]

    # Prepare external stimulus (spikes events)
    stim = [50]*N_NEURONS[core]
    SL = SimSpikingStimulus(stim, t_sim=sim_ticks)
    SLr = pyST.SpikeList(id_list=[100])
    SLr[100] = pyST.STCreate.inh_poisson_generator(rate=np.array([0., 100., 0.]),
                                                 t=np.array([0, 400, 600]),
                                                 t_stop=sim_ticks)
    SL = pyST.merge_spikelists(SL, SLr)
    ext_evts_data = nsat.exportAER(SL)
    cfg.set_ext_events(ext_evts_data)

    # Write C NSAT parameters binary file
    c_nsat_writer = nsat.C_NSATWriter(cfg, path='/tmp', prefix='test_rSTDP')
    c_nsat_writer.write()

    # Write Intel FPGA parameters hex files
#    intel_fpga_writer = nsat.IntelFPGAWriter(cfg, path='.',
#                                             prefix='test_rSTDP')
#    intel_fpga_writer.write()
#    intel_fpga_writer.write_globals()

    # Call the C NSAT
    print("Running C NSAT!")