def create_brain(): """ Initializes PyNN with the neuronal network that has to be simulated """ network = import_from_sonata('scaffold_sonata/circuit_config.json', sim) return network
def test(): if not HAVE_H5PY and HAVE_NEST: raise SkipTest sim.setup() p1 = sim.Population(10, sim.IF_cond_exp(v_rest=-65, tau_m=lambda i: 10 + 0.1 * i, cm=RD('normal', (0.5, 0.05))), label="population_one") p2 = sim.Population(20, sim.IF_curr_alpha(v_rest=-64, tau_m=lambda i: 11 + 0.1 * i), label="population_two") prj = sim.Projection(p1, p2, sim.FixedProbabilityConnector(p_connect=0.5), synapse_type=sim.StaticSynapse(weight=RD( 'uniform', [0.0, 0.1]), delay=0.5), receptor_type='excitatory') net = Network(p1, p2, prj) export_to_sonata(net, "tmp_serialization_test", overwrite=True) net2 = import_from_sonata("tmp_serialization_test/circuit_config.json", sim) for orig_population in net.populations: imp_population = net2.get_component(orig_population.label) assert orig_population.size == imp_population.size for name in orig_population.celltype.default_parameters: assert_array_almost_equal(orig_population.get(name), imp_population.get(name), 12) w1 = prj.get('weight', format='array') prj2 = net2.get_component(asciify(prj.label).decode('utf-8') + "-0") w2 = prj2.get('weight', format='array') assert_array_almost_equal(w1, w2, 12)
def test(): sim.setup() p1 = sim.Population(10, sim.IF_cond_exp( v_rest=-65, tau_m=lambda i: 10 + 0.1*i, cm=RD('normal', (0.5, 0.05))), label="population_one") p2 = sim.Population(20, sim.IF_curr_alpha( v_rest=-64, tau_m=lambda i: 11 + 0.1*i), label="population_two") prj = sim.Projection(p1, p2, sim.FixedProbabilityConnector(p_connect=0.5), synapse_type=sim.StaticSynapse(weight=RD('uniform', [0.0, 0.1]), delay=0.5), receptor_type='excitatory') net = Network(p1, p2, prj) export_to_sonata(net, "tmp_serialization_test", overwrite=True) net2 = import_from_sonata("tmp_serialization_test/circuit_config.json", sim) for orig_population in net.populations: imp_population = net2.get_component(orig_population.label) assert orig_population.size == imp_population.size for name in orig_population.celltype.default_parameters: assert_array_almost_equal(orig_population.get(name), imp_population.get(name), 12) w1 = prj.get('weight', format='array') prj2 = net2.get_component(asciify(prj.label).decode('utf-8') + "-0") w2 = prj2.get('weight', format='array') assert_array_almost_equal(w1, w2, 12)
from pyNN.serialization import import_from_sonata, load_sonata_simulation_plan import pyNN.nest as sim simulation_plan = load_sonata_simulation_plan( "../input/simulation_config.json") simulation_plan.setup(sim) net = import_from_sonata("../input/circuit_config.json", sim) simulation_plan.execute(net)
from pyNN.serialization import import_from_sonata, load_sonata_simulation_plan import pyNN.nest as sim simulation_plan = load_sonata_simulation_plan("simulation_config.json") simulation_plan.setup(sim) net = import_from_sonata("circuit_config.json", sim) simulation_plan.execute(net)